libstd: add basic rational numbers

This commit is contained in:
Huon Wilson 2013-04-05 17:54:11 +11:00
parent ba63cba18d
commit 7b0401d774
2 changed files with 513 additions and 0 deletions

511
src/libstd/num/rational.rs Normal file
View file

@ -0,0 +1,511 @@
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Rational numbers
use core::num::{Zero,One,ToStrRadix,FromStrRadix,Round};
use core::from_str::FromStr;
use core::to_str::ToStr;
use core::prelude::*;
use core::cmp::TotalEq;
use super::bigint::BigInt;
/// Represents the ratio between 2 numbers.
#[deriving(Clone)]
pub struct Ratio<T> {
numer: T,
denom: T
}
/// Alias for a `Ratio` of machine-sized integers.
pub type Rational = Ratio<int>;
pub type Rational32 = Ratio<i32>;
pub type Rational64 = Ratio<i64>;
/// Alias for arbitrary precision rationals.
pub type BigRational = Ratio<BigInt>;
impl<T: Copy + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
Ratio<T> {
/// Create a ratio representing the integer `t`.
#[inline(always)]
pub fn from_integer(t: T) -> Ratio<T> {
Ratio::new_raw(t, One::one())
}
/// Create a ratio without checking for `denom == 0` or reducing.
#[inline(always)]
pub fn new_raw(numer: T, denom: T) -> Ratio<T> {
Ratio { numer: numer, denom: denom }
}
// Create a new Ratio. Fails if `denom == 0`.
#[inline(always)]
pub fn new(numer: T, denom: T) -> Ratio<T> {
if denom == Zero::zero() {
fail!(~"divide by 0");
}
let mut ret = Ratio::new_raw(numer, denom);
ret.reduce();
ret
}
/// Put self into lowest terms, with denom > 0.
fn reduce(&mut self) {
let mut g : T = gcd(self.numer, self.denom);
self.numer /= g;
self.denom /= g;
// keep denom positive!
if self.denom < Zero::zero() {
self.numer = -self.numer;
self.denom = -self.denom;
}
}
/// Return a `reduce`d copy of self.
fn reduced(&self) -> Ratio<T> {
let mut ret = copy *self;
ret.reduce();
ret
}
}
/**
Compute the greatest common divisor of two numbers, via Euclid's algorithm.
The result can be negative.
*/
#[inline]
pub fn gcd_raw<T: Modulo<T,T> + Zero + Eq>(n: T, m: T) -> T {
let mut m = m, n = n;
while m != Zero::zero() {
let temp = m;
m = n % temp;
n = temp;
}
n
}
/**
Compute the greatest common divisor of two numbers, via Euclid's algorithm.
The result is always positive.
*/
#[inline]
pub fn gcd<T: Modulo<T,T> + Neg<T> + Zero + Ord + Eq>(n: T, m: T) -> T {
let g = gcd_raw(n, m);
if g < Zero::zero() { -g }
else { g }
}
/* Comparisons */
// comparing a/b and c/d is the same as comparing a*d and b*c, so we
// abstract that pattern. The following macro takes a trait and either
// a comma-separated list of "method name -> return value" or just
// "method name" (return value is bool in that case)
macro_rules! cmp_impl {
(impl $imp:ident, $($method:ident),+) => {
cmp_impl!(impl $imp, $($method -> bool),+)
};
// return something other than a Ratio<T>
(impl $imp:ident, $($method:ident -> $res:ty),+) => {
impl<T: Mul<T,T> + $imp> $imp for Ratio<T> {
$(
#[inline]
fn $method(&self, other: &Ratio<T>) -> $res {
(self.numer * other.denom). $method (&(self.denom*other.numer))
}
)+
}
};
}
cmp_impl!(impl Eq, eq, ne)
cmp_impl!(impl TotalEq, equals)
cmp_impl!(impl Ord, lt, gt, le, ge)
cmp_impl!(impl TotalOrd, cmp -> cmp::Ordering)
/* Arithmetic */
// a/b * c/d = (a*c)/(b*d)
impl<T: Copy + Mul<T,T> + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
Mul<Ratio<T>,Ratio<T>> for Ratio<T> {
#[inline]
fn mul(&self, rhs: &Ratio<T>) -> Ratio<T> {
Ratio::new(self.numer * rhs.numer, self.denom * rhs.denom)
}
}
// (a/b) / (c/d) = (a*d)/(b*c)
impl<T: Copy + Mul<T,T> + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
Div<Ratio<T>,Ratio<T>> for Ratio<T> {
#[inline]
fn div(&self, rhs: &Ratio<T>) -> Ratio<T> {
Ratio::new(self.numer * rhs.denom, self.denom * rhs.numer)
}
}
// Abstracts the a/b `op` c/d = (a*d `op` b*d) / (b*d) pattern
macro_rules! arith_impl {
(impl $imp:ident, $method:ident) => {
impl<T: Copy +
Add<T,T> + Sub<T,T> + Mul<T,T> + Div<T,T> + Modulo<T,T> + Neg<T> +
Zero + One + Ord + Eq>
$imp<Ratio<T>,Ratio<T>> for Ratio<T> {
#[inline]
fn $method(&self, rhs: &Ratio<T>) -> Ratio<T> {
Ratio::new((self.numer * rhs.denom).$method(&(self.denom * rhs.numer)),
self.denom * rhs.denom)
}
}
}
}
// a/b + c/d = (a*d + b*c)/(b*d
arith_impl!(impl Add, add)
// a/b - c/d = (a*d - b*c)/(b*d)
arith_impl!(impl Sub, sub)
// a/b % c/d = (a*d % b*c)/(b*d)
arith_impl!(impl Modulo, modulo)
impl<T: Copy + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
Neg<Ratio<T>> for Ratio<T> {
#[inline]
fn neg(&self) -> Ratio<T> {
Ratio::new_raw(-self.numer, self.denom)
}
}
/* Constants */
impl<T: Copy + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
Zero for Ratio<T> {
#[inline]
fn zero() -> Ratio<T> {
Ratio::new_raw(Zero::zero(), One::one())
}
}
impl<T: Copy + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
One for Ratio<T> {
#[inline]
fn one() -> Ratio<T> {
Ratio::new_raw(One::one(), One::one())
}
}
/* Utils */
impl<T: Copy + Add<T,T> + Sub<T,T> + Mul<T,T> + Div<T,T> + Modulo<T,T> + Neg<T> +
Zero + One + Ord + Eq>
Round for Ratio<T> {
fn round(&self, mode: num::RoundMode) -> Ratio<T> {
match mode {
num::RoundUp => { self.ceil() }
num::RoundDown => { self.floor()}
num::RoundToZero => { Ratio::from_integer(self.numer / self.denom) }
num::RoundFromZero => {
if *self < Zero::zero() {
Ratio::from_integer((self.numer - self.denom + One::one()) / self.denom)
} else {
Ratio::from_integer((self.numer + self.denom - One::one()) / self.denom)
}
}
}
}
fn floor(&self) -> Ratio<T> {
if *self < Zero::zero() {
Ratio::from_integer((self.numer - self.denom + One::one()) / self.denom)
} else {
Ratio::from_integer(self.numer / self.denom)
}
}
fn ceil(&self) -> Ratio<T> {
if *self < Zero::zero() {
Ratio::from_integer(self.numer / self.denom)
} else {
Ratio::from_integer((self.numer + self.denom - One::one()) / self.denom)
}
}
fn fract(&self) -> Ratio<T> {
Ratio::new_raw(self.numer % self.denom, self.denom)
}
}
/* String conversions */
impl<T: ToStr> ToStr for Ratio<T> {
/// Renders as `numer/denom`.
fn to_str(&self) -> ~str {
fmt!("%s/%s", self.numer.to_str(), self.denom.to_str())
}
}
impl<T: ToStrRadix> ToStrRadix for Ratio<T> {
/// Renders as `numer/denom` where the numbers are in base `radix`.
fn to_str_radix(&self, radix: uint) -> ~str {
fmt!("%s/%s", self.numer.to_str_radix(radix), self.denom.to_str_radix(radix))
}
}
impl<T: FromStr + Copy + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
FromStr for Ratio<T> {
/// Parses `numer/denom`.
fn from_str(s: &str) -> Option<Ratio<T>> {
let split = vec::build(|push| {
for str::each_splitn_char(s, '/', 1) |s| {
push(s.to_owned());
}
});
if split.len() < 2 { return None; }
do FromStr::from_str(split[0]).chain |a| {
do FromStr::from_str(split[1]).chain |b| {
Some(Ratio::new(a,b))
}
}
}
}
impl<T: FromStrRadix + Copy + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
FromStrRadix for Ratio<T> {
/// Parses `numer/denom` where the numbers are in base `radix`.
fn from_str_radix(s: &str, radix: uint) -> Option<Ratio<T>> {
let split = vec::build(|push| {
for str::each_splitn_char(s, '/', 1) |s| {
push(s.to_owned());
}
});
if split.len() < 2 { None }
else {
do FromStrRadix::from_str_radix(split[0], radix).chain |a| {
do FromStrRadix::from_str_radix(split[1], radix).chain |b| {
Some(Ratio::new(a,b))
}
}
}
}
}
#[cfg(test)]
mod test {
use core::prelude::*;
use super::*;
use core::num::{Zero,One,FromStrRadix};
use core::from_str::FromStr;
pub static _0 : Rational = Ratio { numer: 0, denom: 1};
pub static _1 : Rational = Ratio { numer: 1, denom: 1};
pub static _2: Rational = Ratio { numer: 2, denom: 1};
pub static _1_2: Rational = Ratio { numer: 1, denom: 2};
pub static _3_2: Rational = Ratio { numer: 3, denom: 2};
pub static _neg1_2: Rational = Ratio { numer: -1, denom: 2};
#[test]
fn test_gcd() {
assert_eq!(gcd(10,2),2);
assert_eq!(gcd(10,3),1);
assert_eq!(gcd(0,3),3);
assert_eq!(gcd(3,3),3);
assert_eq!(gcd(3,-3), 3);
assert_eq!(gcd(-6,3), 3);
assert_eq!(gcd(-4,-2), 2);
}
#[test]
fn test_test_constants() {
// check our constants are what Ratio::new etc. would make.
assert_eq!(_0, Zero::zero());
assert_eq!(_1, One::one());
assert_eq!(_2, Ratio::from_integer(2));
assert_eq!(_1_2, Ratio::new(1,2));
assert_eq!(_3_2, Ratio::new(3,2));
assert_eq!(_neg1_2, Ratio::new(-1,2));
}
#[test]
fn test_new_reduce() {
let one22 = Ratio::new(2i,2);
assert_eq!(one22, One::one());
}
#[test]
#[should_fail]
fn test_new_zero() {
let _a = Ratio::new(1,0);
}
#[test]
fn test_cmp() {
assert!(_0 == _0 && _1 == _1);
assert!(_0 != _1 && _1 != _0);
assert!(_0 < _1 && !(_1 < _0));
assert!(_1 > _0 && !(_0 > _1));
assert!(_0 <= _0 && _1 <= _1);
assert!(_0 <= _1 && !(_1 <= _0));
assert!(_0 >= _0 && _1 >= _1);
assert!(_1 >= _0 && !(_0 >= _1));
}
mod arith {
use super::*;
use super::super::*;
#[test]
fn test_add() {
assert_eq!(_1 + _1_2, _3_2);
assert_eq!(_1 + _1, _2);
assert_eq!(_1_2 + _3_2, _2);
assert_eq!(_1_2 + _neg1_2, _0);
}
#[test]
fn test_sub() {
assert_eq!(_1 - _1_2, _1_2);
assert_eq!(_3_2 - _1_2, _1);
assert_eq!(_1 - _neg1_2, _3_2);
}
#[test]
fn test_mul() {
assert_eq!(_1 * _1_2, _1_2);
assert_eq!(_1_2 * _3_2, Ratio::new(3,4));
assert_eq!(_1_2 * _neg1_2, Ratio::new(-1, 4));
}
#[test]
fn test_div() {
assert_eq!(_1 / _1_2, _2);
assert_eq!(_3_2 / _1_2, _1 + _2);
assert_eq!(_1 / _neg1_2, _neg1_2 + _neg1_2 + _neg1_2 + _neg1_2);
}
#[test]
fn test_modulo() {
assert_eq!(_3_2 % _1, _1_2);
assert_eq!(_2 % _neg1_2, _0);
assert_eq!(_1_2 % _2, _1_2);
}
#[test]
fn test_neg() {
assert_eq!(-_0, _0);
assert_eq!(-_1_2, _neg1_2);
assert_eq!(-(-_1), _1);
}
#[test]
fn test_zero() {
assert_eq!(_0 + _0, _0);
assert_eq!(_0 * _0, _0);
assert_eq!(_0 * _1, _0);
assert_eq!(_0 / _neg1_2, _0);
assert_eq!(_0 - _0, _0);
}
#[test]
#[should_fail]
fn test_div_0() {
let _a = _1 / _0;
}
}
#[test]
fn test_round() {
assert_eq!(_1_2.ceil(), _1);
assert_eq!(_1_2.floor(), _0);
assert_eq!(_1_2.round(num::RoundToZero), _0);
assert_eq!(_1_2.round(num::RoundFromZero), _1);
assert_eq!(_neg1_2.ceil(), _0);
assert_eq!(_neg1_2.floor(), -_1);
assert_eq!(_neg1_2.round(num::RoundToZero), _0);
assert_eq!(_neg1_2.round(num::RoundFromZero), -_1);
assert_eq!(_1.ceil(), _1);
assert_eq!(_1.floor(), _1);
assert_eq!(_1.round(num::RoundToZero), _1);
assert_eq!(_1.round(num::RoundFromZero), _1);
}
#[test]
fn test_fract() {
assert_eq!(_1.fract(), _0);
assert_eq!(_neg1_2.fract(), _neg1_2);
assert_eq!(_1_2.fract(), _1_2);
assert_eq!(_3_2.fract(), _1_2);
}
#[test]
fn test_to_from_str() {
fn test(r: Rational, s: ~str) {
assert_eq!(FromStr::from_str(s), Some(r));
assert_eq!(r.to_str(), s);
}
test(_1, ~"1/1");
test(_0, ~"0/1");
test(_1_2, ~"1/2");
test(_3_2, ~"3/2");
test(_2, ~"2/1");
test(_neg1_2, ~"-1/2");
}
#[test]
fn test_from_str_fail() {
fn test(s: &str) {
assert_eq!(FromStr::from_str::<Rational>(s), None);
}
for ["0 /1", "abc", "", "1/", "--1/2","3/2/1"].each |&s| {
test(s);
}
}
#[test]
fn test_to_from_str_radix() {
fn test(r: Rational, s: ~str, n: uint) {
assert_eq!(FromStrRadix::from_str_radix(s, n), Some(r));
assert_eq!(r.to_str_radix(n), s);
}
fn test3(r: Rational, s: ~str) { test(r, s, 3) }
fn test16(r: Rational, s: ~str) { test(r, s, 16) }
test3(_1, ~"1/1");
test3(_0, ~"0/1");
test3(_1_2, ~"1/2");
test3(_3_2, ~"10/2");
test3(_2, ~"2/1");
test3(_neg1_2, ~"-1/2");
test3(_neg1_2 / _2, ~"-1/11");
test16(_1, ~"1/1");
test16(_0, ~"0/1");
test16(_1_2, ~"1/2");
test16(_3_2, ~"3/2");
test16(_2, ~"2/1");
test16(_neg1_2, ~"-1/2");
test16(_neg1_2 / _2, ~"-1/4");
test16(Ratio::new(13,15), ~"d/f");
test16(_1_2*_1_2*_1_2*_1_2, ~"1/10");
}
#[test]
fn test_from_str_radix_fail() {
fn test(s: &str) {
assert_eq!(FromStrRadix::from_str_radix::<Rational>(s, 3), None);
}
for ["0 /1", "abc", "", "1/", "--1/2","3/2/1", "3/2"].each |&s| {
test(s);
}
}
}

View file

@ -97,6 +97,8 @@ pub mod rl;
pub mod workcache;
#[path="num/bigint.rs"]
pub mod bigint;
#[path="num/rational.rs"]
pub mod rational;
pub mod stats;
pub mod semver;
pub mod fileinput;