libstd: add basic rational numbers
This commit is contained in:
parent
ba63cba18d
commit
7b0401d774
2 changed files with 513 additions and 0 deletions
511
src/libstd/num/rational.rs
Normal file
511
src/libstd/num/rational.rs
Normal file
|
@ -0,0 +1,511 @@
|
|||
// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
|
||||
// file at the top-level directory of this distribution and at
|
||||
// http://rust-lang.org/COPYRIGHT.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||||
// option. This file may not be copied, modified, or distributed
|
||||
// except according to those terms.
|
||||
|
||||
|
||||
//! Rational numbers
|
||||
|
||||
use core::num::{Zero,One,ToStrRadix,FromStrRadix,Round};
|
||||
use core::from_str::FromStr;
|
||||
use core::to_str::ToStr;
|
||||
use core::prelude::*;
|
||||
use core::cmp::TotalEq;
|
||||
use super::bigint::BigInt;
|
||||
|
||||
/// Represents the ratio between 2 numbers.
|
||||
#[deriving(Clone)]
|
||||
pub struct Ratio<T> {
|
||||
numer: T,
|
||||
denom: T
|
||||
}
|
||||
|
||||
/// Alias for a `Ratio` of machine-sized integers.
|
||||
pub type Rational = Ratio<int>;
|
||||
pub type Rational32 = Ratio<i32>;
|
||||
pub type Rational64 = Ratio<i64>;
|
||||
|
||||
/// Alias for arbitrary precision rationals.
|
||||
pub type BigRational = Ratio<BigInt>;
|
||||
|
||||
impl<T: Copy + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
|
||||
Ratio<T> {
|
||||
/// Create a ratio representing the integer `t`.
|
||||
#[inline(always)]
|
||||
pub fn from_integer(t: T) -> Ratio<T> {
|
||||
Ratio::new_raw(t, One::one())
|
||||
}
|
||||
|
||||
/// Create a ratio without checking for `denom == 0` or reducing.
|
||||
#[inline(always)]
|
||||
pub fn new_raw(numer: T, denom: T) -> Ratio<T> {
|
||||
Ratio { numer: numer, denom: denom }
|
||||
}
|
||||
|
||||
// Create a new Ratio. Fails if `denom == 0`.
|
||||
#[inline(always)]
|
||||
pub fn new(numer: T, denom: T) -> Ratio<T> {
|
||||
if denom == Zero::zero() {
|
||||
fail!(~"divide by 0");
|
||||
}
|
||||
let mut ret = Ratio::new_raw(numer, denom);
|
||||
ret.reduce();
|
||||
ret
|
||||
}
|
||||
|
||||
/// Put self into lowest terms, with denom > 0.
|
||||
fn reduce(&mut self) {
|
||||
let mut g : T = gcd(self.numer, self.denom);
|
||||
|
||||
self.numer /= g;
|
||||
self.denom /= g;
|
||||
|
||||
// keep denom positive!
|
||||
if self.denom < Zero::zero() {
|
||||
self.numer = -self.numer;
|
||||
self.denom = -self.denom;
|
||||
}
|
||||
}
|
||||
/// Return a `reduce`d copy of self.
|
||||
fn reduced(&self) -> Ratio<T> {
|
||||
let mut ret = copy *self;
|
||||
ret.reduce();
|
||||
ret
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
Compute the greatest common divisor of two numbers, via Euclid's algorithm.
|
||||
|
||||
The result can be negative.
|
||||
*/
|
||||
#[inline]
|
||||
pub fn gcd_raw<T: Modulo<T,T> + Zero + Eq>(n: T, m: T) -> T {
|
||||
let mut m = m, n = n;
|
||||
while m != Zero::zero() {
|
||||
let temp = m;
|
||||
m = n % temp;
|
||||
n = temp;
|
||||
}
|
||||
n
|
||||
}
|
||||
|
||||
/**
|
||||
Compute the greatest common divisor of two numbers, via Euclid's algorithm.
|
||||
|
||||
The result is always positive.
|
||||
*/
|
||||
#[inline]
|
||||
pub fn gcd<T: Modulo<T,T> + Neg<T> + Zero + Ord + Eq>(n: T, m: T) -> T {
|
||||
let g = gcd_raw(n, m);
|
||||
if g < Zero::zero() { -g }
|
||||
else { g }
|
||||
}
|
||||
|
||||
/* Comparisons */
|
||||
|
||||
// comparing a/b and c/d is the same as comparing a*d and b*c, so we
|
||||
// abstract that pattern. The following macro takes a trait and either
|
||||
// a comma-separated list of "method name -> return value" or just
|
||||
// "method name" (return value is bool in that case)
|
||||
macro_rules! cmp_impl {
|
||||
(impl $imp:ident, $($method:ident),+) => {
|
||||
cmp_impl!(impl $imp, $($method -> bool),+)
|
||||
};
|
||||
// return something other than a Ratio<T>
|
||||
(impl $imp:ident, $($method:ident -> $res:ty),+) => {
|
||||
impl<T: Mul<T,T> + $imp> $imp for Ratio<T> {
|
||||
$(
|
||||
#[inline]
|
||||
fn $method(&self, other: &Ratio<T>) -> $res {
|
||||
(self.numer * other.denom). $method (&(self.denom*other.numer))
|
||||
}
|
||||
)+
|
||||
}
|
||||
};
|
||||
}
|
||||
cmp_impl!(impl Eq, eq, ne)
|
||||
cmp_impl!(impl TotalEq, equals)
|
||||
cmp_impl!(impl Ord, lt, gt, le, ge)
|
||||
cmp_impl!(impl TotalOrd, cmp -> cmp::Ordering)
|
||||
|
||||
/* Arithmetic */
|
||||
// a/b * c/d = (a*c)/(b*d)
|
||||
impl<T: Copy + Mul<T,T> + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
|
||||
Mul<Ratio<T>,Ratio<T>> for Ratio<T> {
|
||||
#[inline]
|
||||
fn mul(&self, rhs: &Ratio<T>) -> Ratio<T> {
|
||||
Ratio::new(self.numer * rhs.numer, self.denom * rhs.denom)
|
||||
}
|
||||
}
|
||||
|
||||
// (a/b) / (c/d) = (a*d)/(b*c)
|
||||
impl<T: Copy + Mul<T,T> + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
|
||||
Div<Ratio<T>,Ratio<T>> for Ratio<T> {
|
||||
#[inline]
|
||||
fn div(&self, rhs: &Ratio<T>) -> Ratio<T> {
|
||||
Ratio::new(self.numer * rhs.denom, self.denom * rhs.numer)
|
||||
}
|
||||
}
|
||||
|
||||
// Abstracts the a/b `op` c/d = (a*d `op` b*d) / (b*d) pattern
|
||||
macro_rules! arith_impl {
|
||||
(impl $imp:ident, $method:ident) => {
|
||||
impl<T: Copy +
|
||||
Add<T,T> + Sub<T,T> + Mul<T,T> + Div<T,T> + Modulo<T,T> + Neg<T> +
|
||||
Zero + One + Ord + Eq>
|
||||
$imp<Ratio<T>,Ratio<T>> for Ratio<T> {
|
||||
#[inline]
|
||||
fn $method(&self, rhs: &Ratio<T>) -> Ratio<T> {
|
||||
Ratio::new((self.numer * rhs.denom).$method(&(self.denom * rhs.numer)),
|
||||
self.denom * rhs.denom)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// a/b + c/d = (a*d + b*c)/(b*d
|
||||
arith_impl!(impl Add, add)
|
||||
|
||||
// a/b - c/d = (a*d - b*c)/(b*d)
|
||||
arith_impl!(impl Sub, sub)
|
||||
|
||||
// a/b % c/d = (a*d % b*c)/(b*d)
|
||||
arith_impl!(impl Modulo, modulo)
|
||||
|
||||
impl<T: Copy + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
|
||||
Neg<Ratio<T>> for Ratio<T> {
|
||||
#[inline]
|
||||
fn neg(&self) -> Ratio<T> {
|
||||
Ratio::new_raw(-self.numer, self.denom)
|
||||
}
|
||||
}
|
||||
|
||||
/* Constants */
|
||||
impl<T: Copy + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
|
||||
Zero for Ratio<T> {
|
||||
#[inline]
|
||||
fn zero() -> Ratio<T> {
|
||||
Ratio::new_raw(Zero::zero(), One::one())
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Copy + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
|
||||
One for Ratio<T> {
|
||||
#[inline]
|
||||
fn one() -> Ratio<T> {
|
||||
Ratio::new_raw(One::one(), One::one())
|
||||
}
|
||||
}
|
||||
|
||||
/* Utils */
|
||||
impl<T: Copy + Add<T,T> + Sub<T,T> + Mul<T,T> + Div<T,T> + Modulo<T,T> + Neg<T> +
|
||||
Zero + One + Ord + Eq>
|
||||
Round for Ratio<T> {
|
||||
fn round(&self, mode: num::RoundMode) -> Ratio<T> {
|
||||
match mode {
|
||||
num::RoundUp => { self.ceil() }
|
||||
num::RoundDown => { self.floor()}
|
||||
num::RoundToZero => { Ratio::from_integer(self.numer / self.denom) }
|
||||
num::RoundFromZero => {
|
||||
if *self < Zero::zero() {
|
||||
Ratio::from_integer((self.numer - self.denom + One::one()) / self.denom)
|
||||
} else {
|
||||
Ratio::from_integer((self.numer + self.denom - One::one()) / self.denom)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn floor(&self) -> Ratio<T> {
|
||||
if *self < Zero::zero() {
|
||||
Ratio::from_integer((self.numer - self.denom + One::one()) / self.denom)
|
||||
} else {
|
||||
Ratio::from_integer(self.numer / self.denom)
|
||||
}
|
||||
}
|
||||
fn ceil(&self) -> Ratio<T> {
|
||||
if *self < Zero::zero() {
|
||||
Ratio::from_integer(self.numer / self.denom)
|
||||
} else {
|
||||
Ratio::from_integer((self.numer + self.denom - One::one()) / self.denom)
|
||||
}
|
||||
}
|
||||
fn fract(&self) -> Ratio<T> {
|
||||
Ratio::new_raw(self.numer % self.denom, self.denom)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* String conversions */
|
||||
impl<T: ToStr> ToStr for Ratio<T> {
|
||||
/// Renders as `numer/denom`.
|
||||
fn to_str(&self) -> ~str {
|
||||
fmt!("%s/%s", self.numer.to_str(), self.denom.to_str())
|
||||
}
|
||||
}
|
||||
impl<T: ToStrRadix> ToStrRadix for Ratio<T> {
|
||||
/// Renders as `numer/denom` where the numbers are in base `radix`.
|
||||
fn to_str_radix(&self, radix: uint) -> ~str {
|
||||
fmt!("%s/%s", self.numer.to_str_radix(radix), self.denom.to_str_radix(radix))
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: FromStr + Copy + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
|
||||
FromStr for Ratio<T> {
|
||||
/// Parses `numer/denom`.
|
||||
fn from_str(s: &str) -> Option<Ratio<T>> {
|
||||
let split = vec::build(|push| {
|
||||
for str::each_splitn_char(s, '/', 1) |s| {
|
||||
push(s.to_owned());
|
||||
}
|
||||
});
|
||||
if split.len() < 2 { return None; }
|
||||
do FromStr::from_str(split[0]).chain |a| {
|
||||
do FromStr::from_str(split[1]).chain |b| {
|
||||
Some(Ratio::new(a,b))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
impl<T: FromStrRadix + Copy + Div<T,T> + Modulo<T,T> + Neg<T> + Zero + One + Ord + Eq>
|
||||
FromStrRadix for Ratio<T> {
|
||||
/// Parses `numer/denom` where the numbers are in base `radix`.
|
||||
fn from_str_radix(s: &str, radix: uint) -> Option<Ratio<T>> {
|
||||
let split = vec::build(|push| {
|
||||
for str::each_splitn_char(s, '/', 1) |s| {
|
||||
push(s.to_owned());
|
||||
}
|
||||
});
|
||||
if split.len() < 2 { None }
|
||||
else {
|
||||
do FromStrRadix::from_str_radix(split[0], radix).chain |a| {
|
||||
do FromStrRadix::from_str_radix(split[1], radix).chain |b| {
|
||||
Some(Ratio::new(a,b))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use core::prelude::*;
|
||||
use super::*;
|
||||
use core::num::{Zero,One,FromStrRadix};
|
||||
use core::from_str::FromStr;
|
||||
|
||||
pub static _0 : Rational = Ratio { numer: 0, denom: 1};
|
||||
pub static _1 : Rational = Ratio { numer: 1, denom: 1};
|
||||
pub static _2: Rational = Ratio { numer: 2, denom: 1};
|
||||
pub static _1_2: Rational = Ratio { numer: 1, denom: 2};
|
||||
pub static _3_2: Rational = Ratio { numer: 3, denom: 2};
|
||||
pub static _neg1_2: Rational = Ratio { numer: -1, denom: 2};
|
||||
|
||||
#[test]
|
||||
fn test_gcd() {
|
||||
assert_eq!(gcd(10,2),2);
|
||||
assert_eq!(gcd(10,3),1);
|
||||
assert_eq!(gcd(0,3),3);
|
||||
assert_eq!(gcd(3,3),3);
|
||||
|
||||
assert_eq!(gcd(3,-3), 3);
|
||||
assert_eq!(gcd(-6,3), 3);
|
||||
assert_eq!(gcd(-4,-2), 2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_test_constants() {
|
||||
// check our constants are what Ratio::new etc. would make.
|
||||
assert_eq!(_0, Zero::zero());
|
||||
assert_eq!(_1, One::one());
|
||||
assert_eq!(_2, Ratio::from_integer(2));
|
||||
assert_eq!(_1_2, Ratio::new(1,2));
|
||||
assert_eq!(_3_2, Ratio::new(3,2));
|
||||
assert_eq!(_neg1_2, Ratio::new(-1,2));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_new_reduce() {
|
||||
let one22 = Ratio::new(2i,2);
|
||||
|
||||
assert_eq!(one22, One::one());
|
||||
}
|
||||
#[test]
|
||||
#[should_fail]
|
||||
fn test_new_zero() {
|
||||
let _a = Ratio::new(1,0);
|
||||
}
|
||||
|
||||
|
||||
#[test]
|
||||
fn test_cmp() {
|
||||
assert!(_0 == _0 && _1 == _1);
|
||||
assert!(_0 != _1 && _1 != _0);
|
||||
assert!(_0 < _1 && !(_1 < _0));
|
||||
assert!(_1 > _0 && !(_0 > _1));
|
||||
|
||||
assert!(_0 <= _0 && _1 <= _1);
|
||||
assert!(_0 <= _1 && !(_1 <= _0));
|
||||
|
||||
assert!(_0 >= _0 && _1 >= _1);
|
||||
assert!(_1 >= _0 && !(_0 >= _1));
|
||||
}
|
||||
|
||||
|
||||
mod arith {
|
||||
use super::*;
|
||||
use super::super::*;
|
||||
|
||||
|
||||
#[test]
|
||||
fn test_add() {
|
||||
assert_eq!(_1 + _1_2, _3_2);
|
||||
assert_eq!(_1 + _1, _2);
|
||||
assert_eq!(_1_2 + _3_2, _2);
|
||||
assert_eq!(_1_2 + _neg1_2, _0);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_sub() {
|
||||
assert_eq!(_1 - _1_2, _1_2);
|
||||
assert_eq!(_3_2 - _1_2, _1);
|
||||
assert_eq!(_1 - _neg1_2, _3_2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_mul() {
|
||||
assert_eq!(_1 * _1_2, _1_2);
|
||||
assert_eq!(_1_2 * _3_2, Ratio::new(3,4));
|
||||
assert_eq!(_1_2 * _neg1_2, Ratio::new(-1, 4));
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_div() {
|
||||
assert_eq!(_1 / _1_2, _2);
|
||||
assert_eq!(_3_2 / _1_2, _1 + _2);
|
||||
assert_eq!(_1 / _neg1_2, _neg1_2 + _neg1_2 + _neg1_2 + _neg1_2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_modulo() {
|
||||
assert_eq!(_3_2 % _1, _1_2);
|
||||
assert_eq!(_2 % _neg1_2, _0);
|
||||
assert_eq!(_1_2 % _2, _1_2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_neg() {
|
||||
assert_eq!(-_0, _0);
|
||||
assert_eq!(-_1_2, _neg1_2);
|
||||
assert_eq!(-(-_1), _1);
|
||||
}
|
||||
#[test]
|
||||
fn test_zero() {
|
||||
assert_eq!(_0 + _0, _0);
|
||||
assert_eq!(_0 * _0, _0);
|
||||
assert_eq!(_0 * _1, _0);
|
||||
assert_eq!(_0 / _neg1_2, _0);
|
||||
assert_eq!(_0 - _0, _0);
|
||||
}
|
||||
#[test]
|
||||
#[should_fail]
|
||||
fn test_div_0() {
|
||||
let _a = _1 / _0;
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_round() {
|
||||
assert_eq!(_1_2.ceil(), _1);
|
||||
assert_eq!(_1_2.floor(), _0);
|
||||
assert_eq!(_1_2.round(num::RoundToZero), _0);
|
||||
assert_eq!(_1_2.round(num::RoundFromZero), _1);
|
||||
|
||||
assert_eq!(_neg1_2.ceil(), _0);
|
||||
assert_eq!(_neg1_2.floor(), -_1);
|
||||
assert_eq!(_neg1_2.round(num::RoundToZero), _0);
|
||||
assert_eq!(_neg1_2.round(num::RoundFromZero), -_1);
|
||||
|
||||
assert_eq!(_1.ceil(), _1);
|
||||
assert_eq!(_1.floor(), _1);
|
||||
assert_eq!(_1.round(num::RoundToZero), _1);
|
||||
assert_eq!(_1.round(num::RoundFromZero), _1);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_fract() {
|
||||
assert_eq!(_1.fract(), _0);
|
||||
assert_eq!(_neg1_2.fract(), _neg1_2);
|
||||
assert_eq!(_1_2.fract(), _1_2);
|
||||
assert_eq!(_3_2.fract(), _1_2);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_to_from_str() {
|
||||
fn test(r: Rational, s: ~str) {
|
||||
assert_eq!(FromStr::from_str(s), Some(r));
|
||||
assert_eq!(r.to_str(), s);
|
||||
}
|
||||
test(_1, ~"1/1");
|
||||
test(_0, ~"0/1");
|
||||
test(_1_2, ~"1/2");
|
||||
test(_3_2, ~"3/2");
|
||||
test(_2, ~"2/1");
|
||||
test(_neg1_2, ~"-1/2");
|
||||
}
|
||||
#[test]
|
||||
fn test_from_str_fail() {
|
||||
fn test(s: &str) {
|
||||
assert_eq!(FromStr::from_str::<Rational>(s), None);
|
||||
}
|
||||
|
||||
for ["0 /1", "abc", "", "1/", "--1/2","3/2/1"].each |&s| {
|
||||
test(s);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_to_from_str_radix() {
|
||||
fn test(r: Rational, s: ~str, n: uint) {
|
||||
assert_eq!(FromStrRadix::from_str_radix(s, n), Some(r));
|
||||
assert_eq!(r.to_str_radix(n), s);
|
||||
}
|
||||
fn test3(r: Rational, s: ~str) { test(r, s, 3) }
|
||||
fn test16(r: Rational, s: ~str) { test(r, s, 16) }
|
||||
|
||||
test3(_1, ~"1/1");
|
||||
test3(_0, ~"0/1");
|
||||
test3(_1_2, ~"1/2");
|
||||
test3(_3_2, ~"10/2");
|
||||
test3(_2, ~"2/1");
|
||||
test3(_neg1_2, ~"-1/2");
|
||||
test3(_neg1_2 / _2, ~"-1/11");
|
||||
|
||||
test16(_1, ~"1/1");
|
||||
test16(_0, ~"0/1");
|
||||
test16(_1_2, ~"1/2");
|
||||
test16(_3_2, ~"3/2");
|
||||
test16(_2, ~"2/1");
|
||||
test16(_neg1_2, ~"-1/2");
|
||||
test16(_neg1_2 / _2, ~"-1/4");
|
||||
test16(Ratio::new(13,15), ~"d/f");
|
||||
test16(_1_2*_1_2*_1_2*_1_2, ~"1/10");
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn test_from_str_radix_fail() {
|
||||
fn test(s: &str) {
|
||||
assert_eq!(FromStrRadix::from_str_radix::<Rational>(s, 3), None);
|
||||
}
|
||||
|
||||
for ["0 /1", "abc", "", "1/", "--1/2","3/2/1", "3/2"].each |&s| {
|
||||
test(s);
|
||||
}
|
||||
}
|
||||
}
|
|
@ -97,6 +97,8 @@ pub mod rl;
|
|||
pub mod workcache;
|
||||
#[path="num/bigint.rs"]
|
||||
pub mod bigint;
|
||||
#[path="num/rational.rs"]
|
||||
pub mod rational;
|
||||
pub mod stats;
|
||||
pub mod semver;
|
||||
pub mod fileinput;
|
||||
|
|
Loading…
Add table
Reference in a new issue