miri function ABI check: specifically look for repr(transparent)

This commit is contained in:
Ralf Jung 2023-08-30 12:26:17 +02:00
parent c1a34729e1
commit c37bd09d88
4 changed files with 137 additions and 71 deletions

View file

@ -2,12 +2,13 @@ use std::borrow::Cow;
use either::Either;
use rustc_ast::ast::InlineAsmOptions;
use rustc_middle::mir::ProjectionElem;
use rustc_middle::ty::layout::{FnAbiOf, LayoutOf, TyAndLayout};
use rustc_middle::ty::Instance;
use rustc_middle::{
mir,
ty::{self, Ty},
ty::{
self,
layout::{FnAbiOf, LayoutOf, TyAndLayout},
Instance, Ty,
},
};
use rustc_target::abi::call::{ArgAbi, ArgAttribute, ArgAttributes, FnAbi, PassMode};
use rustc_target::abi::{self, FieldIdx};
@ -252,11 +253,43 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
.collect()
}
fn check_argument_compat(
caller_abi: &ArgAbi<'tcx, Ty<'tcx>>,
callee_abi: &ArgAbi<'tcx, Ty<'tcx>>,
/// Find the wrapped inner type of a transparent wrapper.
fn unfold_transparent(&self, layout: TyAndLayout<'tcx>) -> TyAndLayout<'tcx> {
match layout.ty.kind() {
ty::Adt(adt_def, _) if adt_def.repr().transparent() => {
assert!(!adt_def.is_enum());
// Find the non-1-ZST field.
let mut non_1zst_fields = (0..layout.fields.count()).filter_map(|idx| {
let field = layout.field(self, idx);
if field.is_1zst() { None } else { Some(field) }
});
let Some(first) = non_1zst_fields.next() else {
// All fields are 1-ZST, so this is basically the same as `()`.
// (We still also compare the `PassMode`, so if this target does something strange with 1-ZST there, we'll know.)
return self.layout_of(self.tcx.types.unit).unwrap();
};
assert!(
non_1zst_fields.next().is_none(),
"more than one non-1-ZST field in a transparent type"
);
// Found it!
self.unfold_transparent(first)
}
// Not a transparent type, no further unfolding.
_ => layout,
}
}
/// Check if these two layouts look like they are fn-ABI-compatible.
/// (We also compare the `PassMode`, so this doesn't have to check everything. But it turns out
/// that only checking the `PassMode` is insufficient.)
fn layout_compat(
&self,
caller_layout: TyAndLayout<'tcx>,
callee_layout: TyAndLayout<'tcx>,
) -> bool {
let primitive_abi_compat = |a1: abi::Primitive, a2: abi::Primitive| -> bool {
fn primitive_abi_compat(a1: abi::Primitive, a2: abi::Primitive) -> bool {
match (a1, a2) {
// For integers, ignore the sign.
(abi::Primitive::Int(int_ty1, _sign1), abi::Primitive::Int(int_ty2, _sign2)) => {
@ -265,61 +298,49 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
// For everything else we require full equality.
_ => a1 == a2,
}
};
// Heuristic for type comparison.
let layout_compat = || {
if caller_abi.layout.ty == callee_abi.layout.ty {
// Fast path: definitely compatible.
return true;
}
if caller_layout.ty == callee_layout.ty {
// Fast path: equal types are definitely compatible.
return true;
}
match (caller_layout.abi, callee_layout.abi) {
// If both sides have Scalar/Vector/ScalarPair ABI, we can easily directly compare them.
// Different valid ranges are okay (the validity check will complain if this leads to
// invalid transmutes).
(abi::Abi::Scalar(caller), abi::Abi::Scalar(callee)) => {
primitive_abi_compat(caller.primitive(), callee.primitive())
}
// This is tricky. Some ABIs split aggregates up into multiple registers etc, so we have
// to be super careful here. For the scalar ABIs we conveniently already have all the
// newtypes unwrapped etc, so in those cases we can just compare the scalar components.
// Everything else we just reject for now.
match (caller_abi.layout.abi, callee_abi.layout.abi) {
// Different valid ranges are okay (the validity check will complain if this leads
// to invalid transmutes).
(abi::Abi::Scalar(caller), abi::Abi::Scalar(callee)) => {
primitive_abi_compat(caller.primitive(), callee.primitive())
}
(
abi::Abi::Vector { element: caller_element, count: caller_count },
abi::Abi::Vector { element: callee_element, count: callee_count },
) => {
primitive_abi_compat(caller_element.primitive(), callee_element.primitive())
&& caller_count == callee_count
}
(
abi::Abi::ScalarPair(caller1, caller2),
abi::Abi::ScalarPair(callee1, callee2),
) => {
primitive_abi_compat(caller1.primitive(), callee1.primitive())
&& primitive_abi_compat(caller2.primitive(), callee2.primitive())
}
(
abi::Abi::Aggregate { sized: caller_sized },
abi::Abi::Aggregate { sized: callee_sized },
) => {
// For these we rely on all the information being encoded in the `PassMode`, so
// here we only habe to check in-memory compatibility.
// FIXME: unwrap transparent newtype wrappers instead.
if !caller_sized || !callee_sized {
// No, no, no. We require the types to *exactly* match for unsized arguments. If
// these are somehow unsized "in a different way" (say, `dyn Trait` vs `[i32]`),
// then who knows what happens.
// FIXME: ideally we'd support newtyped around unized types, but that requires ensuring
// that for all values of the metadata, both types will compute the same dynamic size...
// not an easy thing to check.
return false;
}
caller_abi.layout.size == callee_abi.layout.size
&& caller_abi.layout.align.abi == callee_abi.layout.align.abi
}
// What remains is `Abi::Uninhabited` (which can never be passed anyway) and
// mismatching ABIs, that should all be rejected.
_ => false,
(
abi::Abi::Vector { element: caller_element, count: caller_count },
abi::Abi::Vector { element: callee_element, count: callee_count },
) => {
primitive_abi_compat(caller_element.primitive(), callee_element.primitive())
&& caller_count == callee_count
}
};
(abi::Abi::ScalarPair(caller1, caller2), abi::Abi::ScalarPair(callee1, callee2)) => {
primitive_abi_compat(caller1.primitive(), callee1.primitive())
&& primitive_abi_compat(caller2.primitive(), callee2.primitive())
}
(abi::Abi::Aggregate { .. }, abi::Abi::Aggregate { .. }) => {
// Aggregates are compatible only if they newtype-wrap the same type.
// This is conservative, but also means that our check isn't quite so heavily dependent on the `PassMode`,
// which means having ABI-compatibility on one target is much more likely to imply compatibility for other targets.
self.unfold_transparent(caller_layout).ty
== self.unfold_transparent(callee_layout).ty
}
// What remains is `Abi::Uninhabited` (which can never be passed anyway) and
// mismatching ABIs, that should all be rejected.
_ => false,
}
}
fn check_argument_compat(
&self,
caller_abi: &ArgAbi<'tcx, Ty<'tcx>>,
callee_abi: &ArgAbi<'tcx, Ty<'tcx>>,
) -> bool {
// When comparing the PassMode, we have to be smart about comparing the attributes.
let arg_attr_compat = |a1: &ArgAttributes, a2: &ArgAttributes| {
// There's only one regular attribute that matters for the call ABI: InReg.
@ -361,15 +382,22 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
// For instance, `layout_compat` is needed to reject `i32` vs `f32`, which is not reflected
// in `PassMode`. `mode_compat` is needed to reject `u8` vs `bool`, which have the same
// `abi::Primitive` but different `arg_ext`.
if layout_compat() && mode_compat() {
if self.layout_compat(caller_abi.layout, callee_abi.layout) && mode_compat() {
// Something went very wrong if our checks don't even imply that the layout is the same.
assert!(
caller_abi.layout.size == callee_abi.layout.size
&& caller_abi.layout.align.abi == callee_abi.layout.align.abi
&& caller_abi.layout.is_sized() == callee_abi.layout.is_sized()
);
return true;
} else {
trace!(
"check_argument_compat: incompatible ABIs:\ncaller: {:?}\ncallee: {:?}",
caller_abi,
callee_abi
);
return false;
}
trace!(
"check_argument_compat: incompatible ABIs:\ncaller: {:?}\ncallee: {:?}",
caller_abi,
callee_abi
);
return false;
}
/// Initialize a single callee argument, checking the types for compatibility.
@ -399,7 +427,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
throw_ub_custom!(fluent::const_eval_not_enough_caller_args);
};
// Check compatibility
if !Self::check_argument_compat(caller_abi, callee_abi) {
if !self.check_argument_compat(caller_abi, callee_abi) {
let callee_ty = format!("{}", callee_ty);
let caller_ty = format!("{}", caller_arg.layout().ty);
throw_ub_custom!(
@ -632,7 +660,10 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
};
for (i, field_ty) in fields.iter().enumerate() {
let dest = dest.project_deeper(
&[ProjectionElem::Field(FieldIdx::from_usize(i), field_ty)],
&[mir::ProjectionElem::Field(
FieldIdx::from_usize(i),
field_ty,
)],
*self.tcx,
);
let callee_abi = callee_args_abis.next().unwrap();
@ -669,7 +700,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
throw_ub_custom!(fluent::const_eval_too_many_caller_args);
}
// Don't forget to check the return type!
if !Self::check_argument_compat(&caller_fn_abi.ret, &callee_fn_abi.ret) {
if !self.check_argument_compat(&caller_fn_abi.ret, &callee_fn_abi.ret) {
let callee_ty = format!("{}", callee_fn_abi.ret.layout.ty);
let caller_ty = format!("{}", caller_fn_abi.ret.layout.ty);
throw_ub_custom!(

View file

@ -0,0 +1,16 @@
#![feature(portable_simd)]
// Some targets treat arrays and structs very differently. We would probably catch that on those
// targets since we check the `PassMode`; here we ensure that we catch it on *all* targets
// (in particular, on x86-64 the pass mode is `Indirect` for both of these).
struct S(i32, i32, i32, i32);
type A = [i32; 4];
fn main() {
fn f(_: S) {}
// These two types have the same size but are still not compatible.
let g = unsafe { std::mem::transmute::<fn(S), fn(A)>(f) };
g(Default::default()) //~ ERROR: calling a function with argument of type S passing data of type [i32; 4]
}

View file

@ -0,0 +1,15 @@
error: Undefined Behavior: calling a function with argument of type S passing data of type [i32; 4]
--> $DIR/abi_mismatch_array_vs_struct.rs:LL:CC
|
LL | g(Default::default())
| ^^^^^^^^^^^^^^^^^^^^^ calling a function with argument of type S passing data of type [i32; 4]
|
= help: this indicates a bug in the program: it performed an invalid operation, and caused Undefined Behavior
= help: see https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html for further information
= note: BACKTRACE:
= note: inside `main` at $DIR/abi_mismatch_array_vs_struct.rs:LL:CC
note: some details are omitted, run with `MIRIFLAGS=-Zmiri-backtrace=full` for a verbose backtrace
error: aborting due to previous error

View file

@ -24,10 +24,13 @@ fn test_abi_newtype<T: Copy>(t: T) {
#[repr(transparent)]
struct Wrapper2<T>(T, ());
#[repr(transparent)]
struct Wrapper2a<T>((), T);
#[repr(transparent)]
struct Wrapper3<T>(T, [u8; 0]);
test_abi_compat(t, Wrapper1(t));
test_abi_compat(t, Wrapper2(t, ()));
test_abi_compat(t, Wrapper2a((), t));
test_abi_compat(t, Wrapper3(t, []));
}
@ -46,4 +49,5 @@ fn main() {
test_abi_newtype(0f32);
test_abi_newtype((0u32, 1u32, 2u32));
test_abi_newtype([0u32, 1u32, 2u32]);
test_abi_newtype([0i32; 0]);
}