Auto merge of #47209 - eddyb:ccx, r=nikomatsakis

rustc_trans: reorganize CrateContext and rename context types.

Firstly, the `{Shared,Local}CrateContext` hasn't been meaningful for a while now, and this PR resolves it by moving all their fields to `CrateContext` and removing redundant accessor methods.

Secondly, this PR contains the following mass-renames:
* `ccx: CrateContext` -> `cx: CodegenCx`
* `mircx: MirContext` -> `fx: FunctionCx`
* `bcx: Builder` -> `bx: Builder`

r? @nikomatsakis
This commit is contained in:
bors 2018-01-16 08:06:15 +00:00
commit da569fa9dd
47 changed files with 2139 additions and 2373 deletions

View file

@ -1661,7 +1661,6 @@ extern "C" {
pub fn LLVMRustArchiveMemberFree(Member: RustArchiveMemberRef);
pub fn LLVMRustSetDataLayoutFromTargetMachine(M: ModuleRef, TM: TargetMachineRef);
pub fn LLVMRustGetModuleDataLayout(M: ModuleRef) -> TargetDataRef;
pub fn LLVMRustBuildOperandBundleDef(Name: *const c_char,
Inputs: *const ValueRef,

View file

@ -12,7 +12,7 @@ use llvm::{self, ValueRef, AttributePlace};
use base;
use builder::Builder;
use common::{ty_fn_sig, C_usize};
use context::CrateContext;
use context::CodegenCx;
use cabi_x86;
use cabi_x86_64;
use cabi_x86_win64;
@ -209,8 +209,8 @@ impl Reg {
}
impl Reg {
pub fn align(&self, ccx: &CrateContext) -> Align {
let dl = ccx.data_layout();
pub fn align(&self, cx: &CodegenCx) -> Align {
let dl = cx.data_layout();
match self.kind {
RegKind::Integer => {
match self.size.bits() {
@ -234,18 +234,18 @@ impl Reg {
}
}
pub fn llvm_type(&self, ccx: &CrateContext) -> Type {
pub fn llvm_type(&self, cx: &CodegenCx) -> Type {
match self.kind {
RegKind::Integer => Type::ix(ccx, self.size.bits()),
RegKind::Integer => Type::ix(cx, self.size.bits()),
RegKind::Float => {
match self.size.bits() {
32 => Type::f32(ccx),
64 => Type::f64(ccx),
32 => Type::f32(cx),
64 => Type::f64(cx),
_ => bug!("unsupported float: {:?}", self)
}
}
RegKind::Vector => {
Type::vector(&Type::i8(ccx), self.size.bytes())
Type::vector(&Type::i8(cx), self.size.bytes())
}
}
}
@ -276,12 +276,12 @@ impl From<Reg> for Uniform {
}
impl Uniform {
pub fn align(&self, ccx: &CrateContext) -> Align {
self.unit.align(ccx)
pub fn align(&self, cx: &CodegenCx) -> Align {
self.unit.align(cx)
}
pub fn llvm_type(&self, ccx: &CrateContext) -> Type {
let llunit = self.unit.llvm_type(ccx);
pub fn llvm_type(&self, cx: &CodegenCx) -> Type {
let llunit = self.unit.llvm_type(cx);
if self.total <= self.unit.size {
return llunit;
@ -298,16 +298,16 @@ impl Uniform {
assert_eq!(self.unit.kind, RegKind::Integer);
let args: Vec<_> = (0..count).map(|_| llunit)
.chain(iter::once(Type::ix(ccx, rem_bytes * 8)))
.chain(iter::once(Type::ix(cx, rem_bytes * 8)))
.collect();
Type::struct_(ccx, &args, false)
Type::struct_(cx, &args, false)
}
}
pub trait LayoutExt<'tcx> {
fn is_aggregate(&self) -> bool;
fn homogeneous_aggregate<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> Option<Reg>;
fn homogeneous_aggregate<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> Option<Reg>;
}
impl<'tcx> LayoutExt<'tcx> for TyLayout<'tcx> {
@ -321,7 +321,7 @@ impl<'tcx> LayoutExt<'tcx> for TyLayout<'tcx> {
}
}
fn homogeneous_aggregate<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> Option<Reg> {
fn homogeneous_aggregate<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> Option<Reg> {
match self.abi {
layout::Abi::Uninhabited => None,
@ -354,7 +354,7 @@ impl<'tcx> LayoutExt<'tcx> for TyLayout<'tcx> {
let is_union = match self.fields {
layout::FieldPlacement::Array { count, .. } => {
if count > 0 {
return self.field(ccx, 0).homogeneous_aggregate(ccx);
return self.field(cx, 0).homogeneous_aggregate(cx);
} else {
return None;
}
@ -368,8 +368,8 @@ impl<'tcx> LayoutExt<'tcx> for TyLayout<'tcx> {
return None;
}
let field = self.field(ccx, i);
match (result, field.homogeneous_aggregate(ccx)) {
let field = self.field(cx, i);
match (result, field.homogeneous_aggregate(cx)) {
// The field itself must be a homogeneous aggregate.
(_, None) => return None,
// If this is the first field, record the unit.
@ -423,34 +423,34 @@ impl From<Uniform> for CastTarget {
}
impl CastTarget {
pub fn size(&self, ccx: &CrateContext) -> Size {
pub fn size(&self, cx: &CodegenCx) -> Size {
match *self {
CastTarget::Uniform(u) => u.total,
CastTarget::Pair(a, b) => {
(a.size.abi_align(a.align(ccx)) + b.size)
.abi_align(self.align(ccx))
(a.size.abi_align(a.align(cx)) + b.size)
.abi_align(self.align(cx))
}
}
}
pub fn align(&self, ccx: &CrateContext) -> Align {
pub fn align(&self, cx: &CodegenCx) -> Align {
match *self {
CastTarget::Uniform(u) => u.align(ccx),
CastTarget::Uniform(u) => u.align(cx),
CastTarget::Pair(a, b) => {
ccx.data_layout().aggregate_align
.max(a.align(ccx))
.max(b.align(ccx))
cx.data_layout().aggregate_align
.max(a.align(cx))
.max(b.align(cx))
}
}
}
pub fn llvm_type(&self, ccx: &CrateContext) -> Type {
pub fn llvm_type(&self, cx: &CodegenCx) -> Type {
match *self {
CastTarget::Uniform(u) => u.llvm_type(ccx),
CastTarget::Uniform(u) => u.llvm_type(cx),
CastTarget::Pair(a, b) => {
Type::struct_(ccx, &[
a.llvm_type(ccx),
b.llvm_type(ccx)
Type::struct_(cx, &[
a.llvm_type(cx),
b.llvm_type(cx)
], false)
}
}
@ -547,28 +547,28 @@ impl<'a, 'tcx> ArgType<'tcx> {
/// Get the LLVM type for an place of the original Rust type of
/// this argument/return, i.e. the result of `type_of::type_of`.
pub fn memory_ty(&self, ccx: &CrateContext<'a, 'tcx>) -> Type {
self.layout.llvm_type(ccx)
pub fn memory_ty(&self, cx: &CodegenCx<'a, 'tcx>) -> Type {
self.layout.llvm_type(cx)
}
/// Store a direct/indirect value described by this ArgType into a
/// place for the original Rust type of this argument/return.
/// Can be used for both storing formal arguments into Rust variables
/// or results of call/invoke instructions into their destinations.
pub fn store(&self, bcx: &Builder<'a, 'tcx>, val: ValueRef, dst: PlaceRef<'tcx>) {
pub fn store(&self, bx: &Builder<'a, 'tcx>, val: ValueRef, dst: PlaceRef<'tcx>) {
if self.is_ignore() {
return;
}
let ccx = bcx.ccx;
let cx = bx.cx;
if self.is_indirect() {
OperandValue::Ref(val, self.layout.align).store(bcx, dst)
OperandValue::Ref(val, self.layout.align).store(bx, dst)
} else if let PassMode::Cast(cast) = self.mode {
// FIXME(eddyb): Figure out when the simpler Store is safe, clang
// uses it for i16 -> {i8, i8}, but not for i24 -> {i8, i8, i8}.
let can_store_through_cast_ptr = false;
if can_store_through_cast_ptr {
let cast_dst = bcx.pointercast(dst.llval, cast.llvm_type(ccx).ptr_to());
bcx.store(val, cast_dst, self.layout.align);
let cast_dst = bx.pointercast(dst.llval, cast.llvm_type(cx).ptr_to());
bx.store(val, cast_dst, self.layout.align);
} else {
// The actual return type is a struct, but the ABI
// adaptation code has cast it into some scalar type. The
@ -585,44 +585,44 @@ impl<'a, 'tcx> ArgType<'tcx> {
// bitcasting to the struct type yields invalid cast errors.
// We instead thus allocate some scratch space...
let scratch_size = cast.size(ccx);
let scratch_align = cast.align(ccx);
let llscratch = bcx.alloca(cast.llvm_type(ccx), "abi_cast", scratch_align);
bcx.lifetime_start(llscratch, scratch_size);
let scratch_size = cast.size(cx);
let scratch_align = cast.align(cx);
let llscratch = bx.alloca(cast.llvm_type(cx), "abi_cast", scratch_align);
bx.lifetime_start(llscratch, scratch_size);
// ...where we first store the value...
bcx.store(val, llscratch, scratch_align);
bx.store(val, llscratch, scratch_align);
// ...and then memcpy it to the intended destination.
base::call_memcpy(bcx,
bcx.pointercast(dst.llval, Type::i8p(ccx)),
bcx.pointercast(llscratch, Type::i8p(ccx)),
C_usize(ccx, self.layout.size.bytes()),
base::call_memcpy(bx,
bx.pointercast(dst.llval, Type::i8p(cx)),
bx.pointercast(llscratch, Type::i8p(cx)),
C_usize(cx, self.layout.size.bytes()),
self.layout.align.min(scratch_align));
bcx.lifetime_end(llscratch, scratch_size);
bx.lifetime_end(llscratch, scratch_size);
}
} else {
OperandValue::Immediate(val).store(bcx, dst);
OperandValue::Immediate(val).store(bx, dst);
}
}
pub fn store_fn_arg(&self, bcx: &Builder<'a, 'tcx>, idx: &mut usize, dst: PlaceRef<'tcx>) {
pub fn store_fn_arg(&self, bx: &Builder<'a, 'tcx>, idx: &mut usize, dst: PlaceRef<'tcx>) {
if self.pad.is_some() {
*idx += 1;
}
let mut next = || {
let val = llvm::get_param(bcx.llfn(), *idx as c_uint);
let val = llvm::get_param(bx.llfn(), *idx as c_uint);
*idx += 1;
val
};
match self.mode {
PassMode::Ignore => {},
PassMode::Pair(..) => {
OperandValue::Pair(next(), next()).store(bcx, dst);
OperandValue::Pair(next(), next()).store(bx, dst);
}
PassMode::Direct(_) | PassMode::Indirect(_) | PassMode::Cast(_) => {
self.store(bcx, next(), dst);
self.store(bx, next(), dst);
}
}
}
@ -647,26 +647,26 @@ pub struct FnType<'tcx> {
}
impl<'a, 'tcx> FnType<'tcx> {
pub fn of_instance(ccx: &CrateContext<'a, 'tcx>, instance: &ty::Instance<'tcx>)
pub fn of_instance(cx: &CodegenCx<'a, 'tcx>, instance: &ty::Instance<'tcx>)
-> Self {
let fn_ty = instance.ty(ccx.tcx());
let sig = ty_fn_sig(ccx, fn_ty);
let sig = ccx.tcx().erase_late_bound_regions_and_normalize(&sig);
FnType::new(ccx, sig, &[])
let fn_ty = instance.ty(cx.tcx);
let sig = ty_fn_sig(cx, fn_ty);
let sig = cx.tcx.erase_late_bound_regions_and_normalize(&sig);
FnType::new(cx, sig, &[])
}
pub fn new(ccx: &CrateContext<'a, 'tcx>,
pub fn new(cx: &CodegenCx<'a, 'tcx>,
sig: ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType<'tcx> {
let mut fn_ty = FnType::unadjusted(ccx, sig, extra_args);
fn_ty.adjust_for_abi(ccx, sig.abi);
let mut fn_ty = FnType::unadjusted(cx, sig, extra_args);
fn_ty.adjust_for_abi(cx, sig.abi);
fn_ty
}
pub fn new_vtable(ccx: &CrateContext<'a, 'tcx>,
pub fn new_vtable(cx: &CodegenCx<'a, 'tcx>,
sig: ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType<'tcx> {
let mut fn_ty = FnType::unadjusted(ccx, sig, extra_args);
let mut fn_ty = FnType::unadjusted(cx, sig, extra_args);
// Don't pass the vtable, it's not an argument of the virtual fn.
{
let self_arg = &mut fn_ty.args[0];
@ -681,20 +681,20 @@ impl<'a, 'tcx> FnType<'tcx> {
.unwrap_or_else(|| {
bug!("FnType::new_vtable: non-pointer self {:?}", self_arg)
}).ty;
let fat_ptr_ty = ccx.tcx().mk_mut_ptr(pointee);
self_arg.layout = ccx.layout_of(fat_ptr_ty).field(ccx, 0);
let fat_ptr_ty = cx.tcx.mk_mut_ptr(pointee);
self_arg.layout = cx.layout_of(fat_ptr_ty).field(cx, 0);
}
fn_ty.adjust_for_abi(ccx, sig.abi);
fn_ty.adjust_for_abi(cx, sig.abi);
fn_ty
}
pub fn unadjusted(ccx: &CrateContext<'a, 'tcx>,
pub fn unadjusted(cx: &CodegenCx<'a, 'tcx>,
sig: ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType<'tcx> {
debug!("FnType::unadjusted({:?}, {:?})", sig, extra_args);
use self::Abi::*;
let cconv = match ccx.sess().target.target.adjust_abi(sig.abi) {
let cconv = match cx.sess().target.target.adjust_abi(sig.abi) {
RustIntrinsic | PlatformIntrinsic |
Rust | RustCall => llvm::CCallConv,
@ -737,7 +737,7 @@ impl<'a, 'tcx> FnType<'tcx> {
extra_args
};
let target = &ccx.sess().target.target;
let target = &cx.sess().target.target;
let win_x64_gnu = target.target_os == "windows"
&& target.arch == "x86_64"
&& target.target_env == "gnu";
@ -772,7 +772,7 @@ impl<'a, 'tcx> FnType<'tcx> {
}
}
if let Some(pointee) = layout.pointee_info_at(ccx, offset) {
if let Some(pointee) = layout.pointee_info_at(cx, offset) {
if let Some(kind) = pointee.safe {
attrs.pointee_size = pointee.size;
attrs.pointee_align = Some(pointee.align);
@ -809,7 +809,7 @@ impl<'a, 'tcx> FnType<'tcx> {
};
let arg_of = |ty: Ty<'tcx>, is_return: bool| {
let mut arg = ArgType::new(ccx.layout_of(ty));
let mut arg = ArgType::new(cx.layout_of(ty));
if arg.layout.is_zst() {
// For some forsaken reason, x86_64-pc-windows-gnu
// doesn't ignore zero-sized struct arguments.
@ -832,7 +832,7 @@ impl<'a, 'tcx> FnType<'tcx> {
adjust_for_rust_scalar(&mut b_attrs,
b,
arg.layout,
a.value.size(ccx).abi_align(b.value.align(ccx)),
a.value.size(cx).abi_align(b.value.align(cx)),
false);
arg.mode = PassMode::Pair(a_attrs, b_attrs);
return arg;
@ -863,7 +863,7 @@ impl<'a, 'tcx> FnType<'tcx> {
}
fn adjust_for_abi(&mut self,
ccx: &CrateContext<'a, 'tcx>,
cx: &CodegenCx<'a, 'tcx>,
abi: Abi) {
if abi == Abi::Unadjusted { return }
@ -878,7 +878,7 @@ impl<'a, 'tcx> FnType<'tcx> {
}
let size = arg.layout.size;
if size > layout::Pointer.size(ccx) {
if size > layout::Pointer.size(cx) {
arg.make_indirect();
} else {
// We want to pass small aggregates as immediates, but using
@ -900,38 +900,38 @@ impl<'a, 'tcx> FnType<'tcx> {
return;
}
match &ccx.sess().target.target.arch[..] {
match &cx.sess().target.target.arch[..] {
"x86" => {
let flavor = if abi == Abi::Fastcall {
cabi_x86::Flavor::Fastcall
} else {
cabi_x86::Flavor::General
};
cabi_x86::compute_abi_info(ccx, self, flavor);
cabi_x86::compute_abi_info(cx, self, flavor);
},
"x86_64" => if abi == Abi::SysV64 {
cabi_x86_64::compute_abi_info(ccx, self);
} else if abi == Abi::Win64 || ccx.sess().target.target.options.is_like_windows {
cabi_x86_64::compute_abi_info(cx, self);
} else if abi == Abi::Win64 || cx.sess().target.target.options.is_like_windows {
cabi_x86_win64::compute_abi_info(self);
} else {
cabi_x86_64::compute_abi_info(ccx, self);
cabi_x86_64::compute_abi_info(cx, self);
},
"aarch64" => cabi_aarch64::compute_abi_info(ccx, self),
"arm" => cabi_arm::compute_abi_info(ccx, self),
"mips" => cabi_mips::compute_abi_info(ccx, self),
"mips64" => cabi_mips64::compute_abi_info(ccx, self),
"powerpc" => cabi_powerpc::compute_abi_info(ccx, self),
"powerpc64" => cabi_powerpc64::compute_abi_info(ccx, self),
"s390x" => cabi_s390x::compute_abi_info(ccx, self),
"asmjs" => cabi_asmjs::compute_abi_info(ccx, self),
"wasm32" => cabi_asmjs::compute_abi_info(ccx, self),
"aarch64" => cabi_aarch64::compute_abi_info(cx, self),
"arm" => cabi_arm::compute_abi_info(cx, self),
"mips" => cabi_mips::compute_abi_info(cx, self),
"mips64" => cabi_mips64::compute_abi_info(cx, self),
"powerpc" => cabi_powerpc::compute_abi_info(cx, self),
"powerpc64" => cabi_powerpc64::compute_abi_info(cx, self),
"s390x" => cabi_s390x::compute_abi_info(cx, self),
"asmjs" => cabi_asmjs::compute_abi_info(cx, self),
"wasm32" => cabi_asmjs::compute_abi_info(cx, self),
"msp430" => cabi_msp430::compute_abi_info(self),
"sparc" => cabi_sparc::compute_abi_info(ccx, self),
"sparc64" => cabi_sparc64::compute_abi_info(ccx, self),
"sparc" => cabi_sparc::compute_abi_info(cx, self),
"sparc64" => cabi_sparc64::compute_abi_info(cx, self),
"nvptx" => cabi_nvptx::compute_abi_info(self),
"nvptx64" => cabi_nvptx64::compute_abi_info(self),
"hexagon" => cabi_hexagon::compute_abi_info(self),
a => ccx.sess().fatal(&format!("unrecognized arch \"{}\" in target specification", a))
a => cx.sess().fatal(&format!("unrecognized arch \"{}\" in target specification", a))
}
if let PassMode::Indirect(ref mut attrs) = self.ret.mode {
@ -939,37 +939,37 @@ impl<'a, 'tcx> FnType<'tcx> {
}
}
pub fn llvm_type(&self, ccx: &CrateContext<'a, 'tcx>) -> Type {
pub fn llvm_type(&self, cx: &CodegenCx<'a, 'tcx>) -> Type {
let mut llargument_tys = Vec::new();
let llreturn_ty = match self.ret.mode {
PassMode::Ignore => Type::void(ccx),
PassMode::Ignore => Type::void(cx),
PassMode::Direct(_) | PassMode::Pair(..) => {
self.ret.layout.immediate_llvm_type(ccx)
self.ret.layout.immediate_llvm_type(cx)
}
PassMode::Cast(cast) => cast.llvm_type(ccx),
PassMode::Cast(cast) => cast.llvm_type(cx),
PassMode::Indirect(_) => {
llargument_tys.push(self.ret.memory_ty(ccx).ptr_to());
Type::void(ccx)
llargument_tys.push(self.ret.memory_ty(cx).ptr_to());
Type::void(cx)
}
};
for arg in &self.args {
// add padding
if let Some(ty) = arg.pad {
llargument_tys.push(ty.llvm_type(ccx));
llargument_tys.push(ty.llvm_type(cx));
}
let llarg_ty = match arg.mode {
PassMode::Ignore => continue,
PassMode::Direct(_) => arg.layout.immediate_llvm_type(ccx),
PassMode::Direct(_) => arg.layout.immediate_llvm_type(cx),
PassMode::Pair(..) => {
llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(ccx, 0));
llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(ccx, 1));
llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 0));
llargument_tys.push(arg.layout.scalar_pair_element_llvm_type(cx, 1));
continue;
}
PassMode::Cast(cast) => cast.llvm_type(ccx),
PassMode::Indirect(_) => arg.memory_ty(ccx).ptr_to(),
PassMode::Cast(cast) => cast.llvm_type(cx),
PassMode::Indirect(_) => arg.memory_ty(cx).ptr_to(),
};
llargument_tys.push(llarg_ty);
}

View file

@ -27,7 +27,7 @@ use libc::{c_uint, c_char};
// Take an inline assembly expression and splat it out via LLVM
pub fn trans_inline_asm<'a, 'tcx>(
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
ia: &hir::InlineAsm,
outputs: Vec<PlaceRef<'tcx>>,
mut inputs: Vec<ValueRef>
@ -39,13 +39,13 @@ pub fn trans_inline_asm<'a, 'tcx>(
let mut indirect_outputs = vec![];
for (i, (out, place)) in ia.outputs.iter().zip(&outputs).enumerate() {
if out.is_rw {
inputs.push(place.load(bcx).immediate());
inputs.push(place.load(bx).immediate());
ext_constraints.push(i.to_string());
}
if out.is_indirect {
indirect_outputs.push(place.load(bcx).immediate());
indirect_outputs.push(place.load(bx).immediate());
} else {
output_types.push(place.layout.llvm_type(bcx.ccx));
output_types.push(place.layout.llvm_type(bx.cx));
}
}
if !indirect_outputs.is_empty() {
@ -58,7 +58,7 @@ pub fn trans_inline_asm<'a, 'tcx>(
// Default per-arch clobbers
// Basically what clang does
let arch_clobbers = match &bcx.sess().target.target.arch[..] {
let arch_clobbers = match &bx.sess().target.target.arch[..] {
"x86" | "x86_64" => vec!["~{dirflag}", "~{fpsr}", "~{flags}"],
_ => Vec::new()
};
@ -76,9 +76,9 @@ pub fn trans_inline_asm<'a, 'tcx>(
// Depending on how many outputs we have, the return type is different
let num_outputs = output_types.len();
let output_type = match num_outputs {
0 => Type::void(bcx.ccx),
0 => Type::void(bx.cx),
1 => output_types[0],
_ => Type::struct_(bcx.ccx, &output_types, false)
_ => Type::struct_(bx.cx, &output_types, false)
};
let dialect = match ia.dialect {
@ -88,7 +88,7 @@ pub fn trans_inline_asm<'a, 'tcx>(
let asm = CString::new(ia.asm.as_str().as_bytes()).unwrap();
let constraint_cstr = CString::new(all_constraints).unwrap();
let r = bcx.inline_asm_call(
let r = bx.inline_asm_call(
asm.as_ptr(),
constraint_cstr.as_ptr(),
&inputs,
@ -101,28 +101,28 @@ pub fn trans_inline_asm<'a, 'tcx>(
// Again, based on how many outputs we have
let outputs = ia.outputs.iter().zip(&outputs).filter(|&(ref o, _)| !o.is_indirect);
for (i, (_, &place)) in outputs.enumerate() {
let v = if num_outputs == 1 { r } else { bcx.extract_value(r, i as u64) };
OperandValue::Immediate(v).store(bcx, place);
let v = if num_outputs == 1 { r } else { bx.extract_value(r, i as u64) };
OperandValue::Immediate(v).store(bx, place);
}
// Store mark in a metadata node so we can map LLVM errors
// back to source locations. See #17552.
unsafe {
let key = "srcloc";
let kind = llvm::LLVMGetMDKindIDInContext(bcx.ccx.llcx(),
let kind = llvm::LLVMGetMDKindIDInContext(bx.cx.llcx,
key.as_ptr() as *const c_char, key.len() as c_uint);
let val: llvm::ValueRef = C_i32(bcx.ccx, ia.ctxt.outer().as_u32() as i32);
let val: llvm::ValueRef = C_i32(bx.cx, ia.ctxt.outer().as_u32() as i32);
llvm::LLVMSetMetadata(r, kind,
llvm::LLVMMDNodeInContext(bcx.ccx.llcx(), &val, 1));
llvm::LLVMMDNodeInContext(bx.cx.llcx, &val, 1));
}
}
pub fn trans_global_asm<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
pub fn trans_global_asm<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
ga: &hir::GlobalAsm) {
let asm = CString::new(ga.asm.as_str().as_bytes()).unwrap();
unsafe {
llvm::LLVMRustAppendModuleInlineAsm(ccx.llmod(), asm.as_ptr());
llvm::LLVMRustAppendModuleInlineAsm(cx.llmod, asm.as_ptr());
}
}

View file

@ -24,7 +24,7 @@ use llvm::AttributePlace::Function;
use llvm_util;
pub use syntax::attr::{self, InlineAttr};
use syntax::ast;
use context::CrateContext;
use context::CodegenCx;
/// Mark LLVM function to use provided inline heuristic.
#[inline]
@ -67,27 +67,27 @@ pub fn naked(val: ValueRef, is_naked: bool) {
Attribute::Naked.toggle_llfn(Function, val, is_naked);
}
pub fn set_frame_pointer_elimination(ccx: &CrateContext, llfn: ValueRef) {
pub fn set_frame_pointer_elimination(cx: &CodegenCx, llfn: ValueRef) {
// FIXME: #11906: Omitting frame pointers breaks retrieving the value of a
// parameter.
if ccx.sess().must_not_eliminate_frame_pointers() {
if cx.sess().must_not_eliminate_frame_pointers() {
llvm::AddFunctionAttrStringValue(
llfn, llvm::AttributePlace::Function,
cstr("no-frame-pointer-elim\0"), cstr("true\0"));
}
}
pub fn set_probestack(ccx: &CrateContext, llfn: ValueRef) {
pub fn set_probestack(cx: &CodegenCx, llfn: ValueRef) {
// Only use stack probes if the target specification indicates that we
// should be using stack probes
if !ccx.sess().target.target.options.stack_probes {
if !cx.sess().target.target.options.stack_probes {
return
}
// Currently stack probes seem somewhat incompatible with the address
// sanitizer. With asan we're already protected from stack overflow anyway
// so we don't really need stack probes regardless.
match ccx.sess().opts.debugging_opts.sanitizer {
match cx.sess().opts.debugging_opts.sanitizer {
Some(Sanitizer::Address) => return,
_ => {}
}
@ -101,13 +101,13 @@ pub fn set_probestack(ccx: &CrateContext, llfn: ValueRef) {
/// Composite function which sets LLVM attributes for function depending on its AST (#[attribute])
/// attributes.
pub fn from_fn_attrs(ccx: &CrateContext, llfn: ValueRef, id: DefId) {
pub fn from_fn_attrs(cx: &CodegenCx, llfn: ValueRef, id: DefId) {
use syntax::attr::*;
let attrs = ccx.tcx().get_attrs(id);
inline(llfn, find_inline_attr(Some(ccx.sess().diagnostic()), &attrs));
let attrs = cx.tcx.get_attrs(id);
inline(llfn, find_inline_attr(Some(cx.sess().diagnostic()), &attrs));
set_frame_pointer_elimination(ccx, llfn);
set_probestack(ccx, llfn);
set_frame_pointer_elimination(cx, llfn);
set_probestack(cx, llfn);
for attr in attrs.iter() {
if attr.check_name("cold") {
@ -124,7 +124,7 @@ pub fn from_fn_attrs(ccx: &CrateContext, llfn: ValueRef, id: DefId) {
}
}
let target_features = ccx.tcx().target_features_enabled(id);
let target_features = cx.tcx.target_features_enabled(id);
if !target_features.is_empty() {
let val = CString::new(target_features.join(",")).unwrap();
llvm::AddFunctionAttrStringValue(

View file

@ -57,9 +57,9 @@ use builder::Builder;
use callee;
use common::{C_bool, C_bytes_in_context, C_i32, C_usize};
use rustc_mir::monomorphize::collector::{self, MonoItemCollectionMode};
use common::{self, C_struct_in_context, C_array, CrateContext, val_ty};
use common::{self, C_struct_in_context, C_array, val_ty};
use consts;
use context::{self, LocalCrateContext, SharedCrateContext};
use context::{self, CodegenCx};
use debuginfo;
use declare;
use meth;
@ -94,16 +94,16 @@ pub use rustc_trans_utils::{find_exported_symbols, check_for_rustc_errors_attr};
pub use rustc_mir::monomorphize::item::linkage_by_name;
pub struct StatRecorder<'a, 'tcx: 'a> {
ccx: &'a CrateContext<'a, 'tcx>,
cx: &'a CodegenCx<'a, 'tcx>,
name: Option<String>,
istart: usize,
}
impl<'a, 'tcx> StatRecorder<'a, 'tcx> {
pub fn new(ccx: &'a CrateContext<'a, 'tcx>, name: String) -> StatRecorder<'a, 'tcx> {
let istart = ccx.stats().borrow().n_llvm_insns;
pub fn new(cx: &'a CodegenCx<'a, 'tcx>, name: String) -> StatRecorder<'a, 'tcx> {
let istart = cx.stats.borrow().n_llvm_insns;
StatRecorder {
ccx,
cx,
name: Some(name),
istart,
}
@ -112,8 +112,8 @@ impl<'a, 'tcx> StatRecorder<'a, 'tcx> {
impl<'a, 'tcx> Drop for StatRecorder<'a, 'tcx> {
fn drop(&mut self) {
if self.ccx.sess().trans_stats() {
let mut stats = self.ccx.stats().borrow_mut();
if self.cx.sess().trans_stats() {
let mut stats = self.cx.stats.borrow_mut();
let iend = stats.n_llvm_insns;
stats.fn_stats.push((self.name.take().unwrap(), iend - self.istart));
stats.n_fns += 1;
@ -158,7 +158,7 @@ pub fn bin_op_to_fcmp_predicate(op: hir::BinOp_) -> llvm::RealPredicate {
}
pub fn compare_simd_types<'a, 'tcx>(
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
lhs: ValueRef,
rhs: ValueRef,
t: Ty<'tcx>,
@ -168,7 +168,7 @@ pub fn compare_simd_types<'a, 'tcx>(
let signed = match t.sty {
ty::TyFloat(_) => {
let cmp = bin_op_to_fcmp_predicate(op);
return bcx.sext(bcx.fcmp(cmp, lhs, rhs), ret_ty);
return bx.sext(bx.fcmp(cmp, lhs, rhs), ret_ty);
},
ty::TyUint(_) => false,
ty::TyInt(_) => true,
@ -180,7 +180,7 @@ pub fn compare_simd_types<'a, 'tcx>(
// to get the correctly sized type. This will compile to a single instruction
// once the IR is converted to assembly if the SIMD instruction is supported
// by the target architecture.
bcx.sext(bcx.icmp(cmp, lhs, rhs), ret_ty)
bx.sext(bx.icmp(cmp, lhs, rhs), ret_ty)
}
/// Retrieve the information we are losing (making dynamic) in an unsizing
@ -189,15 +189,15 @@ pub fn compare_simd_types<'a, 'tcx>(
/// The `old_info` argument is a bit funny. It is intended for use
/// in an upcast, where the new vtable for an object will be derived
/// from the old one.
pub fn unsized_info<'ccx, 'tcx>(ccx: &CrateContext<'ccx, 'tcx>,
pub fn unsized_info<'cx, 'tcx>(cx: &CodegenCx<'cx, 'tcx>,
source: Ty<'tcx>,
target: Ty<'tcx>,
old_info: Option<ValueRef>)
-> ValueRef {
let (source, target) = ccx.tcx().struct_lockstep_tails(source, target);
let (source, target) = cx.tcx.struct_lockstep_tails(source, target);
match (&source.sty, &target.sty) {
(&ty::TyArray(_, len), &ty::TySlice(_)) => {
C_usize(ccx, len.val.to_const_int().unwrap().to_u64().unwrap())
C_usize(cx, len.val.to_const_int().unwrap().to_u64().unwrap())
}
(&ty::TyDynamic(..), &ty::TyDynamic(..)) => {
// For now, upcasts are limited to changes in marker
@ -206,10 +206,10 @@ pub fn unsized_info<'ccx, 'tcx>(ccx: &CrateContext<'ccx, 'tcx>,
old_info.expect("unsized_info: missing old info for trait upcast")
}
(_, &ty::TyDynamic(ref data, ..)) => {
let vtable_ptr = ccx.layout_of(ccx.tcx().mk_mut_ptr(target))
.field(ccx, abi::FAT_PTR_EXTRA);
consts::ptrcast(meth::get_vtable(ccx, source, data.principal()),
vtable_ptr.llvm_type(ccx))
let vtable_ptr = cx.layout_of(cx.tcx.mk_mut_ptr(target))
.field(cx, abi::FAT_PTR_EXTRA);
consts::ptrcast(meth::get_vtable(cx, source, data.principal()),
vtable_ptr.llvm_type(cx))
}
_ => bug!("unsized_info: invalid unsizing {:?} -> {:?}",
source,
@ -219,7 +219,7 @@ pub fn unsized_info<'ccx, 'tcx>(ccx: &CrateContext<'ccx, 'tcx>,
/// Coerce `src` to `dst_ty`. `src_ty` must be a thin pointer.
pub fn unsize_thin_ptr<'a, 'tcx>(
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
src: ValueRef,
src_ty: Ty<'tcx>,
dst_ty: Ty<'tcx>
@ -232,24 +232,24 @@ pub fn unsize_thin_ptr<'a, 'tcx>(
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
(&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
assert!(bcx.ccx.shared().type_is_sized(a));
let ptr_ty = bcx.ccx.layout_of(b).llvm_type(bcx.ccx).ptr_to();
(bcx.pointercast(src, ptr_ty), unsized_info(bcx.ccx, a, b, None))
assert!(bx.cx.type_is_sized(a));
let ptr_ty = bx.cx.layout_of(b).llvm_type(bx.cx).ptr_to();
(bx.pointercast(src, ptr_ty), unsized_info(bx.cx, a, b, None))
}
(&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) if def_a.is_box() && def_b.is_box() => {
let (a, b) = (src_ty.boxed_ty(), dst_ty.boxed_ty());
assert!(bcx.ccx.shared().type_is_sized(a));
let ptr_ty = bcx.ccx.layout_of(b).llvm_type(bcx.ccx).ptr_to();
(bcx.pointercast(src, ptr_ty), unsized_info(bcx.ccx, a, b, None))
assert!(bx.cx.type_is_sized(a));
let ptr_ty = bx.cx.layout_of(b).llvm_type(bx.cx).ptr_to();
(bx.pointercast(src, ptr_ty), unsized_info(bx.cx, a, b, None))
}
(&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) => {
assert_eq!(def_a, def_b);
let src_layout = bcx.ccx.layout_of(src_ty);
let dst_layout = bcx.ccx.layout_of(dst_ty);
let src_layout = bx.cx.layout_of(src_ty);
let dst_layout = bx.cx.layout_of(dst_ty);
let mut result = None;
for i in 0..src_layout.fields.count() {
let src_f = src_layout.field(bcx.ccx, i);
let src_f = src_layout.field(bx.cx, i);
assert_eq!(src_layout.fields.offset(i).bytes(), 0);
assert_eq!(dst_layout.fields.offset(i).bytes(), 0);
if src_f.is_zst() {
@ -257,15 +257,15 @@ pub fn unsize_thin_ptr<'a, 'tcx>(
}
assert_eq!(src_layout.size, src_f.size);
let dst_f = dst_layout.field(bcx.ccx, i);
let dst_f = dst_layout.field(bx.cx, i);
assert_ne!(src_f.ty, dst_f.ty);
assert_eq!(result, None);
result = Some(unsize_thin_ptr(bcx, src, src_f.ty, dst_f.ty));
result = Some(unsize_thin_ptr(bx, src, src_f.ty, dst_f.ty));
}
let (lldata, llextra) = result.unwrap();
// HACK(eddyb) have to bitcast pointers until LLVM removes pointee types.
(bcx.bitcast(lldata, dst_layout.scalar_pair_element_llvm_type(bcx.ccx, 0)),
bcx.bitcast(llextra, dst_layout.scalar_pair_element_llvm_type(bcx.ccx, 1)))
(bx.bitcast(lldata, dst_layout.scalar_pair_element_llvm_type(bx.cx, 0)),
bx.bitcast(llextra, dst_layout.scalar_pair_element_llvm_type(bx.cx, 1)))
}
_ => bug!("unsize_thin_ptr: called on bad types"),
}
@ -273,27 +273,27 @@ pub fn unsize_thin_ptr<'a, 'tcx>(
/// Coerce `src`, which is a reference to a value of type `src_ty`,
/// to a value of type `dst_ty` and store the result in `dst`
pub fn coerce_unsized_into<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
pub fn coerce_unsized_into<'a, 'tcx>(bx: &Builder<'a, 'tcx>,
src: PlaceRef<'tcx>,
dst: PlaceRef<'tcx>) {
let src_ty = src.layout.ty;
let dst_ty = dst.layout.ty;
let coerce_ptr = || {
let (base, info) = match src.load(bcx).val {
let (base, info) = match src.load(bx).val {
OperandValue::Pair(base, info) => {
// fat-ptr to fat-ptr unsize preserves the vtable
// i.e. &'a fmt::Debug+Send => &'a fmt::Debug
// So we need to pointercast the base to ensure
// the types match up.
let thin_ptr = dst.layout.field(bcx.ccx, abi::FAT_PTR_ADDR);
(bcx.pointercast(base, thin_ptr.llvm_type(bcx.ccx)), info)
let thin_ptr = dst.layout.field(bx.cx, abi::FAT_PTR_ADDR);
(bx.pointercast(base, thin_ptr.llvm_type(bx.cx)), info)
}
OperandValue::Immediate(base) => {
unsize_thin_ptr(bcx, base, src_ty, dst_ty)
unsize_thin_ptr(bx, base, src_ty, dst_ty)
}
OperandValue::Ref(..) => bug!()
};
OperandValue::Pair(base, info).store(bcx, dst);
OperandValue::Pair(base, info).store(bx, dst);
};
match (&src_ty.sty, &dst_ty.sty) {
(&ty::TyRef(..), &ty::TyRef(..)) |
@ -309,18 +309,18 @@ pub fn coerce_unsized_into<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
assert_eq!(def_a, def_b);
for i in 0..def_a.variants[0].fields.len() {
let src_f = src.project_field(bcx, i);
let dst_f = dst.project_field(bcx, i);
let src_f = src.project_field(bx, i);
let dst_f = dst.project_field(bx, i);
if dst_f.layout.is_zst() {
continue;
}
if src_f.layout.ty == dst_f.layout.ty {
memcpy_ty(bcx, dst_f.llval, src_f.llval, src_f.layout,
memcpy_ty(bx, dst_f.llval, src_f.llval, src_f.layout,
src_f.align.min(dst_f.align));
} else {
coerce_unsized_into(bcx, src_f, dst_f);
coerce_unsized_into(bx, src_f, dst_f);
}
}
}
@ -388,47 +388,47 @@ pub fn wants_msvc_seh(sess: &Session) -> bool {
sess.target.target.options.is_like_msvc
}
pub fn call_assume<'a, 'tcx>(b: &Builder<'a, 'tcx>, val: ValueRef) {
let assume_intrinsic = b.ccx.get_intrinsic("llvm.assume");
b.call(assume_intrinsic, &[val], None);
pub fn call_assume<'a, 'tcx>(bx: &Builder<'a, 'tcx>, val: ValueRef) {
let assume_intrinsic = bx.cx.get_intrinsic("llvm.assume");
bx.call(assume_intrinsic, &[val], None);
}
pub fn from_immediate(bcx: &Builder, val: ValueRef) -> ValueRef {
if val_ty(val) == Type::i1(bcx.ccx) {
bcx.zext(val, Type::i8(bcx.ccx))
pub fn from_immediate(bx: &Builder, val: ValueRef) -> ValueRef {
if val_ty(val) == Type::i1(bx.cx) {
bx.zext(val, Type::i8(bx.cx))
} else {
val
}
}
pub fn to_immediate(bcx: &Builder, val: ValueRef, layout: layout::TyLayout) -> ValueRef {
pub fn to_immediate(bx: &Builder, val: ValueRef, layout: layout::TyLayout) -> ValueRef {
if let layout::Abi::Scalar(ref scalar) = layout.abi {
if scalar.is_bool() {
return bcx.trunc(val, Type::i1(bcx.ccx));
return bx.trunc(val, Type::i1(bx.cx));
}
}
val
}
pub fn call_memcpy(b: &Builder,
pub fn call_memcpy(bx: &Builder,
dst: ValueRef,
src: ValueRef,
n_bytes: ValueRef,
align: Align) {
let ccx = b.ccx;
let ptr_width = &ccx.sess().target.target.target_pointer_width;
let cx = bx.cx;
let ptr_width = &cx.sess().target.target.target_pointer_width;
let key = format!("llvm.memcpy.p0i8.p0i8.i{}", ptr_width);
let memcpy = ccx.get_intrinsic(&key);
let src_ptr = b.pointercast(src, Type::i8p(ccx));
let dst_ptr = b.pointercast(dst, Type::i8p(ccx));
let size = b.intcast(n_bytes, ccx.isize_ty(), false);
let align = C_i32(ccx, align.abi() as i32);
let volatile = C_bool(ccx, false);
b.call(memcpy, &[dst_ptr, src_ptr, size, align, volatile], None);
let memcpy = cx.get_intrinsic(&key);
let src_ptr = bx.pointercast(src, Type::i8p(cx));
let dst_ptr = bx.pointercast(dst, Type::i8p(cx));
let size = bx.intcast(n_bytes, cx.isize_ty, false);
let align = C_i32(cx, align.abi() as i32);
let volatile = C_bool(cx, false);
bx.call(memcpy, &[dst_ptr, src_ptr, size, align, volatile], None);
}
pub fn memcpy_ty<'a, 'tcx>(
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
dst: ValueRef,
src: ValueRef,
layout: TyLayout<'tcx>,
@ -439,28 +439,28 @@ pub fn memcpy_ty<'a, 'tcx>(
return;
}
call_memcpy(bcx, dst, src, C_usize(bcx.ccx, size), align);
call_memcpy(bx, dst, src, C_usize(bx.cx, size), align);
}
pub fn call_memset<'a, 'tcx>(b: &Builder<'a, 'tcx>,
pub fn call_memset<'a, 'tcx>(bx: &Builder<'a, 'tcx>,
ptr: ValueRef,
fill_byte: ValueRef,
size: ValueRef,
align: ValueRef,
volatile: bool) -> ValueRef {
let ptr_width = &b.ccx.sess().target.target.target_pointer_width;
let ptr_width = &bx.cx.sess().target.target.target_pointer_width;
let intrinsic_key = format!("llvm.memset.p0i8.i{}", ptr_width);
let llintrinsicfn = b.ccx.get_intrinsic(&intrinsic_key);
let volatile = C_bool(b.ccx, volatile);
b.call(llintrinsicfn, &[ptr, fill_byte, size, align, volatile], None)
let llintrinsicfn = bx.cx.get_intrinsic(&intrinsic_key);
let volatile = C_bool(bx.cx, volatile);
bx.call(llintrinsicfn, &[ptr, fill_byte, size, align, volatile], None)
}
pub fn trans_instance<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, instance: Instance<'tcx>) {
let _s = if ccx.sess().trans_stats() {
pub fn trans_instance<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, instance: Instance<'tcx>) {
let _s = if cx.sess().trans_stats() {
let mut instance_name = String::new();
DefPathBasedNames::new(ccx.tcx(), true, true)
DefPathBasedNames::new(cx.tcx, true, true)
.push_def_path(instance.def_id(), &mut instance_name);
Some(StatRecorder::new(ccx, instance_name))
Some(StatRecorder::new(cx, instance_name))
} else {
None
};
@ -470,16 +470,16 @@ pub fn trans_instance<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, instance: Instance
// release builds.
info!("trans_instance({})", instance);
let fn_ty = instance.ty(ccx.tcx());
let sig = common::ty_fn_sig(ccx, fn_ty);
let sig = ccx.tcx().erase_late_bound_regions_and_normalize(&sig);
let fn_ty = instance.ty(cx.tcx);
let sig = common::ty_fn_sig(cx, fn_ty);
let sig = cx.tcx.erase_late_bound_regions_and_normalize(&sig);
let lldecl = match ccx.instances().borrow().get(&instance) {
let lldecl = match cx.instances.borrow().get(&instance) {
Some(&val) => val,
None => bug!("Instance `{:?}` not already declared", instance)
};
ccx.stats().borrow_mut().n_closures += 1;
cx.stats.borrow_mut().n_closures += 1;
// The `uwtable` attribute according to LLVM is:
//
@ -497,21 +497,21 @@ pub fn trans_instance<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, instance: Instance
//
// You can also find more info on why Windows is whitelisted here in:
// https://bugzilla.mozilla.org/show_bug.cgi?id=1302078
if !ccx.sess().no_landing_pads() ||
ccx.sess().target.target.options.is_like_windows {
if !cx.sess().no_landing_pads() ||
cx.sess().target.target.options.is_like_windows {
attributes::emit_uwtable(lldecl, true);
}
let mir = ccx.tcx().instance_mir(instance.def);
mir::trans_mir(ccx, lldecl, &mir, instance, sig);
let mir = cx.tcx.instance_mir(instance.def);
mir::trans_mir(cx, lldecl, &mir, instance, sig);
}
pub fn set_link_section(ccx: &CrateContext,
pub fn set_link_section(cx: &CodegenCx,
llval: ValueRef,
attrs: &[ast::Attribute]) {
if let Some(sect) = attr::first_attr_value_str_by_name(attrs, "link_section") {
if contains_null(&sect.as_str()) {
ccx.sess().fatal(&format!("Illegal null byte in link_section value: `{}`", &sect));
cx.sess().fatal(&format!("Illegal null byte in link_section value: `{}`", &sect));
}
unsafe {
let buf = CString::new(sect.as_str().as_bytes()).unwrap();
@ -522,39 +522,39 @@ pub fn set_link_section(ccx: &CrateContext,
/// Create the `main` function which will initialize the rust runtime and call
/// users main function.
fn maybe_create_entry_wrapper(ccx: &CrateContext) {
let (main_def_id, span) = match *ccx.sess().entry_fn.borrow() {
fn maybe_create_entry_wrapper(cx: &CodegenCx) {
let (main_def_id, span) = match *cx.sess().entry_fn.borrow() {
Some((id, span)) => {
(ccx.tcx().hir.local_def_id(id), span)
(cx.tcx.hir.local_def_id(id), span)
}
None => return,
};
let instance = Instance::mono(ccx.tcx(), main_def_id);
let instance = Instance::mono(cx.tcx, main_def_id);
if !ccx.codegen_unit().contains_item(&MonoItem::Fn(instance)) {
if !cx.codegen_unit.contains_item(&MonoItem::Fn(instance)) {
// We want to create the wrapper in the same codegen unit as Rust's main
// function.
return;
}
let main_llfn = callee::get_fn(ccx, instance);
let main_llfn = callee::get_fn(cx, instance);
let et = ccx.sess().entry_type.get().unwrap();
let et = cx.sess().entry_type.get().unwrap();
match et {
config::EntryMain => create_entry_fn(ccx, span, main_llfn, main_def_id, true),
config::EntryStart => create_entry_fn(ccx, span, main_llfn, main_def_id, false),
config::EntryMain => create_entry_fn(cx, span, main_llfn, main_def_id, true),
config::EntryStart => create_entry_fn(cx, span, main_llfn, main_def_id, false),
config::EntryNone => {} // Do nothing.
}
fn create_entry_fn<'ccx>(ccx: &'ccx CrateContext,
fn create_entry_fn<'cx>(cx: &'cx CodegenCx,
sp: Span,
rust_main: ValueRef,
rust_main_def_id: DefId,
use_start_lang_item: bool) {
let llfty = Type::func(&[Type::c_int(ccx), Type::i8p(ccx).ptr_to()], &Type::c_int(ccx));
let llfty = Type::func(&[Type::c_int(cx), Type::i8p(cx).ptr_to()], &Type::c_int(cx));
let main_ret_ty = ccx.tcx().fn_sig(rust_main_def_id).output();
let main_ret_ty = cx.tcx.fn_sig(rust_main_def_id).output();
// Given that `main()` has no arguments,
// then its return type cannot have
// late-bound regions, since late-bound
@ -562,42 +562,42 @@ fn maybe_create_entry_wrapper(ccx: &CrateContext) {
// listing.
let main_ret_ty = main_ret_ty.no_late_bound_regions().unwrap();
if declare::get_defined_value(ccx, "main").is_some() {
if declare::get_defined_value(cx, "main").is_some() {
// FIXME: We should be smart and show a better diagnostic here.
ccx.sess().struct_span_err(sp, "entry symbol `main` defined multiple times")
cx.sess().struct_span_err(sp, "entry symbol `main` defined multiple times")
.help("did you use #[no_mangle] on `fn main`? Use #[start] instead")
.emit();
ccx.sess().abort_if_errors();
cx.sess().abort_if_errors();
bug!();
}
let llfn = declare::declare_cfn(ccx, "main", llfty);
let llfn = declare::declare_cfn(cx, "main", llfty);
// `main` should respect same config for frame pointer elimination as rest of code
attributes::set_frame_pointer_elimination(ccx, llfn);
attributes::set_frame_pointer_elimination(cx, llfn);
let bld = Builder::new_block(ccx, llfn, "top");
let bx = Builder::new_block(cx, llfn, "top");
debuginfo::gdb::insert_reference_to_gdb_debug_scripts_section_global(ccx, &bld);
debuginfo::gdb::insert_reference_to_gdb_debug_scripts_section_global(&bx);
// Params from native main() used as args for rust start function
let param_argc = get_param(llfn, 0);
let param_argv = get_param(llfn, 1);
let arg_argc = bld.intcast(param_argc, ccx.isize_ty(), true);
let arg_argc = bx.intcast(param_argc, cx.isize_ty, true);
let arg_argv = param_argv;
let (start_fn, args) = if use_start_lang_item {
let start_def_id = ccx.tcx().require_lang_item(StartFnLangItem);
let start_fn = callee::resolve_and_get_fn(ccx, start_def_id, ccx.tcx().mk_substs(
let start_def_id = cx.tcx.require_lang_item(StartFnLangItem);
let start_fn = callee::resolve_and_get_fn(cx, start_def_id, cx.tcx.mk_substs(
iter::once(Kind::from(main_ret_ty))));
(start_fn, vec![bld.pointercast(rust_main, Type::i8p(ccx).ptr_to()),
(start_fn, vec![bx.pointercast(rust_main, Type::i8p(cx).ptr_to()),
arg_argc, arg_argv])
} else {
debug!("using user-defined start fn");
(rust_main, vec![arg_argc, arg_argv])
};
let result = bld.call(start_fn, &args, None);
bld.ret(bld.intcast(result, Type::c_int(ccx), true));
let result = bx.call(start_fn, &args, None);
bx.ret(bx.intcast(result, Type::c_int(cx), true));
}
}
@ -721,7 +721,6 @@ pub fn trans_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
let link_meta = link::build_link_meta(crate_hash);
let exported_symbol_node_ids = find_exported_symbols(tcx);
let shared_ccx = SharedCrateContext::new(tcx);
// Translate the metadata.
let llmod_id = "metadata";
let (metadata_llcx, metadata_llmod, metadata) =
@ -770,7 +769,7 @@ pub fn trans_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
// Run the translation item collector and partition the collected items into
// codegen units.
let codegen_units =
shared_ccx.tcx().collect_and_partition_translation_items(LOCAL_CRATE).1;
tcx.collect_and_partition_translation_items(LOCAL_CRATE).1;
let codegen_units = (*codegen_units).clone();
// Force all codegen_unit queries so they are already either red or green
@ -910,7 +909,7 @@ pub fn trans_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
symbol_names_test::report_symbol_names(tcx);
if shared_ccx.sess().trans_stats() {
if tcx.sess.trans_stats() {
println!("--- trans stats ---");
println!("n_glues_created: {}", all_stats.n_glues_created);
println!("n_null_glues: {}", all_stats.n_null_glues);
@ -926,7 +925,7 @@ pub fn trans_crate<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
}
}
if shared_ccx.sess().count_llvm_insns() {
if tcx.sess.count_llvm_insns() {
for (k, v) in all_stats.llvm_insns.iter() {
println!("{:7} {}", *v, *k);
}
@ -1204,27 +1203,25 @@ fn compile_codegen_unit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
.to_fingerprint().to_hex());
// Instantiate translation items without filling out definitions yet...
let scx = SharedCrateContext::new(tcx);
let lcx = LocalCrateContext::new(&scx, cgu, &llmod_id);
let cx = CodegenCx::new(tcx, cgu, &llmod_id);
let module = {
let ccx = CrateContext::new(&scx, &lcx);
let trans_items = ccx.codegen_unit()
.items_in_deterministic_order(ccx.tcx());
let trans_items = cx.codegen_unit
.items_in_deterministic_order(cx.tcx);
for &(trans_item, (linkage, visibility)) in &trans_items {
trans_item.predefine(&ccx, linkage, visibility);
trans_item.predefine(&cx, linkage, visibility);
}
// ... and now that we have everything pre-defined, fill out those definitions.
for &(trans_item, _) in &trans_items {
trans_item.define(&ccx);
trans_item.define(&cx);
}
// If this codegen unit contains the main function, also create the
// wrapper here
maybe_create_entry_wrapper(&ccx);
maybe_create_entry_wrapper(&cx);
// Run replace-all-uses-with for statics that need it
for &(old_g, new_g) in ccx.statics_to_rauw().borrow().iter() {
for &(old_g, new_g) in cx.statics_to_rauw.borrow().iter() {
unsafe {
let bitcast = llvm::LLVMConstPointerCast(new_g, llvm::LLVMTypeOf(old_g));
llvm::LLVMReplaceAllUsesWith(old_g, bitcast);
@ -1234,13 +1231,13 @@ fn compile_codegen_unit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
// Create the llvm.used variable
// This variable has type [N x i8*] and is stored in the llvm.metadata section
if !ccx.used_statics().borrow().is_empty() {
if !cx.used_statics.borrow().is_empty() {
let name = CString::new("llvm.used").unwrap();
let section = CString::new("llvm.metadata").unwrap();
let array = C_array(Type::i8(&ccx).ptr_to(), &*ccx.used_statics().borrow());
let array = C_array(Type::i8(&cx).ptr_to(), &*cx.used_statics.borrow());
unsafe {
let g = llvm::LLVMAddGlobal(ccx.llmod(),
let g = llvm::LLVMAddGlobal(cx.llmod,
val_ty(array).to_ref(),
name.as_ptr());
llvm::LLVMSetInitializer(g, array);
@ -1250,14 +1247,14 @@ fn compile_codegen_unit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
}
// Finalize debuginfo
if ccx.sess().opts.debuginfo != NoDebugInfo {
debuginfo::finalize(&ccx);
if cx.sess().opts.debuginfo != NoDebugInfo {
debuginfo::finalize(&cx);
}
let llvm_module = ModuleLlvm {
llcx: ccx.llcx(),
llmod: ccx.llmod(),
tm: create_target_machine(ccx.sess()),
llcx: cx.llcx,
llmod: cx.llmod,
tm: create_target_machine(cx.sess()),
};
ModuleTranslation {
@ -1268,7 +1265,7 @@ fn compile_codegen_unit<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
}
};
(lcx.into_stats(), module)
(cx.into_stats(), module)
}
}

View file

@ -32,7 +32,7 @@ use syntax_pos::Span;
#[must_use]
pub struct Builder<'a, 'tcx: 'a> {
pub llbuilder: BuilderRef,
pub ccx: &'a CrateContext<'a, 'tcx>,
pub cx: &'a CodegenCx<'a, 'tcx>,
}
impl<'a, 'tcx> Drop for Builder<'a, 'tcx> {
@ -51,41 +51,41 @@ fn noname() -> *const c_char {
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
pub fn new_block<'b>(ccx: &'a CrateContext<'a, 'tcx>, llfn: ValueRef, name: &'b str) -> Self {
let builder = Builder::with_ccx(ccx);
pub fn new_block<'b>(cx: &'a CodegenCx<'a, 'tcx>, llfn: ValueRef, name: &'b str) -> Self {
let bx = Builder::with_cx(cx);
let llbb = unsafe {
let name = CString::new(name).unwrap();
llvm::LLVMAppendBasicBlockInContext(
ccx.llcx(),
cx.llcx,
llfn,
name.as_ptr()
)
};
builder.position_at_end(llbb);
builder
bx.position_at_end(llbb);
bx
}
pub fn with_ccx(ccx: &'a CrateContext<'a, 'tcx>) -> Self {
pub fn with_cx(cx: &'a CodegenCx<'a, 'tcx>) -> Self {
// Create a fresh builder from the crate context.
let llbuilder = unsafe {
llvm::LLVMCreateBuilderInContext(ccx.llcx())
llvm::LLVMCreateBuilderInContext(cx.llcx)
};
Builder {
llbuilder,
ccx,
cx,
}
}
pub fn build_sibling_block<'b>(&self, name: &'b str) -> Builder<'a, 'tcx> {
Builder::new_block(self.ccx, self.llfn(), name)
Builder::new_block(self.cx, self.llfn(), name)
}
pub fn sess(&self) -> &Session {
self.ccx.sess()
self.cx.sess()
}
pub fn tcx(&self) -> TyCtxt<'a, 'tcx, 'tcx> {
self.ccx.tcx()
self.cx.tcx
}
pub fn llfn(&self) -> ValueRef {
@ -101,11 +101,11 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
}
fn count_insn(&self, category: &str) {
if self.ccx.sess().trans_stats() {
self.ccx.stats().borrow_mut().n_llvm_insns += 1;
if self.cx.sess().trans_stats() {
self.cx.stats.borrow_mut().n_llvm_insns += 1;
}
if self.ccx.sess().count_llvm_insns() {
*self.ccx.stats()
if self.cx.sess().count_llvm_insns() {
*self.cx.stats
.borrow_mut()
.llvm_insns
.entry(category.to_string())
@ -489,11 +489,11 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
}
pub fn alloca(&self, ty: Type, name: &str, align: Align) -> ValueRef {
let builder = Builder::with_ccx(self.ccx);
builder.position_at_start(unsafe {
let bx = Builder::with_cx(self.cx);
bx.position_at_start(unsafe {
llvm::LLVMGetFirstBasicBlock(self.llfn())
});
builder.dynamic_alloca(ty, name, align)
bx.dynamic_alloca(ty, name, align)
}
pub fn dynamic_alloca(&self, ty: Type, name: &str, align: Align) -> ValueRef {
@ -558,7 +558,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
];
llvm::LLVMSetMetadata(load, llvm::MD_range as c_uint,
llvm::LLVMMDNodeInContext(self.ccx.llcx(),
llvm::LLVMMDNodeInContext(self.cx.llcx,
v.as_ptr(),
v.len() as c_uint));
}
@ -567,7 +567,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
pub fn nonnull_metadata(&self, load: ValueRef) {
unsafe {
llvm::LLVMSetMetadata(load, llvm::MD_nonnull as c_uint,
llvm::LLVMMDNodeInContext(self.ccx.llcx(), ptr::null(), 0));
llvm::LLVMMDNodeInContext(self.cx.llcx, ptr::null(), 0));
}
}
@ -620,8 +620,8 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
// point to a metadata value of the integer 1. Who knew?
//
// [1]: http://llvm.org/docs/LangRef.html#store-instruction
let one = C_i32(self.ccx, 1);
let node = llvm::LLVMMDNodeInContext(self.ccx.llcx(),
let one = C_i32(self.cx, 1);
let node = llvm::LLVMMDNodeInContext(self.cx.llcx,
&one,
1);
llvm::LLVMSetMetadata(insn,
@ -840,24 +840,24 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
}
pub fn add_span_comment(&self, sp: Span, text: &str) {
if self.ccx.sess().asm_comments() {
if self.cx.sess().asm_comments() {
let s = format!("{} ({})",
text,
self.ccx.sess().codemap().span_to_string(sp));
self.cx.sess().codemap().span_to_string(sp));
debug!("{}", s);
self.add_comment(&s);
}
}
pub fn add_comment(&self, text: &str) {
if self.ccx.sess().asm_comments() {
if self.cx.sess().asm_comments() {
let sanitized = text.replace("$", "");
let comment_text = format!("{} {}", "#",
sanitized.replace("\n", "\n\t# "));
self.count_insn("inlineasm");
let comment_text = CString::new(comment_text).unwrap();
let asm = unsafe {
llvm::LLVMConstInlineAsm(Type::func(&[], &Type::void(self.ccx)).to_ref(),
llvm::LLVMConstInlineAsm(Type::func(&[], &Type::void(self.cx)).to_ref(),
comment_text.as_ptr(), noname(), False,
False)
};
@ -949,8 +949,8 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
unsafe {
let elt_ty = val_ty(elt);
let undef = llvm::LLVMGetUndef(Type::vector(&elt_ty, num_elts as u64).to_ref());
let vec = self.insert_element(undef, elt, C_i32(self.ccx, 0));
let vec_i32_ty = Type::vector(&Type::i32(self.ccx), num_elts as u64);
let vec = self.insert_element(undef, elt, C_i32(self.cx, 0));
let vec_i32_ty = Type::vector(&Type::i32(self.cx), num_elts as u64);
self.shuffle_vector(vec, undef, C_null(vec_i32_ty))
}
}
@ -1160,7 +1160,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
pub fn set_invariant_load(&self, load: ValueRef) {
unsafe {
llvm::LLVMSetMetadata(load, llvm::MD_invariant_load as c_uint,
llvm::LLVMMDNodeInContext(self.ccx.llcx(), ptr::null(), 0));
llvm::LLVMMDNodeInContext(self.cx.llcx, ptr::null(), 0));
}
}
@ -1245,7 +1245,7 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
/// If LLVM lifetime intrinsic support is disabled (i.e. optimizations
/// off) or `ptr` is zero-sized, then no-op (does not call `emit`).
fn call_lifetime_intrinsic(&self, intrinsic: &str, ptr: ValueRef, size: Size) {
if self.ccx.sess().opts.optimize == config::OptLevel::No {
if self.cx.sess().opts.optimize == config::OptLevel::No {
return;
}
@ -1254,9 +1254,9 @@ impl<'a, 'tcx> Builder<'a, 'tcx> {
return;
}
let lifetime_intrinsic = self.ccx.get_intrinsic(intrinsic);
let lifetime_intrinsic = self.cx.get_intrinsic(intrinsic);
let ptr = self.pointercast(ptr, Type::i8p(self.ccx));
self.call(lifetime_intrinsic, &[C_u64(self.ccx, size), ptr], None);
let ptr = self.pointercast(ptr, Type::i8p(self.cx));
self.call(lifetime_intrinsic, &[C_u64(self.cx, size), ptr], None);
}
}

View file

@ -9,15 +9,15 @@
// except according to those terms.
use abi::{FnType, ArgType, LayoutExt, Reg, RegKind, Uniform};
use context::CrateContext;
use context::CodegenCx;
fn is_homogeneous_aggregate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tcx>)
fn is_homogeneous_aggregate<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, arg: &mut ArgType<'tcx>)
-> Option<Uniform> {
arg.layout.homogeneous_aggregate(ccx).and_then(|unit| {
arg.layout.homogeneous_aggregate(cx).and_then(|unit| {
let size = arg.layout.size;
// Ensure we have at most four uniquely addressable members.
if size > unit.size.checked_mul(4, ccx).unwrap() {
if size > unit.size.checked_mul(4, cx).unwrap() {
return None;
}
@ -38,12 +38,12 @@ fn is_homogeneous_aggregate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut Ar
})
}
fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ret: &mut ArgType<'tcx>) {
fn classify_ret_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, ret: &mut ArgType<'tcx>) {
if !ret.layout.is_aggregate() {
ret.extend_integer_width_to(32);
return;
}
if let Some(uniform) = is_homogeneous_aggregate(ccx, ret) {
if let Some(uniform) = is_homogeneous_aggregate(cx, ret) {
ret.cast_to(uniform);
return;
}
@ -69,12 +69,12 @@ fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ret: &mut ArgType<'tc
ret.make_indirect();
}
fn classify_arg_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tcx>) {
fn classify_arg_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, arg: &mut ArgType<'tcx>) {
if !arg.layout.is_aggregate() {
arg.extend_integer_width_to(32);
return;
}
if let Some(uniform) = is_homogeneous_aggregate(ccx, arg) {
if let Some(uniform) = is_homogeneous_aggregate(cx, arg) {
arg.cast_to(uniform);
return;
}
@ -100,13 +100,13 @@ fn classify_arg_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tc
arg.make_indirect();
}
pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fty: &mut FnType<'tcx>) {
pub fn compute_abi_info<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, fty: &mut FnType<'tcx>) {
if !fty.ret.is_ignore() {
classify_ret_ty(ccx, &mut fty.ret);
classify_ret_ty(cx, &mut fty.ret);
}
for arg in &mut fty.args {
if arg.is_ignore() { continue; }
classify_arg_ty(ccx, arg);
classify_arg_ty(cx, arg);
}
}

View file

@ -9,16 +9,16 @@
// except according to those terms.
use abi::{FnType, ArgType, LayoutExt, Reg, RegKind, Uniform};
use context::CrateContext;
use context::CodegenCx;
use llvm::CallConv;
fn is_homogeneous_aggregate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tcx>)
fn is_homogeneous_aggregate<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, arg: &mut ArgType<'tcx>)
-> Option<Uniform> {
arg.layout.homogeneous_aggregate(ccx).and_then(|unit| {
arg.layout.homogeneous_aggregate(cx).and_then(|unit| {
let size = arg.layout.size;
// Ensure we have at most four uniquely addressable members.
if size > unit.size.checked_mul(4, ccx).unwrap() {
if size > unit.size.checked_mul(4, cx).unwrap() {
return None;
}
@ -39,14 +39,14 @@ fn is_homogeneous_aggregate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut Ar
})
}
fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ret: &mut ArgType<'tcx>, vfp: bool) {
fn classify_ret_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, ret: &mut ArgType<'tcx>, vfp: bool) {
if !ret.layout.is_aggregate() {
ret.extend_integer_width_to(32);
return;
}
if vfp {
if let Some(uniform) = is_homogeneous_aggregate(ccx, ret) {
if let Some(uniform) = is_homogeneous_aggregate(cx, ret) {
ret.cast_to(uniform);
return;
}
@ -71,14 +71,14 @@ fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ret: &mut ArgType<'tc
ret.make_indirect();
}
fn classify_arg_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tcx>, vfp: bool) {
fn classify_arg_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, arg: &mut ArgType<'tcx>, vfp: bool) {
if !arg.layout.is_aggregate() {
arg.extend_integer_width_to(32);
return;
}
if vfp {
if let Some(uniform) = is_homogeneous_aggregate(ccx, arg) {
if let Some(uniform) = is_homogeneous_aggregate(cx, arg) {
arg.cast_to(uniform);
return;
}
@ -92,19 +92,19 @@ fn classify_arg_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tc
});
}
pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fty: &mut FnType<'tcx>) {
pub fn compute_abi_info<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, fty: &mut FnType<'tcx>) {
// If this is a target with a hard-float ABI, and the function is not explicitly
// `extern "aapcs"`, then we must use the VFP registers for homogeneous aggregates.
let vfp = ccx.sess().target.target.llvm_target.ends_with("hf")
let vfp = cx.sess().target.target.llvm_target.ends_with("hf")
&& fty.cconv != CallConv::ArmAapcsCallConv
&& !fty.variadic;
if !fty.ret.is_ignore() {
classify_ret_ty(ccx, &mut fty.ret, vfp);
classify_ret_ty(cx, &mut fty.ret, vfp);
}
for arg in &mut fty.args {
if arg.is_ignore() { continue; }
classify_arg_ty(ccx, arg, vfp);
classify_arg_ty(cx, arg, vfp);
}
}

View file

@ -9,16 +9,16 @@
// except according to those terms.
use abi::{FnType, ArgType, LayoutExt, Uniform};
use context::CrateContext;
use context::CodegenCx;
// Data layout: e-p:32:32-i64:64-v128:32:128-n32-S128
// See the https://github.com/kripken/emscripten-fastcomp-clang repository.
// The class `EmscriptenABIInfo` in `/lib/CodeGen/TargetInfo.cpp` contains the ABI definitions.
fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ret: &mut ArgType<'tcx>) {
fn classify_ret_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, ret: &mut ArgType<'tcx>) {
if ret.layout.is_aggregate() {
if let Some(unit) = ret.layout.homogeneous_aggregate(ccx) {
if let Some(unit) = ret.layout.homogeneous_aggregate(cx) {
let size = ret.layout.size;
if unit.size == size {
ret.cast_to(Uniform {
@ -39,9 +39,9 @@ fn classify_arg_ty(arg: &mut ArgType) {
}
}
pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fty: &mut FnType<'tcx>) {
pub fn compute_abi_info<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, fty: &mut FnType<'tcx>) {
if !fty.ret.is_ignore() {
classify_ret_ty(ccx, &mut fty.ret);
classify_ret_ty(cx, &mut fty.ret);
}
for arg in &mut fty.args {

View file

@ -9,23 +9,23 @@
// except according to those terms.
use abi::{ArgType, FnType, LayoutExt, Reg, Uniform};
use context::CrateContext;
use context::CodegenCx;
use rustc::ty::layout::Size;
fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn classify_ret_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
ret: &mut ArgType<'tcx>,
offset: &mut Size) {
if !ret.layout.is_aggregate() {
ret.extend_integer_width_to(32);
} else {
ret.make_indirect();
*offset += ccx.tcx().data_layout.pointer_size;
*offset += cx.tcx.data_layout.pointer_size;
}
}
fn classify_arg_ty(ccx: &CrateContext, arg: &mut ArgType, offset: &mut Size) {
let dl = &ccx.tcx().data_layout;
fn classify_arg_ty(cx: &CodegenCx, arg: &mut ArgType, offset: &mut Size) {
let dl = &cx.tcx.data_layout;
let size = arg.layout.size;
let align = arg.layout.align.max(dl.i32_align).min(dl.i64_align);
@ -44,14 +44,14 @@ fn classify_arg_ty(ccx: &CrateContext, arg: &mut ArgType, offset: &mut Size) {
*offset = offset.abi_align(align) + size.abi_align(align);
}
pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fty: &mut FnType<'tcx>) {
pub fn compute_abi_info<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, fty: &mut FnType<'tcx>) {
let mut offset = Size::from_bytes(0);
if !fty.ret.is_ignore() {
classify_ret_ty(ccx, &mut fty.ret, &mut offset);
classify_ret_ty(cx, &mut fty.ret, &mut offset);
}
for arg in &mut fty.args {
if arg.is_ignore() { continue; }
classify_arg_ty(ccx, arg, &mut offset);
classify_arg_ty(cx, arg, &mut offset);
}
}

View file

@ -9,23 +9,23 @@
// except according to those terms.
use abi::{ArgType, FnType, LayoutExt, Reg, Uniform};
use context::CrateContext;
use context::CodegenCx;
use rustc::ty::layout::Size;
fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn classify_ret_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
ret: &mut ArgType<'tcx>,
offset: &mut Size) {
if !ret.layout.is_aggregate() {
ret.extend_integer_width_to(64);
} else {
ret.make_indirect();
*offset += ccx.tcx().data_layout.pointer_size;
*offset += cx.tcx.data_layout.pointer_size;
}
}
fn classify_arg_ty(ccx: &CrateContext, arg: &mut ArgType, offset: &mut Size) {
let dl = &ccx.tcx().data_layout;
fn classify_arg_ty(cx: &CodegenCx, arg: &mut ArgType, offset: &mut Size) {
let dl = &cx.tcx.data_layout;
let size = arg.layout.size;
let align = arg.layout.align.max(dl.i32_align).min(dl.i64_align);
@ -44,14 +44,14 @@ fn classify_arg_ty(ccx: &CrateContext, arg: &mut ArgType, offset: &mut Size) {
*offset = offset.abi_align(align) + size.abi_align(align);
}
pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fty: &mut FnType<'tcx>) {
pub fn compute_abi_info<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, fty: &mut FnType<'tcx>) {
let mut offset = Size::from_bytes(0);
if !fty.ret.is_ignore() {
classify_ret_ty(ccx, &mut fty.ret, &mut offset);
classify_ret_ty(cx, &mut fty.ret, &mut offset);
}
for arg in &mut fty.args {
if arg.is_ignore() { continue; }
classify_arg_ty(ccx, arg, &mut offset);
classify_arg_ty(cx, arg, &mut offset);
}
}

View file

@ -9,23 +9,23 @@
// except according to those terms.
use abi::{ArgType, FnType, LayoutExt, Reg, Uniform};
use context::CrateContext;
use context::CodegenCx;
use rustc::ty::layout::Size;
fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn classify_ret_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
ret: &mut ArgType<'tcx>,
offset: &mut Size) {
if !ret.layout.is_aggregate() {
ret.extend_integer_width_to(32);
} else {
ret.make_indirect();
*offset += ccx.tcx().data_layout.pointer_size;
*offset += cx.tcx.data_layout.pointer_size;
}
}
fn classify_arg_ty(ccx: &CrateContext, arg: &mut ArgType, offset: &mut Size) {
let dl = &ccx.tcx().data_layout;
fn classify_arg_ty(cx: &CodegenCx, arg: &mut ArgType, offset: &mut Size) {
let dl = &cx.tcx.data_layout;
let size = arg.layout.size;
let align = arg.layout.align.max(dl.i32_align).min(dl.i64_align);
@ -44,14 +44,14 @@ fn classify_arg_ty(ccx: &CrateContext, arg: &mut ArgType, offset: &mut Size) {
*offset = offset.abi_align(align) + size.abi_align(align);
}
pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fty: &mut FnType<'tcx>) {
pub fn compute_abi_info<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, fty: &mut FnType<'tcx>) {
let mut offset = Size::from_bytes(0);
if !fty.ret.is_ignore() {
classify_ret_ty(ccx, &mut fty.ret, &mut offset);
classify_ret_ty(cx, &mut fty.ret, &mut offset);
}
for arg in &mut fty.args {
if arg.is_ignore() { continue; }
classify_arg_ty(ccx, arg, &mut offset);
classify_arg_ty(cx, arg, &mut offset);
}
}

View file

@ -13,7 +13,7 @@
// need to be fixed when PowerPC vector support is added.
use abi::{FnType, ArgType, LayoutExt, Reg, RegKind, Uniform};
use context::CrateContext;
use context::CodegenCx;
use rustc::ty::layout;
#[derive(Debug, Clone, Copy, PartialEq)]
@ -23,15 +23,15 @@ enum ABI {
}
use self::ABI::*;
fn is_homogeneous_aggregate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn is_homogeneous_aggregate<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
arg: &mut ArgType<'tcx>,
abi: ABI)
-> Option<Uniform> {
arg.layout.homogeneous_aggregate(ccx).and_then(|unit| {
arg.layout.homogeneous_aggregate(cx).and_then(|unit| {
// ELFv1 only passes one-member aggregates transparently.
// ELFv2 passes up to eight uniquely addressable members.
if (abi == ELFv1 && arg.layout.size > unit.size)
|| arg.layout.size > unit.size.checked_mul(8, ccx).unwrap() {
|| arg.layout.size > unit.size.checked_mul(8, cx).unwrap() {
return None;
}
@ -52,7 +52,7 @@ fn is_homogeneous_aggregate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
})
}
fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ret: &mut ArgType<'tcx>, abi: ABI) {
fn classify_ret_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, ret: &mut ArgType<'tcx>, abi: ABI) {
if !ret.layout.is_aggregate() {
ret.extend_integer_width_to(64);
return;
@ -64,7 +64,7 @@ fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ret: &mut ArgType<'tc
return;
}
if let Some(uniform) = is_homogeneous_aggregate(ccx, ret, abi) {
if let Some(uniform) = is_homogeneous_aggregate(cx, ret, abi) {
ret.cast_to(uniform);
return;
}
@ -92,13 +92,13 @@ fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ret: &mut ArgType<'tc
ret.make_indirect();
}
fn classify_arg_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tcx>, abi: ABI) {
fn classify_arg_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, arg: &mut ArgType<'tcx>, abi: ABI) {
if !arg.layout.is_aggregate() {
arg.extend_integer_width_to(64);
return;
}
if let Some(uniform) = is_homogeneous_aggregate(ccx, arg, abi) {
if let Some(uniform) = is_homogeneous_aggregate(cx, arg, abi) {
arg.cast_to(uniform);
return;
}
@ -128,19 +128,19 @@ fn classify_arg_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tc
});
}
pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fty: &mut FnType<'tcx>) {
let abi = match ccx.sess().target.target.target_endian.as_str() {
pub fn compute_abi_info<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, fty: &mut FnType<'tcx>) {
let abi = match cx.sess().target.target.target_endian.as_str() {
"big" => ELFv1,
"little" => ELFv2,
_ => unimplemented!(),
};
if !fty.ret.is_ignore() {
classify_ret_ty(ccx, &mut fty.ret, abi);
classify_ret_ty(cx, &mut fty.ret, abi);
}
for arg in &mut fty.args {
if arg.is_ignore() { continue; }
classify_arg_ty(ccx, arg, abi);
classify_arg_ty(cx, arg, abi);
}
}

View file

@ -12,7 +12,7 @@
// for a pre-z13 machine or using -mno-vx.
use abi::{FnType, ArgType, LayoutExt, Reg};
use context::CrateContext;
use context::CodegenCx;
use rustc::ty::layout::{self, TyLayout};
@ -24,7 +24,7 @@ fn classify_ret_ty(ret: &mut ArgType) {
}
}
fn is_single_fp_element<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn is_single_fp_element<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
layout: TyLayout<'tcx>) -> bool {
match layout.abi {
layout::Abi::Scalar(ref scalar) => {
@ -35,7 +35,7 @@ fn is_single_fp_element<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
}
layout::Abi::Aggregate { .. } => {
if layout.fields.count() == 1 && layout.fields.offset(0).bytes() == 0 {
is_single_fp_element(ccx, layout.field(ccx, 0))
is_single_fp_element(cx, layout.field(cx, 0))
} else {
false
}
@ -44,13 +44,13 @@ fn is_single_fp_element<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
}
}
fn classify_arg_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tcx>) {
fn classify_arg_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, arg: &mut ArgType<'tcx>) {
if !arg.layout.is_aggregate() && arg.layout.size.bits() <= 64 {
arg.extend_integer_width_to(64);
return;
}
if is_single_fp_element(ccx, arg.layout) {
if is_single_fp_element(cx, arg.layout) {
match arg.layout.size.bytes() {
4 => arg.cast_to(Reg::f32()),
8 => arg.cast_to(Reg::f64()),
@ -67,13 +67,13 @@ fn classify_arg_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tc
}
}
pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fty: &mut FnType<'tcx>) {
pub fn compute_abi_info<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, fty: &mut FnType<'tcx>) {
if !fty.ret.is_ignore() {
classify_ret_ty(&mut fty.ret);
}
for arg in &mut fty.args {
if arg.is_ignore() { continue; }
classify_arg_ty(ccx, arg);
classify_arg_ty(cx, arg);
}
}

View file

@ -9,23 +9,23 @@
// except according to those terms.
use abi::{ArgType, FnType, LayoutExt, Reg, Uniform};
use context::CrateContext;
use context::CodegenCx;
use rustc::ty::layout::Size;
fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn classify_ret_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
ret: &mut ArgType<'tcx>,
offset: &mut Size) {
if !ret.layout.is_aggregate() {
ret.extend_integer_width_to(32);
} else {
ret.make_indirect();
*offset += ccx.tcx().data_layout.pointer_size;
*offset += cx.tcx.data_layout.pointer_size;
}
}
fn classify_arg_ty(ccx: &CrateContext, arg: &mut ArgType, offset: &mut Size) {
let dl = &ccx.tcx().data_layout;
fn classify_arg_ty(cx: &CodegenCx, arg: &mut ArgType, offset: &mut Size) {
let dl = &cx.tcx.data_layout;
let size = arg.layout.size;
let align = arg.layout.align.max(dl.i32_align).min(dl.i64_align);
@ -44,14 +44,14 @@ fn classify_arg_ty(ccx: &CrateContext, arg: &mut ArgType, offset: &mut Size) {
*offset = offset.abi_align(align) + size.abi_align(align);
}
pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fty: &mut FnType<'tcx>) {
pub fn compute_abi_info<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, fty: &mut FnType<'tcx>) {
let mut offset = Size::from_bytes(0);
if !fty.ret.is_ignore() {
classify_ret_ty(ccx, &mut fty.ret, &mut offset);
classify_ret_ty(cx, &mut fty.ret, &mut offset);
}
for arg in &mut fty.args {
if arg.is_ignore() { continue; }
classify_arg_ty(ccx, arg, &mut offset);
classify_arg_ty(cx, arg, &mut offset);
}
}

View file

@ -11,13 +11,13 @@
// FIXME: This needs an audit for correctness and completeness.
use abi::{FnType, ArgType, LayoutExt, Reg, RegKind, Uniform};
use context::CrateContext;
use context::CodegenCx;
fn is_homogeneous_aggregate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tcx>)
fn is_homogeneous_aggregate<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, arg: &mut ArgType<'tcx>)
-> Option<Uniform> {
arg.layout.homogeneous_aggregate(ccx).and_then(|unit| {
arg.layout.homogeneous_aggregate(cx).and_then(|unit| {
// Ensure we have at most eight uniquely addressable members.
if arg.layout.size > unit.size.checked_mul(8, ccx).unwrap() {
if arg.layout.size > unit.size.checked_mul(8, cx).unwrap() {
return None;
}
@ -38,13 +38,13 @@ fn is_homogeneous_aggregate<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut Ar
})
}
fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ret: &mut ArgType<'tcx>) {
fn classify_ret_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, ret: &mut ArgType<'tcx>) {
if !ret.layout.is_aggregate() {
ret.extend_integer_width_to(64);
return;
}
if let Some(uniform) = is_homogeneous_aggregate(ccx, ret) {
if let Some(uniform) = is_homogeneous_aggregate(cx, ret) {
ret.cast_to(uniform);
return;
}
@ -72,13 +72,13 @@ fn classify_ret_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, ret: &mut ArgType<'tc
ret.make_indirect();
}
fn classify_arg_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tcx>) {
fn classify_arg_ty<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, arg: &mut ArgType<'tcx>) {
if !arg.layout.is_aggregate() {
arg.extend_integer_width_to(64);
return;
}
if let Some(uniform) = is_homogeneous_aggregate(ccx, arg) {
if let Some(uniform) = is_homogeneous_aggregate(cx, arg) {
arg.cast_to(uniform);
return;
}
@ -90,13 +90,13 @@ fn classify_arg_ty<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &mut ArgType<'tc
});
}
pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fty: &mut FnType<'tcx>) {
pub fn compute_abi_info<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, fty: &mut FnType<'tcx>) {
if !fty.ret.is_ignore() {
classify_ret_ty(ccx, &mut fty.ret);
classify_ret_ty(cx, &mut fty.ret);
}
for arg in &mut fty.args {
if arg.is_ignore() { continue; }
classify_arg_ty(ccx, arg);
classify_arg_ty(cx, arg);
}
}

View file

@ -9,7 +9,7 @@
// except according to those terms.
use abi::{ArgAttribute, FnType, LayoutExt, PassMode, Reg, RegKind};
use common::CrateContext;
use common::CodegenCx;
use rustc::ty::layout::{self, TyLayout};
@ -19,7 +19,7 @@ pub enum Flavor {
Fastcall
}
fn is_single_fp_element<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn is_single_fp_element<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
layout: TyLayout<'tcx>) -> bool {
match layout.abi {
layout::Abi::Scalar(ref scalar) => {
@ -30,7 +30,7 @@ fn is_single_fp_element<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
}
layout::Abi::Aggregate { .. } => {
if layout.fields.count() == 1 && layout.fields.offset(0).bytes() == 0 {
is_single_fp_element(ccx, layout.field(ccx, 0))
is_single_fp_element(cx, layout.field(cx, 0))
} else {
false
}
@ -39,7 +39,7 @@ fn is_single_fp_element<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
}
}
pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
pub fn compute_abi_info<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
fty: &mut FnType<'tcx>,
flavor: Flavor) {
if !fty.ret.is_ignore() {
@ -51,12 +51,12 @@ pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
// Some links:
// http://www.angelcode.com/dev/callconv/callconv.html
// Clang's ABI handling is in lib/CodeGen/TargetInfo.cpp
let t = &ccx.sess().target.target;
let t = &cx.sess().target.target;
if t.options.is_like_osx || t.options.is_like_windows
|| t.options.is_like_openbsd {
// According to Clang, everyone but MSVC returns single-element
// float aggregates directly in a floating-point register.
if !t.options.is_like_msvc && is_single_fp_element(ccx, fty.ret.layout) {
if !t.options.is_like_msvc && is_single_fp_element(cx, fty.ret.layout) {
match fty.ret.layout.size.bytes() {
4 => fty.ret.cast_to(Reg::f32()),
8 => fty.ret.cast_to(Reg::f64()),
@ -112,7 +112,7 @@ pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
};
// At this point we know this must be a primitive of sorts.
let unit = arg.layout.homogeneous_aggregate(ccx).unwrap();
let unit = arg.layout.homogeneous_aggregate(cx).unwrap();
assert_eq!(unit.size, arg.layout.size);
if unit.kind == RegKind::Float {
continue;

View file

@ -12,7 +12,7 @@
// https://github.com/jckarter/clay/blob/master/compiler/src/externals.cpp
use abi::{ArgType, CastTarget, FnType, LayoutExt, Reg, RegKind};
use context::CrateContext;
use context::CodegenCx;
use rustc::ty::layout::{self, TyLayout, Size};
@ -31,7 +31,7 @@ struct Memory;
const LARGEST_VECTOR_SIZE: usize = 512;
const MAX_EIGHTBYTES: usize = LARGEST_VECTOR_SIZE / 64;
fn classify_arg<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &ArgType<'tcx>)
fn classify_arg<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, arg: &ArgType<'tcx>)
-> Result<[Class; MAX_EIGHTBYTES], Memory> {
fn unify(cls: &mut [Class],
off: Size,
@ -52,7 +52,7 @@ fn classify_arg<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &ArgType<'tcx>)
cls[i] = to_write;
}
fn classify<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn classify<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
layout: TyLayout<'tcx>,
cls: &mut [Class],
off: Size)
@ -82,7 +82,7 @@ fn classify_arg<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &ArgType<'tcx>)
// everything after the first one is the upper
// half of a register.
let stride = element.value.size(ccx);
let stride = element.value.size(cx);
for i in 1..count {
let field_off = off + stride * i;
unify(cls, field_off, Class::SseUp);
@ -95,7 +95,7 @@ fn classify_arg<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &ArgType<'tcx>)
layout::Variants::Single { .. } => {
for i in 0..layout.fields.count() {
let field_off = off + layout.fields.offset(i);
classify(ccx, layout.field(ccx, i), cls, field_off)?;
classify(cx, layout.field(cx, i), cls, field_off)?;
}
}
layout::Variants::Tagged { .. } |
@ -114,7 +114,7 @@ fn classify_arg<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, arg: &ArgType<'tcx>)
}
let mut cls = [Class::None; MAX_EIGHTBYTES];
classify(ccx, arg.layout, &mut cls, Size::from_bytes(0))?;
classify(cx, arg.layout, &mut cls, Size::from_bytes(0))?;
if n > 2 {
if cls[0] != Class::Sse {
return Err(Memory);
@ -189,12 +189,12 @@ fn cast_target(cls: &[Class], size: Size) -> CastTarget {
target
}
pub fn compute_abi_info<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, fty: &mut FnType<'tcx>) {
pub fn compute_abi_info<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, fty: &mut FnType<'tcx>) {
let mut int_regs = 6; // RDI, RSI, RDX, RCX, R8, R9
let mut sse_regs = 8; // XMM0-7
let mut x86_64_ty = |arg: &mut ArgType<'tcx>, is_arg: bool| {
let cls = classify_arg(ccx, arg);
let cls = classify_arg(cx, arg);
let mut needed_int = 0;
let mut needed_sse = 0;

View file

@ -15,7 +15,7 @@
//! closure.
use attributes;
use common::{self, CrateContext};
use common::{self, CodegenCx};
use consts;
use declare;
use llvm::{self, ValueRef};
@ -34,13 +34,13 @@ use rustc_back::PanicStrategy;
///
/// # Parameters
///
/// - `ccx`: the crate context
/// - `cx`: the crate context
/// - `instance`: the instance to be instantiated
pub fn get_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
pub fn get_fn<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
instance: Instance<'tcx>)
-> ValueRef
{
let tcx = ccx.tcx();
let tcx = cx.tcx;
debug!("get_fn(instance={:?})", instance);
@ -48,8 +48,8 @@ pub fn get_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
assert!(!instance.substs.has_escaping_regions());
assert!(!instance.substs.has_param_types());
let fn_ty = instance.ty(ccx.tcx());
if let Some(&llfn) = ccx.instances().borrow().get(&instance) {
let fn_ty = instance.ty(cx.tcx);
if let Some(&llfn) = cx.instances.borrow().get(&instance) {
return llfn;
}
@ -57,10 +57,10 @@ pub fn get_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
debug!("get_fn({:?}: {:?}) => {}", instance, fn_ty, sym);
// Create a fn pointer with the substituted signature.
let fn_ptr_ty = tcx.mk_fn_ptr(common::ty_fn_sig(ccx, fn_ty));
let llptrty = ccx.layout_of(fn_ptr_ty).llvm_type(ccx);
let fn_ptr_ty = tcx.mk_fn_ptr(common::ty_fn_sig(cx, fn_ty));
let llptrty = cx.layout_of(fn_ptr_ty).llvm_type(cx);
let llfn = if let Some(llfn) = declare::get_declared_value(ccx, &sym) {
let llfn = if let Some(llfn) = declare::get_declared_value(cx, &sym) {
// This is subtle and surprising, but sometimes we have to bitcast
// the resulting fn pointer. The reason has to do with external
// functions. If you have two crates that both bind the same C
@ -92,14 +92,14 @@ pub fn get_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
llfn
}
} else {
let llfn = declare::declare_fn(ccx, &sym, fn_ty);
let llfn = declare::declare_fn(cx, &sym, fn_ty);
assert_eq!(common::val_ty(llfn), llptrty);
debug!("get_fn: not casting pointer!");
if instance.def.is_inline(tcx) {
attributes::inline(llfn, attributes::InlineAttr::Hint);
}
attributes::from_fn_attrs(ccx, llfn, instance.def.def_id());
attributes::from_fn_attrs(cx, llfn, instance.def.def_id());
let instance_def_id = instance.def_id();
@ -149,9 +149,9 @@ pub fn get_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
unsafe {
llvm::LLVMRustSetLinkage(llfn, llvm::Linkage::ExternalLinkage);
if ccx.tcx().is_translated_function(instance_def_id) {
if cx.tcx.is_translated_function(instance_def_id) {
if instance_def_id.is_local() {
if !ccx.tcx().is_exported_symbol(instance_def_id) {
if !cx.tcx.is_exported_symbol(instance_def_id) {
llvm::LLVMRustSetVisibility(llfn, llvm::Visibility::Hidden);
}
} else {
@ -160,7 +160,7 @@ pub fn get_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
}
}
if ccx.use_dll_storage_attrs() &&
if cx.use_dll_storage_attrs &&
tcx.is_dllimport_foreign_item(instance_def_id)
{
unsafe {
@ -171,20 +171,20 @@ pub fn get_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
llfn
};
ccx.instances().borrow_mut().insert(instance, llfn);
cx.instances.borrow_mut().insert(instance, llfn);
llfn
}
pub fn resolve_and_get_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
pub fn resolve_and_get_fn<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
def_id: DefId,
substs: &'tcx Substs<'tcx>)
-> ValueRef
{
get_fn(
ccx,
cx,
ty::Instance::resolve(
ccx.tcx(),
cx.tcx,
ty::ParamEnv::empty(traits::Reveal::All),
def_id,
substs

View file

@ -38,7 +38,7 @@ use syntax::abi::Abi;
use syntax::symbol::InternedString;
use syntax_pos::{Span, DUMMY_SP};
pub use context::{CrateContext, SharedCrateContext};
pub use context::CodegenCx;
pub fn type_needs_drop<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, ty: Ty<'tcx>) -> bool {
ty.needs_drop(tcx, ty::ParamEnv::empty(traits::Reveal::All))
@ -152,46 +152,46 @@ pub fn C_uint_big(t: Type, u: u128) -> ValueRef {
}
}
pub fn C_bool(ccx: &CrateContext, val: bool) -> ValueRef {
C_uint(Type::i1(ccx), val as u64)
pub fn C_bool(cx: &CodegenCx, val: bool) -> ValueRef {
C_uint(Type::i1(cx), val as u64)
}
pub fn C_i32(ccx: &CrateContext, i: i32) -> ValueRef {
C_int(Type::i32(ccx), i as i64)
pub fn C_i32(cx: &CodegenCx, i: i32) -> ValueRef {
C_int(Type::i32(cx), i as i64)
}
pub fn C_u32(ccx: &CrateContext, i: u32) -> ValueRef {
C_uint(Type::i32(ccx), i as u64)
pub fn C_u32(cx: &CodegenCx, i: u32) -> ValueRef {
C_uint(Type::i32(cx), i as u64)
}
pub fn C_u64(ccx: &CrateContext, i: u64) -> ValueRef {
C_uint(Type::i64(ccx), i)
pub fn C_u64(cx: &CodegenCx, i: u64) -> ValueRef {
C_uint(Type::i64(cx), i)
}
pub fn C_usize(ccx: &CrateContext, i: u64) -> ValueRef {
let bit_size = ccx.data_layout().pointer_size.bits();
pub fn C_usize(cx: &CodegenCx, i: u64) -> ValueRef {
let bit_size = cx.data_layout().pointer_size.bits();
if bit_size < 64 {
// make sure it doesn't overflow
assert!(i < (1<<bit_size));
}
C_uint(ccx.isize_ty(), i)
C_uint(cx.isize_ty, i)
}
pub fn C_u8(ccx: &CrateContext, i: u8) -> ValueRef {
C_uint(Type::i8(ccx), i as u64)
pub fn C_u8(cx: &CodegenCx, i: u8) -> ValueRef {
C_uint(Type::i8(cx), i as u64)
}
// This is a 'c-like' raw string, which differs from
// our boxed-and-length-annotated strings.
pub fn C_cstr(cx: &CrateContext, s: InternedString, null_terminated: bool) -> ValueRef {
pub fn C_cstr(cx: &CodegenCx, s: InternedString, null_terminated: bool) -> ValueRef {
unsafe {
if let Some(&llval) = cx.const_cstr_cache().borrow().get(&s) {
if let Some(&llval) = cx.const_cstr_cache.borrow().get(&s) {
return llval;
}
let sc = llvm::LLVMConstStringInContext(cx.llcx(),
let sc = llvm::LLVMConstStringInContext(cx.llcx,
s.as_ptr() as *const c_char,
s.len() as c_uint,
!null_terminated as Bool);
@ -203,28 +203,28 @@ pub fn C_cstr(cx: &CrateContext, s: InternedString, null_terminated: bool) -> Va
llvm::LLVMSetGlobalConstant(g, True);
llvm::LLVMRustSetLinkage(g, llvm::Linkage::InternalLinkage);
cx.const_cstr_cache().borrow_mut().insert(s, g);
cx.const_cstr_cache.borrow_mut().insert(s, g);
g
}
}
// NB: Do not use `do_spill_noroot` to make this into a constant string, or
// you will be kicked off fast isel. See issue #4352 for an example of this.
pub fn C_str_slice(cx: &CrateContext, s: InternedString) -> ValueRef {
pub fn C_str_slice(cx: &CodegenCx, s: InternedString) -> ValueRef {
let len = s.len();
let cs = consts::ptrcast(C_cstr(cx, s, false),
cx.layout_of(cx.tcx().mk_str()).llvm_type(cx).ptr_to());
cx.layout_of(cx.tcx.mk_str()).llvm_type(cx).ptr_to());
C_fat_ptr(cx, cs, C_usize(cx, len as u64))
}
pub fn C_fat_ptr(cx: &CrateContext, ptr: ValueRef, meta: ValueRef) -> ValueRef {
pub fn C_fat_ptr(cx: &CodegenCx, ptr: ValueRef, meta: ValueRef) -> ValueRef {
assert_eq!(abi::FAT_PTR_ADDR, 0);
assert_eq!(abi::FAT_PTR_EXTRA, 1);
C_struct(cx, &[ptr, meta], false)
}
pub fn C_struct(cx: &CrateContext, elts: &[ValueRef], packed: bool) -> ValueRef {
C_struct_in_context(cx.llcx(), elts, packed)
pub fn C_struct(cx: &CodegenCx, elts: &[ValueRef], packed: bool) -> ValueRef {
C_struct_in_context(cx.llcx, elts, packed)
}
pub fn C_struct_in_context(llcx: ContextRef, elts: &[ValueRef], packed: bool) -> ValueRef {
@ -247,8 +247,8 @@ pub fn C_vector(elts: &[ValueRef]) -> ValueRef {
}
}
pub fn C_bytes(cx: &CrateContext, bytes: &[u8]) -> ValueRef {
C_bytes_in_context(cx.llcx(), bytes)
pub fn C_bytes(cx: &CodegenCx, bytes: &[u8]) -> ValueRef {
C_bytes_in_context(cx.llcx, bytes)
}
pub fn C_bytes_in_context(llcx: ContextRef, bytes: &[u8]) -> ValueRef {
@ -328,37 +328,37 @@ pub fn langcall(tcx: TyCtxt,
// of Java. (See related discussion on #1877 and #10183.)
pub fn build_unchecked_lshift<'a, 'tcx>(
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
lhs: ValueRef,
rhs: ValueRef
) -> ValueRef {
let rhs = base::cast_shift_expr_rhs(bcx, hir::BinOp_::BiShl, lhs, rhs);
let rhs = base::cast_shift_expr_rhs(bx, hir::BinOp_::BiShl, lhs, rhs);
// #1877, #10183: Ensure that input is always valid
let rhs = shift_mask_rhs(bcx, rhs);
bcx.shl(lhs, rhs)
let rhs = shift_mask_rhs(bx, rhs);
bx.shl(lhs, rhs)
}
pub fn build_unchecked_rshift<'a, 'tcx>(
bcx: &Builder<'a, 'tcx>, lhs_t: Ty<'tcx>, lhs: ValueRef, rhs: ValueRef
bx: &Builder<'a, 'tcx>, lhs_t: Ty<'tcx>, lhs: ValueRef, rhs: ValueRef
) -> ValueRef {
let rhs = base::cast_shift_expr_rhs(bcx, hir::BinOp_::BiShr, lhs, rhs);
let rhs = base::cast_shift_expr_rhs(bx, hir::BinOp_::BiShr, lhs, rhs);
// #1877, #10183: Ensure that input is always valid
let rhs = shift_mask_rhs(bcx, rhs);
let rhs = shift_mask_rhs(bx, rhs);
let is_signed = lhs_t.is_signed();
if is_signed {
bcx.ashr(lhs, rhs)
bx.ashr(lhs, rhs)
} else {
bcx.lshr(lhs, rhs)
bx.lshr(lhs, rhs)
}
}
fn shift_mask_rhs<'a, 'tcx>(bcx: &Builder<'a, 'tcx>, rhs: ValueRef) -> ValueRef {
fn shift_mask_rhs<'a, 'tcx>(bx: &Builder<'a, 'tcx>, rhs: ValueRef) -> ValueRef {
let rhs_llty = val_ty(rhs);
bcx.and(rhs, shift_mask_val(bcx, rhs_llty, rhs_llty, false))
bx.and(rhs, shift_mask_val(bx, rhs_llty, rhs_llty, false))
}
pub fn shift_mask_val<'a, 'tcx>(
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
llty: Type,
mask_llty: Type,
invert: bool
@ -375,23 +375,23 @@ pub fn shift_mask_val<'a, 'tcx>(
}
},
TypeKind::Vector => {
let mask = shift_mask_val(bcx, llty.element_type(), mask_llty.element_type(), invert);
bcx.vector_splat(mask_llty.vector_length(), mask)
let mask = shift_mask_val(bx, llty.element_type(), mask_llty.element_type(), invert);
bx.vector_splat(mask_llty.vector_length(), mask)
},
_ => bug!("shift_mask_val: expected Integer or Vector, found {:?}", kind),
}
}
pub fn ty_fn_sig<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
pub fn ty_fn_sig<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
ty: Ty<'tcx>)
-> ty::PolyFnSig<'tcx>
{
match ty.sty {
ty::TyFnDef(..) |
// Shims currently have type TyFnPtr. Not sure this should remain.
ty::TyFnPtr(_) => ty.fn_sig(ccx.tcx()),
ty::TyFnPtr(_) => ty.fn_sig(cx.tcx),
ty::TyClosure(def_id, substs) => {
let tcx = ccx.tcx();
let tcx = cx.tcx;
let sig = substs.closure_sig(def_id, tcx);
let env_ty = tcx.closure_env_ty(def_id, substs).unwrap();
@ -404,8 +404,8 @@ pub fn ty_fn_sig<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
))
}
ty::TyGenerator(def_id, substs, _) => {
let tcx = ccx.tcx();
let sig = substs.generator_poly_sig(def_id, ccx.tcx());
let tcx = cx.tcx;
let sig = substs.generator_poly_sig(def_id, cx.tcx);
let env_region = ty::ReLateBound(ty::DebruijnIndex::new(1), ty::BrEnv);
let env_ty = tcx.mk_mut_ref(tcx.mk_region(env_region), ty);

View file

@ -17,7 +17,7 @@ use rustc::middle::const_val::ConstEvalErr;
use debuginfo;
use base;
use monomorphize::{MonoItem, MonoItemExt};
use common::{CrateContext, val_ty};
use common::{CodegenCx, val_ty};
use declare;
use monomorphize::Instance;
use type_::Type;
@ -43,17 +43,17 @@ pub fn bitcast(val: ValueRef, ty: Type) -> ValueRef {
}
}
fn set_global_alignment(ccx: &CrateContext,
fn set_global_alignment(cx: &CodegenCx,
gv: ValueRef,
mut align: Align) {
// The target may require greater alignment for globals than the type does.
// Note: GCC and Clang also allow `__attribute__((aligned))` on variables,
// which can force it to be smaller. Rust doesn't support this yet.
if let Some(min) = ccx.sess().target.target.options.min_global_align {
if let Some(min) = cx.sess().target.target.options.min_global_align {
match ty::layout::Align::from_bits(min, min) {
Ok(min) => align = align.max(min),
Err(err) => {
ccx.sess().err(&format!("invalid minimum global alignment: {}", err));
cx.sess().err(&format!("invalid minimum global alignment: {}", err));
}
}
}
@ -62,30 +62,30 @@ fn set_global_alignment(ccx: &CrateContext,
}
}
pub fn addr_of_mut(ccx: &CrateContext,
pub fn addr_of_mut(cx: &CodegenCx,
cv: ValueRef,
align: Align,
kind: &str)
-> ValueRef {
unsafe {
let name = ccx.generate_local_symbol_name(kind);
let gv = declare::define_global(ccx, &name[..], val_ty(cv)).unwrap_or_else(||{
let name = cx.generate_local_symbol_name(kind);
let gv = declare::define_global(cx, &name[..], val_ty(cv)).unwrap_or_else(||{
bug!("symbol `{}` is already defined", name);
});
llvm::LLVMSetInitializer(gv, cv);
set_global_alignment(ccx, gv, align);
set_global_alignment(cx, gv, align);
llvm::LLVMRustSetLinkage(gv, llvm::Linkage::PrivateLinkage);
SetUnnamedAddr(gv, true);
gv
}
}
pub fn addr_of(ccx: &CrateContext,
pub fn addr_of(cx: &CodegenCx,
cv: ValueRef,
align: Align,
kind: &str)
-> ValueRef {
if let Some(&gv) = ccx.const_globals().borrow().get(&cv) {
if let Some(&gv) = cx.const_globals.borrow().get(&cv) {
unsafe {
// Upgrade the alignment in cases where the same constant is used with different
// alignment requirements
@ -96,42 +96,42 @@ pub fn addr_of(ccx: &CrateContext,
}
return gv;
}
let gv = addr_of_mut(ccx, cv, align, kind);
let gv = addr_of_mut(cx, cv, align, kind);
unsafe {
llvm::LLVMSetGlobalConstant(gv, True);
}
ccx.const_globals().borrow_mut().insert(cv, gv);
cx.const_globals.borrow_mut().insert(cv, gv);
gv
}
pub fn get_static(ccx: &CrateContext, def_id: DefId) -> ValueRef {
let instance = Instance::mono(ccx.tcx(), def_id);
if let Some(&g) = ccx.instances().borrow().get(&instance) {
pub fn get_static(cx: &CodegenCx, def_id: DefId) -> ValueRef {
let instance = Instance::mono(cx.tcx, def_id);
if let Some(&g) = cx.instances.borrow().get(&instance) {
return g;
}
let ty = instance.ty(ccx.tcx());
let g = if let Some(id) = ccx.tcx().hir.as_local_node_id(def_id) {
let ty = instance.ty(cx.tcx);
let g = if let Some(id) = cx.tcx.hir.as_local_node_id(def_id) {
let llty = ccx.layout_of(ty).llvm_type(ccx);
let (g, attrs) = match ccx.tcx().hir.get(id) {
let llty = cx.layout_of(ty).llvm_type(cx);
let (g, attrs) = match cx.tcx.hir.get(id) {
hir_map::NodeItem(&hir::Item {
ref attrs, span, node: hir::ItemStatic(..), ..
}) => {
let sym = MonoItem::Static(id).symbol_name(ccx.tcx());
let sym = MonoItem::Static(id).symbol_name(cx.tcx);
let defined_in_current_codegen_unit = ccx.codegen_unit()
let defined_in_current_codegen_unit = cx.codegen_unit
.items()
.contains_key(&MonoItem::Static(id));
assert!(!defined_in_current_codegen_unit);
if declare::get_declared_value(ccx, &sym[..]).is_some() {
if declare::get_declared_value(cx, &sym[..]).is_some() {
span_bug!(span, "trans: Conflicting symbol names for static?");
}
let g = declare::define_global(ccx, &sym[..], llty).unwrap();
let g = declare::define_global(cx, &sym[..], llty).unwrap();
if !ccx.tcx().is_exported_symbol(def_id) {
if !cx.tcx.is_exported_symbol(def_id) {
unsafe {
llvm::LLVMRustSetVisibility(g, llvm::Visibility::Hidden);
}
@ -143,7 +143,7 @@ pub fn get_static(ccx: &CrateContext, def_id: DefId) -> ValueRef {
hir_map::NodeForeignItem(&hir::ForeignItem {
ref attrs, span, node: hir::ForeignItemStatic(..), ..
}) => {
let sym = ccx.tcx().symbol_name(instance);
let sym = cx.tcx.symbol_name(instance);
let g = if let Some(name) =
attr::first_attr_value_str_by_name(&attrs, "linkage") {
// If this is a static with a linkage specified, then we need to handle
@ -154,18 +154,18 @@ pub fn get_static(ccx: &CrateContext, def_id: DefId) -> ValueRef {
let linkage = match base::linkage_by_name(&name.as_str()) {
Some(linkage) => linkage,
None => {
ccx.sess().span_fatal(span, "invalid linkage specified");
cx.sess().span_fatal(span, "invalid linkage specified");
}
};
let llty2 = match ty.sty {
ty::TyRawPtr(ref mt) => ccx.layout_of(mt.ty).llvm_type(ccx),
ty::TyRawPtr(ref mt) => cx.layout_of(mt.ty).llvm_type(cx),
_ => {
ccx.sess().span_fatal(span, "must have type `*const T` or `*mut T`");
cx.sess().span_fatal(span, "must have type `*const T` or `*mut T`");
}
};
unsafe {
// Declare a symbol `foo` with the desired linkage.
let g1 = declare::declare_global(ccx, &sym, llty2);
let g1 = declare::declare_global(cx, &sym, llty2);
llvm::LLVMRustSetLinkage(g1, base::linkage_to_llvm(linkage));
// Declare an internal global `extern_with_linkage_foo` which
@ -176,8 +176,8 @@ pub fn get_static(ccx: &CrateContext, def_id: DefId) -> ValueRef {
// zero.
let mut real_name = "_rust_extern_with_linkage_".to_string();
real_name.push_str(&sym);
let g2 = declare::define_global(ccx, &real_name, llty).unwrap_or_else(||{
ccx.sess().span_fatal(span,
let g2 = declare::define_global(cx, &real_name, llty).unwrap_or_else(||{
cx.sess().span_fatal(span,
&format!("symbol `{}` is already defined", &sym))
});
llvm::LLVMRustSetLinkage(g2, llvm::Linkage::InternalLinkage);
@ -186,7 +186,7 @@ pub fn get_static(ccx: &CrateContext, def_id: DefId) -> ValueRef {
}
} else {
// Generate an external declaration.
declare::declare_global(ccx, &sym, llty)
declare::declare_global(cx, &sym, llty)
};
(g, attrs)
@ -197,29 +197,29 @@ pub fn get_static(ccx: &CrateContext, def_id: DefId) -> ValueRef {
for attr in attrs {
if attr.check_name("thread_local") {
llvm::set_thread_local_mode(g, ccx.tls_model());
llvm::set_thread_local_mode(g, cx.tls_model);
}
}
g
} else {
let sym = ccx.tcx().symbol_name(instance);
let sym = cx.tcx.symbol_name(instance);
// FIXME(nagisa): perhaps the map of externs could be offloaded to llvm somehow?
// FIXME(nagisa): investigate whether it can be changed into define_global
let g = declare::declare_global(ccx, &sym, ccx.layout_of(ty).llvm_type(ccx));
let g = declare::declare_global(cx, &sym, cx.layout_of(ty).llvm_type(cx));
// Thread-local statics in some other crate need to *always* be linked
// against in a thread-local fashion, so we need to be sure to apply the
// thread-local attribute locally if it was present remotely. If we
// don't do this then linker errors can be generated where the linker
// complains that one object files has a thread local version of the
// symbol and another one doesn't.
for attr in ccx.tcx().get_attrs(def_id).iter() {
for attr in cx.tcx.get_attrs(def_id).iter() {
if attr.check_name("thread_local") {
llvm::set_thread_local_mode(g, ccx.tls_model());
llvm::set_thread_local_mode(g, cx.tls_model);
}
}
if ccx.use_dll_storage_attrs() && !ccx.tcx().is_foreign_item(def_id) {
if cx.use_dll_storage_attrs && !cx.tcx.is_foreign_item(def_id) {
// This item is external but not foreign, i.e. it originates from an external Rust
// crate. Since we don't know whether this crate will be linked dynamically or
// statically in the final application, we always mark such symbols as 'dllimport'.
@ -232,42 +232,42 @@ pub fn get_static(ccx: &CrateContext, def_id: DefId) -> ValueRef {
g
};
if ccx.use_dll_storage_attrs() && ccx.tcx().is_dllimport_foreign_item(def_id) {
if cx.use_dll_storage_attrs && cx.tcx.is_dllimport_foreign_item(def_id) {
// For foreign (native) libs we know the exact storage type to use.
unsafe {
llvm::LLVMSetDLLStorageClass(g, llvm::DLLStorageClass::DllImport);
}
}
ccx.instances().borrow_mut().insert(instance, g);
ccx.statics().borrow_mut().insert(g, def_id);
cx.instances.borrow_mut().insert(instance, g);
cx.statics.borrow_mut().insert(g, def_id);
g
}
pub fn trans_static<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
pub fn trans_static<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
m: hir::Mutability,
id: ast::NodeId,
attrs: &[ast::Attribute])
-> Result<ValueRef, ConstEvalErr<'tcx>> {
unsafe {
let def_id = ccx.tcx().hir.local_def_id(id);
let g = get_static(ccx, def_id);
let def_id = cx.tcx.hir.local_def_id(id);
let g = get_static(cx, def_id);
let v = ::mir::trans_static_initializer(ccx, def_id)?;
let v = ::mir::trans_static_initializer(cx, def_id)?;
// boolean SSA values are i1, but they have to be stored in i8 slots,
// otherwise some LLVM optimization passes don't work as expected
let mut val_llty = val_ty(v);
let v = if val_llty == Type::i1(ccx) {
val_llty = Type::i8(ccx);
let v = if val_llty == Type::i1(cx) {
val_llty = Type::i8(cx);
llvm::LLVMConstZExt(v, val_llty.to_ref())
} else {
v
};
let instance = Instance::mono(ccx.tcx(), def_id);
let ty = instance.ty(ccx.tcx());
let llty = ccx.layout_of(ty).llvm_type(ccx);
let instance = Instance::mono(cx.tcx, def_id);
let ty = instance.ty(cx.tcx);
let llty = cx.layout_of(ty).llvm_type(cx);
let g = if val_llty == llty {
g
} else {
@ -282,7 +282,7 @@ pub fn trans_static<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
let visibility = llvm::LLVMRustGetVisibility(g);
let new_g = llvm::LLVMRustGetOrInsertGlobal(
ccx.llmod(), name_string.as_ptr(), val_llty.to_ref());
cx.llmod, name_string.as_ptr(), val_llty.to_ref());
llvm::LLVMRustSetLinkage(new_g, linkage);
llvm::LLVMRustSetVisibility(new_g, visibility);
@ -290,32 +290,32 @@ pub fn trans_static<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
// To avoid breaking any invariants, we leave around the old
// global for the moment; we'll replace all references to it
// with the new global later. (See base::trans_crate.)
ccx.statics_to_rauw().borrow_mut().push((g, new_g));
cx.statics_to_rauw.borrow_mut().push((g, new_g));
new_g
};
set_global_alignment(ccx, g, ccx.align_of(ty));
set_global_alignment(cx, g, cx.align_of(ty));
llvm::LLVMSetInitializer(g, v);
// As an optimization, all shared statics which do not have interior
// mutability are placed into read-only memory.
if m != hir::MutMutable {
if ccx.shared().type_is_freeze(ty) {
if cx.type_is_freeze(ty) {
llvm::LLVMSetGlobalConstant(g, llvm::True);
}
}
debuginfo::create_global_var_metadata(ccx, id, g);
debuginfo::create_global_var_metadata(cx, id, g);
if attr::contains_name(attrs, "thread_local") {
llvm::set_thread_local_mode(g, ccx.tls_model());
llvm::set_thread_local_mode(g, cx.tls_model);
}
base::set_link_section(ccx, g, attrs);
base::set_link_section(cx, g, attrs);
if attr::contains_name(attrs, "used") {
// This static will be stored in the llvm.used variable which is an array of i8*
let cast = llvm::LLVMConstPointerCast(g, Type::i8p(ccx).to_ref());
ccx.used_statics().borrow_mut().push(cast);
let cast = llvm::LLVMConstPointerCast(g, Type::i8p(cx).to_ref());
cx.used_statics.borrow_mut().push(cast);
}
Ok(g)

View file

@ -11,10 +11,9 @@
use common;
use llvm;
use llvm::{ContextRef, ModuleRef, ValueRef};
use rustc::dep_graph::{DepGraph, DepGraphSafe};
use rustc::dep_graph::DepGraphSafe;
use rustc::hir;
use rustc::hir::def_id::DefId;
use rustc::ich::StableHashingContext;
use rustc::traits;
use debuginfo;
use callee;
@ -28,7 +27,6 @@ use type_of::PointeeInfo;
use rustc_data_structures::base_n;
use rustc::mir::mono::Stats;
use rustc_data_structures::stable_hasher::StableHashingContextProvider;
use rustc::session::config::{self, NoDebugInfo};
use rustc::session::Session;
use rustc::ty::layout::{LayoutError, LayoutOf, Size, TyLayout};
@ -41,38 +39,30 @@ use std::ptr;
use std::iter;
use std::str;
use std::sync::Arc;
use std::marker::PhantomData;
use syntax::symbol::InternedString;
use abi::Abi;
/// The shared portion of a `CrateContext`. There is one `SharedCrateContext`
/// per crate. The data here is shared between all compilation units of the
/// crate, so it must not contain references to any LLVM data structures
/// (aside from metadata-related ones).
pub struct SharedCrateContext<'a, 'tcx: 'a> {
tcx: TyCtxt<'a, 'tcx, 'tcx>,
check_overflow: bool,
use_dll_storage_attrs: bool,
tls_model: llvm::ThreadLocalMode,
}
/// There is one `CodegenCx` per compilation unit. Each one has its own LLVM
/// `ContextRef` so that several compilation units may be optimized in parallel.
/// All other LLVM data structures in the `CodegenCx` are tied to that `ContextRef`.
pub struct CodegenCx<'a, 'tcx: 'a> {
pub tcx: TyCtxt<'a, 'tcx, 'tcx>,
pub check_overflow: bool,
pub use_dll_storage_attrs: bool,
pub tls_model: llvm::ThreadLocalMode,
/// The local portion of a `CrateContext`. There is one `LocalCrateContext`
/// per compilation unit. Each one has its own LLVM `ContextRef` so that
/// several compilation units may be optimized in parallel. All other LLVM
/// data structures in the `LocalCrateContext` are tied to that `ContextRef`.
pub struct LocalCrateContext<'a, 'tcx: 'a> {
llmod: ModuleRef,
llcx: ContextRef,
stats: RefCell<Stats>,
codegen_unit: Arc<CodegenUnit<'tcx>>,
pub llmod: ModuleRef,
pub llcx: ContextRef,
pub stats: RefCell<Stats>,
pub codegen_unit: Arc<CodegenUnit<'tcx>>,
/// Cache instances of monomorphic and polymorphic items
instances: RefCell<FxHashMap<Instance<'tcx>, ValueRef>>,
pub instances: RefCell<FxHashMap<Instance<'tcx>, ValueRef>>,
/// Cache generated vtables
vtables: RefCell<FxHashMap<(Ty<'tcx>,
pub vtables: RefCell<FxHashMap<(Ty<'tcx>,
Option<ty::PolyExistentialTraitRef<'tcx>>), ValueRef>>,
/// Cache of constant strings,
const_cstr_cache: RefCell<FxHashMap<InternedString, ValueRef>>,
pub const_cstr_cache: RefCell<FxHashMap<InternedString, ValueRef>>,
/// Reverse-direction for const ptrs cast from globals.
/// Key is a ValueRef holding a *T,
@ -82,72 +72,42 @@ pub struct LocalCrateContext<'a, 'tcx: 'a> {
/// when we ptrcast, and we have to ptrcast during translation
/// of a [T] const because we form a slice, a (*T,usize) pair, not
/// a pointer to an LLVM array type. Similar for trait objects.
const_unsized: RefCell<FxHashMap<ValueRef, ValueRef>>,
pub const_unsized: RefCell<FxHashMap<ValueRef, ValueRef>>,
/// Cache of emitted const globals (value -> global)
const_globals: RefCell<FxHashMap<ValueRef, ValueRef>>,
pub const_globals: RefCell<FxHashMap<ValueRef, ValueRef>>,
/// Mapping from static definitions to their DefId's.
statics: RefCell<FxHashMap<ValueRef, DefId>>,
pub statics: RefCell<FxHashMap<ValueRef, DefId>>,
/// List of globals for static variables which need to be passed to the
/// LLVM function ReplaceAllUsesWith (RAUW) when translation is complete.
/// (We have to make sure we don't invalidate any ValueRefs referring
/// to constants.)
statics_to_rauw: RefCell<Vec<(ValueRef, ValueRef)>>,
pub statics_to_rauw: RefCell<Vec<(ValueRef, ValueRef)>>,
/// Statics that will be placed in the llvm.used variable
/// See http://llvm.org/docs/LangRef.html#the-llvm-used-global-variable for details
used_statics: RefCell<Vec<ValueRef>>,
pub used_statics: RefCell<Vec<ValueRef>>,
lltypes: RefCell<FxHashMap<(Ty<'tcx>, Option<usize>), Type>>,
scalar_lltypes: RefCell<FxHashMap<Ty<'tcx>, Type>>,
pointee_infos: RefCell<FxHashMap<(Ty<'tcx>, Size), Option<PointeeInfo>>>,
isize_ty: Type,
pub lltypes: RefCell<FxHashMap<(Ty<'tcx>, Option<usize>), Type>>,
pub scalar_lltypes: RefCell<FxHashMap<Ty<'tcx>, Type>>,
pub pointee_infos: RefCell<FxHashMap<(Ty<'tcx>, Size), Option<PointeeInfo>>>,
pub isize_ty: Type,
dbg_cx: Option<debuginfo::CrateDebugContext<'tcx>>,
pub dbg_cx: Option<debuginfo::CrateDebugContext<'tcx>>,
eh_personality: Cell<Option<ValueRef>>,
eh_unwind_resume: Cell<Option<ValueRef>>,
rust_try_fn: Cell<Option<ValueRef>>,
pub rust_try_fn: Cell<Option<ValueRef>>,
intrinsics: RefCell<FxHashMap<&'static str, ValueRef>>,
/// A counter that is used for generating local symbol names
local_gen_sym_counter: Cell<usize>,
/// A placeholder so we can add lifetimes
placeholder: PhantomData<&'a ()>,
}
/// A CrateContext value binds together one LocalCrateContext with the
/// SharedCrateContext. It exists as a convenience wrapper, so we don't have to
/// pass around (SharedCrateContext, LocalCrateContext) tuples all over trans.
pub struct CrateContext<'a, 'tcx: 'a> {
shared: &'a SharedCrateContext<'a, 'tcx>,
local_ccx: &'a LocalCrateContext<'a, 'tcx>,
}
impl<'a, 'tcx> CrateContext<'a, 'tcx> {
pub fn new(shared: &'a SharedCrateContext<'a, 'tcx>,
local_ccx: &'a LocalCrateContext<'a, 'tcx>)
-> Self {
CrateContext { shared, local_ccx }
}
}
impl<'a, 'tcx> DepGraphSafe for CrateContext<'a, 'tcx> {
}
impl<'a, 'tcx> DepGraphSafe for SharedCrateContext<'a, 'tcx> {
}
impl<'a, 'tcx> StableHashingContextProvider for SharedCrateContext<'a, 'tcx> {
type ContextType = StableHashingContext<'tcx>;
fn create_stable_hashing_context(&self) -> Self::ContextType {
self.tcx.create_stable_hashing_context()
}
impl<'a, 'tcx> DepGraphSafe for CodegenCx<'a, 'tcx> {
}
pub fn get_reloc_model(sess: &Session) -> llvm::RelocMode {
@ -252,8 +212,11 @@ pub unsafe fn create_context_and_module(sess: &Session, mod_name: &str) -> (Cont
(llcx, llmod)
}
impl<'b, 'tcx> SharedCrateContext<'b, 'tcx> {
pub fn new(tcx: TyCtxt<'b, 'tcx, 'tcx>) -> SharedCrateContext<'b, 'tcx> {
impl<'a, 'tcx> CodegenCx<'a, 'tcx> {
pub fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>,
codegen_unit: Arc<CodegenUnit<'tcx>>,
llmod_id: &str)
-> CodegenCx<'a, 'tcx> {
// An interesting part of Windows which MSVC forces our hand on (and
// apparently MinGW didn't) is the usage of `dllimport` and `dllexport`
// attributes in LLVM IR as well as native dependencies (in C these
@ -303,78 +266,25 @@ impl<'b, 'tcx> SharedCrateContext<'b, 'tcx> {
let tls_model = get_tls_model(&tcx.sess);
SharedCrateContext {
tcx,
check_overflow,
use_dll_storage_attrs,
tls_model,
}
}
pub fn type_needs_drop(&self, ty: Ty<'tcx>) -> bool {
common::type_needs_drop(self.tcx, ty)
}
pub fn type_is_sized(&self, ty: Ty<'tcx>) -> bool {
common::type_is_sized(self.tcx, ty)
}
pub fn type_is_freeze(&self, ty: Ty<'tcx>) -> bool {
common::type_is_freeze(self.tcx, ty)
}
pub fn type_has_metadata(&self, ty: Ty<'tcx>) -> bool {
use syntax_pos::DUMMY_SP;
if ty.is_sized(self.tcx, ty::ParamEnv::empty(traits::Reveal::All), DUMMY_SP) {
return false;
}
let tail = self.tcx.struct_tail(ty);
match tail.sty {
ty::TyForeign(..) => false,
ty::TyStr | ty::TySlice(..) | ty::TyDynamic(..) => true,
_ => bug!("unexpected unsized tail: {:?}", tail.sty),
}
}
pub fn tcx(&self) -> TyCtxt<'b, 'tcx, 'tcx> {
self.tcx
}
pub fn sess<'a>(&'a self) -> &'a Session {
&self.tcx.sess
}
pub fn dep_graph<'a>(&'a self) -> &'a DepGraph {
&self.tcx.dep_graph
}
pub fn use_dll_storage_attrs(&self) -> bool {
self.use_dll_storage_attrs
}
}
impl<'a, 'tcx> LocalCrateContext<'a, 'tcx> {
pub fn new(shared: &SharedCrateContext<'a, 'tcx>,
codegen_unit: Arc<CodegenUnit<'tcx>>,
llmod_id: &str)
-> LocalCrateContext<'a, 'tcx> {
unsafe {
let (llcx, llmod) = create_context_and_module(&shared.tcx.sess,
let (llcx, llmod) = create_context_and_module(&tcx.sess,
&llmod_id[..]);
let dbg_cx = if shared.tcx.sess.opts.debuginfo != NoDebugInfo {
let dbg_cx = if tcx.sess.opts.debuginfo != NoDebugInfo {
let dctx = debuginfo::CrateDebugContext::new(llmod);
debuginfo::metadata::compile_unit_metadata(shared,
debuginfo::metadata::compile_unit_metadata(tcx,
codegen_unit.name(),
&dctx,
shared.tcx.sess);
&dctx);
Some(dctx)
} else {
None
};
let local_ccx = LocalCrateContext {
let mut cx = CodegenCx {
tcx,
check_overflow,
use_dll_storage_attrs,
tls_model,
llmod,
llcx,
stats: RefCell::new(Stats::default()),
@ -397,41 +307,9 @@ impl<'a, 'tcx> LocalCrateContext<'a, 'tcx> {
rust_try_fn: Cell::new(None),
intrinsics: RefCell::new(FxHashMap()),
local_gen_sym_counter: Cell::new(0),
placeholder: PhantomData,
};
let (isize_ty, mut local_ccx) = {
// Do a little dance to create a dummy CrateContext, so we can
// create some things in the LLVM module of this codegen unit
let mut local_ccxs = vec![local_ccx];
let isize_ty = {
let dummy_ccx = LocalCrateContext::dummy_ccx(shared,
local_ccxs.as_mut_slice());
Type::isize(&dummy_ccx)
};
(isize_ty, local_ccxs.pop().unwrap())
};
local_ccx.isize_ty = isize_ty;
local_ccx
}
}
/// Create a dummy `CrateContext` from `self` and the provided
/// `SharedCrateContext`. This is somewhat dangerous because `self` may
/// not be fully initialized.
///
/// This is used in the `LocalCrateContext` constructor to allow calling
/// functions that expect a complete `CrateContext`, even before the local
/// portion is fully initialized and attached to the `SharedCrateContext`.
fn dummy_ccx(shared: &'a SharedCrateContext<'a, 'tcx>,
local_ccxs: &'a [LocalCrateContext<'a, 'tcx>])
-> CrateContext<'a, 'tcx> {
assert!(local_ccxs.len() == 1);
CrateContext {
shared,
local_ccx: &local_ccxs[0]
cx.isize_ty = Type::isize(&cx);
cx
}
}
@ -440,25 +318,13 @@ impl<'a, 'tcx> LocalCrateContext<'a, 'tcx> {
}
}
impl<'b, 'tcx> CrateContext<'b, 'tcx> {
pub fn shared(&self) -> &'b SharedCrateContext<'b, 'tcx> {
self.shared
}
fn local(&self) -> &'b LocalCrateContext<'b, 'tcx> {
self.local_ccx
}
pub fn tcx(&self) -> TyCtxt<'b, 'tcx, 'tcx> {
self.shared.tcx
}
impl<'b, 'tcx> CodegenCx<'b, 'tcx> {
pub fn sess<'a>(&'a self) -> &'a Session {
&self.shared.tcx.sess
&self.tcx.sess
}
pub fn get_intrinsic(&self, key: &str) -> ValueRef {
if let Some(v) = self.intrinsics().borrow().get(key).cloned() {
if let Some(v) = self.intrinsics.borrow().get(key).cloned() {
return v;
}
match declare_intrinsic(self, key) {
@ -467,106 +333,11 @@ impl<'b, 'tcx> CrateContext<'b, 'tcx> {
}
}
pub fn llmod(&self) -> ModuleRef {
self.local().llmod
}
pub fn llcx(&self) -> ContextRef {
self.local().llcx
}
pub fn codegen_unit(&self) -> &CodegenUnit<'tcx> {
&self.local().codegen_unit
}
pub fn td(&self) -> llvm::TargetDataRef {
unsafe { llvm::LLVMRustGetModuleDataLayout(self.llmod()) }
}
pub fn instances<'a>(&'a self) -> &'a RefCell<FxHashMap<Instance<'tcx>, ValueRef>> {
&self.local().instances
}
pub fn vtables<'a>(&'a self)
-> &'a RefCell<FxHashMap<(Ty<'tcx>,
Option<ty::PolyExistentialTraitRef<'tcx>>), ValueRef>> {
&self.local().vtables
}
pub fn const_cstr_cache<'a>(&'a self) -> &'a RefCell<FxHashMap<InternedString, ValueRef>> {
&self.local().const_cstr_cache
}
pub fn const_unsized<'a>(&'a self) -> &'a RefCell<FxHashMap<ValueRef, ValueRef>> {
&self.local().const_unsized
}
pub fn const_globals<'a>(&'a self) -> &'a RefCell<FxHashMap<ValueRef, ValueRef>> {
&self.local().const_globals
}
pub fn statics<'a>(&'a self) -> &'a RefCell<FxHashMap<ValueRef, DefId>> {
&self.local().statics
}
pub fn statics_to_rauw<'a>(&'a self) -> &'a RefCell<Vec<(ValueRef, ValueRef)>> {
&self.local().statics_to_rauw
}
pub fn used_statics<'a>(&'a self) -> &'a RefCell<Vec<ValueRef>> {
&self.local().used_statics
}
pub fn lltypes<'a>(&'a self) -> &'a RefCell<FxHashMap<(Ty<'tcx>, Option<usize>), Type>> {
&self.local().lltypes
}
pub fn scalar_lltypes<'a>(&'a self) -> &'a RefCell<FxHashMap<Ty<'tcx>, Type>> {
&self.local().scalar_lltypes
}
pub fn pointee_infos<'a>(&'a self)
-> &'a RefCell<FxHashMap<(Ty<'tcx>, Size), Option<PointeeInfo>>> {
&self.local().pointee_infos
}
pub fn stats<'a>(&'a self) -> &'a RefCell<Stats> {
&self.local().stats
}
pub fn isize_ty(&self) -> Type {
self.local().isize_ty
}
pub fn dbg_cx<'a>(&'a self) -> &'a Option<debuginfo::CrateDebugContext<'tcx>> {
&self.local().dbg_cx
}
pub fn rust_try_fn<'a>(&'a self) -> &'a Cell<Option<ValueRef>> {
&self.local().rust_try_fn
}
fn intrinsics<'a>(&'a self) -> &'a RefCell<FxHashMap<&'static str, ValueRef>> {
&self.local().intrinsics
}
pub fn check_overflow(&self) -> bool {
self.shared.check_overflow
}
pub fn use_dll_storage_attrs(&self) -> bool {
self.shared.use_dll_storage_attrs()
}
pub fn tls_model(&self) -> llvm::ThreadLocalMode {
self.shared.tls_model
}
/// Generate a new symbol name with the given prefix. This symbol name must
/// only be used for definitions with `internal` or `private` linkage.
pub fn generate_local_symbol_name(&self, prefix: &str) -> String {
let idx = self.local().local_gen_sym_counter.get();
self.local().local_gen_sym_counter.set(idx + 1);
let idx = self.local_gen_sym_counter.get();
self.local_gen_sym_counter.set(idx + 1);
// Include a '.' character, so there can be no accidental conflicts with
// user defined names
let mut name = String::with_capacity(prefix.len() + 6);
@ -597,10 +368,10 @@ impl<'b, 'tcx> CrateContext<'b, 'tcx> {
// `rust_eh_personality` function, but rather we wired it up to the
// CRT's custom personality function, which forces LLVM to consider
// landing pads as "landing pads for SEH".
if let Some(llpersonality) = self.local().eh_personality.get() {
if let Some(llpersonality) = self.eh_personality.get() {
return llpersonality
}
let tcx = self.tcx();
let tcx = self.tcx;
let llfn = match tcx.lang_items().eh_personality() {
Some(def_id) if !base::wants_msvc_seh(self.sess()) => {
callee::resolve_and_get_fn(self, def_id, tcx.intern_substs(&[]))
@ -615,7 +386,7 @@ impl<'b, 'tcx> CrateContext<'b, 'tcx> {
declare::declare_cfn(self, name, fty)
}
};
self.local().eh_personality.set(Some(llfn));
self.eh_personality.set(Some(llfn));
llfn
}
@ -623,12 +394,12 @@ impl<'b, 'tcx> CrateContext<'b, 'tcx> {
// otherwise declares it as an external function.
pub fn eh_unwind_resume(&self) -> ValueRef {
use attributes;
let unwresume = &self.local().eh_unwind_resume;
let unwresume = &self.eh_unwind_resume;
if let Some(llfn) = unwresume.get() {
return llfn;
}
let tcx = self.tcx();
let tcx = self.tcx;
assert!(self.sess().target.target.options.custom_unwind_resume);
if let Some(def_id) = tcx.lang_items().eh_unwind_resume() {
let llfn = callee::resolve_and_get_fn(self, def_id, tcx.intern_substs(&[]));
@ -649,33 +420,47 @@ impl<'b, 'tcx> CrateContext<'b, 'tcx> {
unwresume.set(Some(llfn));
llfn
}
pub fn type_needs_drop(&self, ty: Ty<'tcx>) -> bool {
common::type_needs_drop(self.tcx, ty)
}
pub fn type_is_sized(&self, ty: Ty<'tcx>) -> bool {
common::type_is_sized(self.tcx, ty)
}
pub fn type_is_freeze(&self, ty: Ty<'tcx>) -> bool {
common::type_is_freeze(self.tcx, ty)
}
pub fn type_has_metadata(&self, ty: Ty<'tcx>) -> bool {
use syntax_pos::DUMMY_SP;
if ty.is_sized(self.tcx, ty::ParamEnv::empty(traits::Reveal::All), DUMMY_SP) {
return false;
}
let tail = self.tcx.struct_tail(ty);
match tail.sty {
ty::TyForeign(..) => false,
ty::TyStr | ty::TySlice(..) | ty::TyDynamic(..) => true,
_ => bug!("unexpected unsized tail: {:?}", tail.sty),
}
}
}
impl<'a, 'tcx> ty::layout::HasDataLayout for &'a SharedCrateContext<'a, 'tcx> {
impl<'a, 'tcx> ty::layout::HasDataLayout for &'a CodegenCx<'a, 'tcx> {
fn data_layout(&self) -> &ty::layout::TargetDataLayout {
&self.tcx.data_layout
}
}
impl<'a, 'tcx> ty::layout::HasTyCtxt<'tcx> for &'a SharedCrateContext<'a, 'tcx> {
impl<'a, 'tcx> ty::layout::HasTyCtxt<'tcx> for &'a CodegenCx<'a, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'b, 'tcx, 'tcx> {
self.tcx
}
}
impl<'a, 'tcx> ty::layout::HasDataLayout for &'a CrateContext<'a, 'tcx> {
fn data_layout(&self) -> &ty::layout::TargetDataLayout {
&self.shared.tcx.data_layout
}
}
impl<'a, 'tcx> ty::layout::HasTyCtxt<'tcx> for &'a CrateContext<'a, 'tcx> {
fn tcx<'b>(&'b self) -> TyCtxt<'b, 'tcx, 'tcx> {
self.shared.tcx
}
}
impl<'a, 'tcx> LayoutOf<Ty<'tcx>> for &'a SharedCrateContext<'a, 'tcx> {
impl<'a, 'tcx> LayoutOf<Ty<'tcx>> for &'a CodegenCx<'a, 'tcx> {
type TyLayout = TyLayout<'tcx>;
fn layout_of(self, ty: Ty<'tcx>) -> Self::TyLayout {
@ -688,57 +473,48 @@ impl<'a, 'tcx> LayoutOf<Ty<'tcx>> for &'a SharedCrateContext<'a, 'tcx> {
}
}
impl<'a, 'tcx> LayoutOf<Ty<'tcx>> for &'a CrateContext<'a, 'tcx> {
type TyLayout = TyLayout<'tcx>;
fn layout_of(self, ty: Ty<'tcx>) -> Self::TyLayout {
self.shared.layout_of(ty)
}
}
/// Declare any llvm intrinsics that you might need
fn declare_intrinsic(ccx: &CrateContext, key: &str) -> Option<ValueRef> {
fn declare_intrinsic(cx: &CodegenCx, key: &str) -> Option<ValueRef> {
macro_rules! ifn {
($name:expr, fn() -> $ret:expr) => (
if key == $name {
let f = declare::declare_cfn(ccx, $name, Type::func(&[], &$ret));
let f = declare::declare_cfn(cx, $name, Type::func(&[], &$ret));
llvm::SetUnnamedAddr(f, false);
ccx.intrinsics().borrow_mut().insert($name, f.clone());
cx.intrinsics.borrow_mut().insert($name, f.clone());
return Some(f);
}
);
($name:expr, fn(...) -> $ret:expr) => (
if key == $name {
let f = declare::declare_cfn(ccx, $name, Type::variadic_func(&[], &$ret));
let f = declare::declare_cfn(cx, $name, Type::variadic_func(&[], &$ret));
llvm::SetUnnamedAddr(f, false);
ccx.intrinsics().borrow_mut().insert($name, f.clone());
cx.intrinsics.borrow_mut().insert($name, f.clone());
return Some(f);
}
);
($name:expr, fn($($arg:expr),*) -> $ret:expr) => (
if key == $name {
let f = declare::declare_cfn(ccx, $name, Type::func(&[$($arg),*], &$ret));
let f = declare::declare_cfn(cx, $name, Type::func(&[$($arg),*], &$ret));
llvm::SetUnnamedAddr(f, false);
ccx.intrinsics().borrow_mut().insert($name, f.clone());
cx.intrinsics.borrow_mut().insert($name, f.clone());
return Some(f);
}
);
}
macro_rules! mk_struct {
($($field_ty:expr),*) => (Type::struct_(ccx, &[$($field_ty),*], false))
($($field_ty:expr),*) => (Type::struct_(cx, &[$($field_ty),*], false))
}
let i8p = Type::i8p(ccx);
let void = Type::void(ccx);
let i1 = Type::i1(ccx);
let t_i8 = Type::i8(ccx);
let t_i16 = Type::i16(ccx);
let t_i32 = Type::i32(ccx);
let t_i64 = Type::i64(ccx);
let t_i128 = Type::i128(ccx);
let t_f32 = Type::f32(ccx);
let t_f64 = Type::f64(ccx);
let i8p = Type::i8p(cx);
let void = Type::void(cx);
let i1 = Type::i1(cx);
let t_i8 = Type::i8(cx);
let t_i16 = Type::i16(cx);
let t_i32 = Type::i32(cx);
let t_i64 = Type::i64(cx);
let t_i128 = Type::i128(cx);
let t_f32 = Type::f32(cx);
let t_f64 = Type::f64(cx);
ifn!("llvm.memcpy.p0i8.p0i8.i16", fn(i8p, i8p, t_i16, t_i32, i1) -> void);
ifn!("llvm.memcpy.p0i8.p0i8.i32", fn(i8p, i8p, t_i32, t_i32, i1) -> void);
@ -870,9 +646,9 @@ fn declare_intrinsic(ccx: &CrateContext, key: &str) -> Option<ValueRef> {
ifn!("llvm.assume", fn(i1) -> void);
ifn!("llvm.prefetch", fn(i8p, t_i32, t_i32, t_i32) -> void);
if ccx.sess().opts.debuginfo != NoDebugInfo {
ifn!("llvm.dbg.declare", fn(Type::metadata(ccx), Type::metadata(ccx)) -> void);
ifn!("llvm.dbg.value", fn(Type::metadata(ccx), t_i64, Type::metadata(ccx)) -> void);
if cx.sess().opts.debuginfo != NoDebugInfo {
ifn!("llvm.dbg.declare", fn(Type::metadata(cx), Type::metadata(cx)) -> void);
ifn!("llvm.dbg.value", fn(Type::metadata(cx), t_i64, Type::metadata(cx)) -> void);
}
return None;
}

View file

@ -14,7 +14,7 @@ use super::utils::{DIB, span_start};
use llvm;
use llvm::debuginfo::DIScope;
use common::CrateContext;
use common::CodegenCx;
use rustc::mir::{Mir, VisibilityScope};
use libc::c_uint;
@ -44,7 +44,7 @@ impl MirDebugScope {
/// Produce DIScope DIEs for each MIR Scope which has variables defined in it.
/// If debuginfo is disabled, the returned vector is empty.
pub fn create_mir_scopes(ccx: &CrateContext, mir: &Mir, debug_context: &FunctionDebugContext)
pub fn create_mir_scopes(cx: &CodegenCx, mir: &Mir, debug_context: &FunctionDebugContext)
-> IndexVec<VisibilityScope, MirDebugScope> {
let null_scope = MirDebugScope {
scope_metadata: ptr::null_mut(),
@ -71,13 +71,13 @@ pub fn create_mir_scopes(ccx: &CrateContext, mir: &Mir, debug_context: &Function
// Instantiate all scopes.
for idx in 0..mir.visibility_scopes.len() {
let scope = VisibilityScope::new(idx);
make_mir_scope(ccx, &mir, &has_variables, debug_context, scope, &mut scopes);
make_mir_scope(cx, &mir, &has_variables, debug_context, scope, &mut scopes);
}
scopes
}
fn make_mir_scope(ccx: &CrateContext,
fn make_mir_scope(cx: &CodegenCx,
mir: &Mir,
has_variables: &BitVector,
debug_context: &FunctionDebugContextData,
@ -89,11 +89,11 @@ fn make_mir_scope(ccx: &CrateContext,
let scope_data = &mir.visibility_scopes[scope];
let parent_scope = if let Some(parent) = scope_data.parent_scope {
make_mir_scope(ccx, mir, has_variables, debug_context, parent, scopes);
make_mir_scope(cx, mir, has_variables, debug_context, parent, scopes);
scopes[parent]
} else {
// The root is the function itself.
let loc = span_start(ccx, mir.span);
let loc = span_start(cx, mir.span);
scopes[scope] = MirDebugScope {
scope_metadata: debug_context.fn_metadata,
file_start_pos: loc.file.start_pos,
@ -115,14 +115,14 @@ fn make_mir_scope(ccx: &CrateContext,
}
}
let loc = span_start(ccx, scope_data.span);
let file_metadata = file_metadata(ccx,
let loc = span_start(cx, scope_data.span);
let file_metadata = file_metadata(cx,
&loc.file.name,
debug_context.defining_crate);
let scope_metadata = unsafe {
llvm::LLVMRustDIBuilderCreateLexicalBlock(
DIB(ccx),
DIB(cx),
parent_scope.scope_metadata,
file_metadata,
loc.line as c_uint,

View file

@ -32,7 +32,7 @@
//! The public API of the module is a set of functions that will insert the
//! correct metadata into the LLVM IR when called with the right parameters.
//! The module is thus driven from an outside client with functions like
//! `debuginfo::create_local_var_metadata(bcx: block, local: &ast::local)`.
//! `debuginfo::create_local_var_metadata(bx: block, local: &ast::local)`.
//!
//! Internally the module will try to reuse already created metadata by
//! utilizing a cache. The way to get a shared metadata node when needed is
@ -44,8 +44,8 @@
//! that exact file path.
//!
//! All private state used by the module is stored within either the
//! CrateDebugContext struct (owned by the CrateContext) or the
//! FunctionDebugContext (owned by the MirContext).
//! CrateDebugContext struct (owned by the CodegenCx) or the
//! FunctionDebugContext (owned by the FunctionCx).
//!
//! This file consists of three conceptual sections:
//! 1. The public interface of the module

View file

@ -12,7 +12,7 @@
use llvm;
use common::{C_bytes, CrateContext, C_i32};
use common::{C_bytes, CodegenCx, C_i32};
use builder::Builder;
use declare;
use type_::Type;
@ -24,14 +24,14 @@ use syntax::attr;
/// Inserts a side-effect free instruction sequence that makes sure that the
/// .debug_gdb_scripts global is referenced, so it isn't removed by the linker.
pub fn insert_reference_to_gdb_debug_scripts_section_global(ccx: &CrateContext, builder: &Builder) {
if needs_gdb_debug_scripts_section(ccx) {
let gdb_debug_scripts_section_global = get_or_insert_gdb_debug_scripts_section_global(ccx);
pub fn insert_reference_to_gdb_debug_scripts_section_global(bx: &Builder) {
if needs_gdb_debug_scripts_section(bx.cx) {
let gdb_debug_scripts_section = get_or_insert_gdb_debug_scripts_section_global(bx.cx);
// Load just the first byte as that's all that's necessary to force
// LLVM to keep around the reference to the global.
let indices = [C_i32(ccx, 0), C_i32(ccx, 0)];
let element = builder.inbounds_gep(gdb_debug_scripts_section_global, &indices);
let volative_load_instruction = builder.volatile_load(element);
let indices = [C_i32(bx.cx, 0), C_i32(bx.cx, 0)];
let element = bx.inbounds_gep(gdb_debug_scripts_section, &indices);
let volative_load_instruction = bx.volatile_load(element);
unsafe {
llvm::LLVMSetAlignment(volative_load_instruction, 1);
}
@ -40,13 +40,13 @@ pub fn insert_reference_to_gdb_debug_scripts_section_global(ccx: &CrateContext,
/// Allocates the global variable responsible for the .debug_gdb_scripts binary
/// section.
pub fn get_or_insert_gdb_debug_scripts_section_global(ccx: &CrateContext)
pub fn get_or_insert_gdb_debug_scripts_section_global(cx: &CodegenCx)
-> llvm::ValueRef {
let c_section_var_name = "__rustc_debug_gdb_scripts_section__\0";
let section_var_name = &c_section_var_name[..c_section_var_name.len()-1];
let section_var = unsafe {
llvm::LLVMGetNamedGlobal(ccx.llmod(),
llvm::LLVMGetNamedGlobal(cx.llmod,
c_section_var_name.as_ptr() as *const _)
};
@ -55,15 +55,15 @@ pub fn get_or_insert_gdb_debug_scripts_section_global(ccx: &CrateContext)
let section_contents = b"\x01gdb_load_rust_pretty_printers.py\0";
unsafe {
let llvm_type = Type::array(&Type::i8(ccx),
let llvm_type = Type::array(&Type::i8(cx),
section_contents.len() as u64);
let section_var = declare::define_global(ccx, section_var_name,
let section_var = declare::define_global(cx, section_var_name,
llvm_type).unwrap_or_else(||{
bug!("symbol `{}` is already defined", section_var_name)
});
llvm::LLVMSetSection(section_var, section_name.as_ptr() as *const _);
llvm::LLVMSetInitializer(section_var, C_bytes(ccx, section_contents));
llvm::LLVMSetInitializer(section_var, C_bytes(cx, section_contents));
llvm::LLVMSetGlobalConstant(section_var, llvm::True);
llvm::LLVMSetUnnamedAddr(section_var, llvm::True);
llvm::LLVMRustSetLinkage(section_var, llvm::Linkage::LinkOnceODRLinkage);
@ -77,13 +77,13 @@ pub fn get_or_insert_gdb_debug_scripts_section_global(ccx: &CrateContext)
}
}
pub fn needs_gdb_debug_scripts_section(ccx: &CrateContext) -> bool {
pub fn needs_gdb_debug_scripts_section(cx: &CodegenCx) -> bool {
let omit_gdb_pretty_printer_section =
attr::contains_name(&ccx.tcx().hir.krate_attrs(),
attr::contains_name(&cx.tcx.hir.krate_attrs(),
"omit_gdb_pretty_printer_section");
!omit_gdb_pretty_printer_section &&
!ccx.sess().target.target.options.is_like_osx &&
!ccx.sess().target.target.options.is_like_windows &&
ccx.sess().opts.debuginfo != NoDebugInfo
!cx.sess().target.target.options.is_like_osx &&
!cx.sess().target.target.options.is_like_windows &&
cx.sess().opts.debuginfo != NoDebugInfo
}

View file

@ -18,7 +18,6 @@ use super::namespace::mangled_name_of_item;
use super::type_names::compute_debuginfo_type_name;
use super::{CrateDebugContext};
use abi;
use context::SharedCrateContext;
use llvm::{self, ValueRef};
use llvm::debuginfo::{DIType, DIFile, DIScope, DIDescriptor,
@ -30,10 +29,10 @@ use rustc::ty::fold::TypeVisitor;
use rustc::ty::util::TypeIdHasher;
use rustc::ich::Fingerprint;
use rustc::ty::Instance;
use common::CrateContext;
use rustc::ty::{self, AdtKind, Ty};
use common::CodegenCx;
use rustc::ty::{self, AdtKind, Ty, TyCtxt};
use rustc::ty::layout::{self, Align, LayoutOf, Size, TyLayout};
use rustc::session::{Session, config};
use rustc::session::config;
use rustc::util::nodemap::FxHashMap;
use rustc::util::common::path2cstr;
@ -134,7 +133,7 @@ impl<'tcx> TypeMap<'tcx> {
// Get the UniqueTypeId for the given type. If the UniqueTypeId for the given
// type has been requested before, this is just a table lookup. Otherwise an
// ID will be generated and stored for later lookup.
fn get_unique_type_id_of_type<'a>(&mut self, cx: &CrateContext<'a, 'tcx>,
fn get_unique_type_id_of_type<'a>(&mut self, cx: &CodegenCx<'a, 'tcx>,
type_: Ty<'tcx>) -> UniqueTypeId {
// Let's see if we already have something in the cache
match self.type_to_unique_id.get(&type_).cloned() {
@ -144,7 +143,7 @@ impl<'tcx> TypeMap<'tcx> {
// The hasher we are using to generate the UniqueTypeId. We want
// something that provides more than the 64 bits of the DefaultHasher.
let mut type_id_hasher = TypeIdHasher::<Fingerprint>::new(cx.tcx());
let mut type_id_hasher = TypeIdHasher::<Fingerprint>::new(cx.tcx);
type_id_hasher.visit_ty(type_);
let unique_type_id = type_id_hasher.finish().to_hex();
@ -158,7 +157,7 @@ impl<'tcx> TypeMap<'tcx> {
// types of their own, so they need special handling. We still need a
// UniqueTypeId for them, since to debuginfo they *are* real types.
fn get_unique_type_id_of_enum_variant<'a>(&mut self,
cx: &CrateContext<'a, 'tcx>,
cx: &CodegenCx<'a, 'tcx>,
enum_type: Ty<'tcx>,
variant_name: &str)
-> UniqueTypeId {
@ -187,7 +186,7 @@ enum RecursiveTypeDescription<'tcx> {
}
fn create_and_register_recursive_type_forward_declaration<'a, 'tcx>(
cx: &CrateContext<'a, 'tcx>,
cx: &CodegenCx<'a, 'tcx>,
unfinished_type: Ty<'tcx>,
unique_type_id: UniqueTypeId,
metadata_stub: DICompositeType,
@ -211,7 +210,7 @@ impl<'tcx> RecursiveTypeDescription<'tcx> {
// Finishes up the description of the type in question (mostly by providing
// descriptions of the fields of the given type) and returns the final type
// metadata.
fn finalize<'a>(&self, cx: &CrateContext<'a, 'tcx>) -> MetadataCreationResult {
fn finalize<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> MetadataCreationResult {
match *self {
FinalMetadata(metadata) => MetadataCreationResult::new(metadata, false),
UnfinishedMetadata {
@ -263,7 +262,7 @@ macro_rules! return_if_metadata_created_in_meantime {
)
}
fn fixed_vec_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn fixed_vec_metadata<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
unique_type_id: UniqueTypeId,
array_or_slice_type: Ty<'tcx>,
element_type: Ty<'tcx>,
@ -299,13 +298,13 @@ fn fixed_vec_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
return MetadataCreationResult::new(metadata, false);
}
fn vec_slice_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn vec_slice_metadata<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
slice_ptr_type: Ty<'tcx>,
element_type: Ty<'tcx>,
unique_type_id: UniqueTypeId,
span: Span)
-> MetadataCreationResult {
let data_ptr_type = cx.tcx().mk_imm_ptr(element_type);
let data_ptr_type = cx.tcx.mk_imm_ptr(element_type);
let data_ptr_metadata = type_metadata(cx, data_ptr_type, span);
@ -314,7 +313,7 @@ fn vec_slice_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
let slice_type_name = compute_debuginfo_type_name(cx, slice_ptr_type, true);
let (pointer_size, pointer_align) = cx.size_and_align_of(data_ptr_type);
let (usize_size, usize_align) = cx.size_and_align_of(cx.tcx().types.usize);
let (usize_size, usize_align) = cx.size_and_align_of(cx.tcx.types.usize);
let member_descriptions = [
MemberDescription {
@ -327,7 +326,7 @@ fn vec_slice_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
},
MemberDescription {
name: "length".to_string(),
type_metadata: type_metadata(cx, cx.tcx().types.usize, span),
type_metadata: type_metadata(cx, cx.tcx.types.usize, span),
offset: pointer_size,
size: usize_size,
align: usize_align,
@ -348,13 +347,13 @@ fn vec_slice_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
MetadataCreationResult::new(metadata, false)
}
fn subroutine_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn subroutine_type_metadata<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
unique_type_id: UniqueTypeId,
signature: ty::PolyFnSig<'tcx>,
span: Span)
-> MetadataCreationResult
{
let signature = cx.tcx().erase_late_bound_regions_and_normalize(&signature);
let signature = cx.tcx.erase_late_bound_regions_and_normalize(&signature);
let mut signature_metadata: Vec<DIType> = Vec::with_capacity(signature.inputs().len() + 1);
@ -387,7 +386,7 @@ fn subroutine_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
// trait_type should be the actual trait (e.g., Trait). Where the trait is part
// of a DST struct, there is no trait_object_type and the results of this
// function will be a little bit weird.
fn trait_pointer_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn trait_pointer_metadata<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
trait_type: Ty<'tcx>,
trait_object_type: Option<Ty<'tcx>>,
unique_type_id: UniqueTypeId)
@ -416,7 +415,7 @@ fn trait_pointer_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
let file_metadata = unknown_file_metadata(cx);
let layout = cx.layout_of(cx.tcx().mk_mut_ptr(trait_type));
let layout = cx.layout_of(cx.tcx.mk_mut_ptr(trait_type));
assert_eq!(abi::FAT_PTR_ADDR, 0);
assert_eq!(abi::FAT_PTR_EXTRA, 1);
@ -427,7 +426,7 @@ fn trait_pointer_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
MemberDescription {
name: "pointer".to_string(),
type_metadata: type_metadata(cx,
cx.tcx().mk_mut_ptr(cx.tcx().types.u8),
cx.tcx.mk_mut_ptr(cx.tcx.types.u8),
syntax_pos::DUMMY_SP),
offset: layout.fields.offset(0),
size: data_ptr_field.size,
@ -454,7 +453,7 @@ fn trait_pointer_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
syntax_pos::DUMMY_SP)
}
pub fn type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
pub fn type_metadata<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
t: Ty<'tcx>,
usage_site_span: Span)
-> DIType {
@ -499,7 +498,7 @@ pub fn type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
Ok(vec_slice_metadata(cx, t, typ, unique_type_id, usage_site_span))
}
ty::TyStr => {
Ok(vec_slice_metadata(cx, t, cx.tcx().types.u8, unique_type_id, usage_site_span))
Ok(vec_slice_metadata(cx, t, cx.tcx.types.u8, unique_type_id, usage_site_span))
}
ty::TyDynamic(..) => {
Ok(MetadataCreationResult::new(
@ -539,7 +538,7 @@ pub fn type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fixed_vec_metadata(cx, unique_type_id, t, typ, usage_site_span)
}
ty::TyStr => {
fixed_vec_metadata(cx, unique_type_id, t, cx.tcx().types.i8, usage_site_span)
fixed_vec_metadata(cx, unique_type_id, t, cx.tcx.types.i8, usage_site_span)
}
ty::TyDynamic(..) => {
MetadataCreationResult::new(
@ -567,7 +566,7 @@ pub fn type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
ty::TyFnDef(..) | ty::TyFnPtr(_) => {
let fn_metadata = subroutine_type_metadata(cx,
unique_type_id,
t.fn_sig(cx.tcx()),
t.fn_sig(cx.tcx),
usage_site_span).metadata;
match debug_context(cx).type_map
.borrow()
@ -581,7 +580,7 @@ pub fn type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
}
ty::TyClosure(def_id, substs) => {
let upvar_tys : Vec<_> = substs.upvar_tys(def_id, cx.tcx()).collect();
let upvar_tys : Vec<_> = substs.upvar_tys(def_id, cx.tcx).collect();
prepare_tuple_metadata(cx,
t,
&upvar_tys,
@ -589,8 +588,8 @@ pub fn type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
usage_site_span).finalize(cx)
}
ty::TyGenerator(def_id, substs, _) => {
let upvar_tys : Vec<_> = substs.field_tys(def_id, cx.tcx()).map(|t| {
cx.tcx().fully_normalize_associated_types_in(&t)
let upvar_tys : Vec<_> = substs.field_tys(def_id, cx.tcx).map(|t| {
cx.tcx.fully_normalize_associated_types_in(&t)
}).collect();
prepare_tuple_metadata(cx,
t,
@ -674,7 +673,7 @@ pub fn type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
metadata
}
pub fn file_metadata(cx: &CrateContext,
pub fn file_metadata(cx: &CodegenCx,
file_name: &FileName,
defining_crate: CrateNum) -> DIFile {
debug!("file_metadata: file_name: {}, defining_crate: {}",
@ -692,11 +691,11 @@ pub fn file_metadata(cx: &CrateContext,
file_metadata_raw(cx, &file_name.to_string(), &directory.to_string_lossy())
}
pub fn unknown_file_metadata(cx: &CrateContext) -> DIFile {
pub fn unknown_file_metadata(cx: &CodegenCx) -> DIFile {
file_metadata_raw(cx, "<unknown>", "")
}
fn file_metadata_raw(cx: &CrateContext,
fn file_metadata_raw(cx: &CodegenCx,
file_name: &str,
directory: &str)
-> DIFile {
@ -722,7 +721,7 @@ fn file_metadata_raw(cx: &CrateContext,
file_metadata
}
fn basic_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn basic_type_metadata<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
t: Ty<'tcx>) -> DIType {
debug!("basic_type_metadata: {:?}", t);
@ -759,7 +758,7 @@ fn basic_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
return ty_metadata;
}
fn foreign_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn foreign_type_metadata<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
t: Ty<'tcx>,
unique_type_id: UniqueTypeId) -> DIType {
debug!("foreign_type_metadata: {:?}", t);
@ -768,7 +767,7 @@ fn foreign_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
create_struct_stub(cx, t, &name, unique_type_id, NO_SCOPE_METADATA)
}
fn pointer_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn pointer_type_metadata<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
pointer_type: Ty<'tcx>,
pointee_type_metadata: DIType)
-> DIType {
@ -785,21 +784,20 @@ fn pointer_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
}
}
pub fn compile_unit_metadata(scc: &SharedCrateContext,
pub fn compile_unit_metadata(tcx: TyCtxt,
codegen_unit_name: &str,
debug_context: &CrateDebugContext,
sess: &Session)
debug_context: &CrateDebugContext)
-> DIDescriptor {
let mut name_in_debuginfo = match sess.local_crate_source_file {
let mut name_in_debuginfo = match tcx.sess.local_crate_source_file {
Some(ref path) => path.clone(),
None => PathBuf::from(&*scc.tcx().crate_name(LOCAL_CRATE).as_str()),
None => PathBuf::from(&*tcx.crate_name(LOCAL_CRATE).as_str()),
};
// The OSX linker has an idiosyncrasy where it will ignore some debuginfo
// if multiple object files with the same DW_AT_name are linked together.
// As a workaround we generate unique names for each object file. Those do
// not correspond to an actual source file but that should be harmless.
if scc.sess().target.target.options.is_like_osx {
if tcx.sess.target.target.options.is_like_osx {
name_in_debuginfo.push("@");
name_in_debuginfo.push(codegen_unit_name);
}
@ -811,7 +809,7 @@ pub fn compile_unit_metadata(scc: &SharedCrateContext,
let name_in_debuginfo = name_in_debuginfo.to_string_lossy().into_owned();
let name_in_debuginfo = CString::new(name_in_debuginfo).unwrap();
let work_dir = CString::new(&sess.working_dir.0.to_string_lossy()[..]).unwrap();
let work_dir = CString::new(&tcx.sess.working_dir.0.to_string_lossy()[..]).unwrap();
let producer = CString::new(producer).unwrap();
let flags = "\0";
let split_name = "\0";
@ -825,20 +823,20 @@ pub fn compile_unit_metadata(scc: &SharedCrateContext,
DW_LANG_RUST,
file_metadata,
producer.as_ptr(),
sess.opts.optimize != config::OptLevel::No,
tcx.sess.opts.optimize != config::OptLevel::No,
flags.as_ptr() as *const _,
0,
split_name.as_ptr() as *const _);
if sess.opts.debugging_opts.profile {
if tcx.sess.opts.debugging_opts.profile {
let cu_desc_metadata = llvm::LLVMRustMetadataAsValue(debug_context.llcontext,
unit_metadata);
let gcov_cu_info = [
path_to_mdstring(debug_context.llcontext,
&scc.tcx().output_filenames(LOCAL_CRATE).with_extension("gcno")),
&tcx.output_filenames(LOCAL_CRATE).with_extension("gcno")),
path_to_mdstring(debug_context.llcontext,
&scc.tcx().output_filenames(LOCAL_CRATE).with_extension("gcda")),
&tcx.output_filenames(LOCAL_CRATE).with_extension("gcda")),
cu_desc_metadata,
];
let gcov_metadata = llvm::LLVMMDNodeInContext(debug_context.llcontext,
@ -903,7 +901,7 @@ enum MemberDescriptionFactory<'tcx> {
}
impl<'tcx> MemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
fn create_member_descriptions<'a>(&self, cx: &CodegenCx<'a, 'tcx>)
-> Vec<MemberDescription> {
match *self {
StructMDF(ref this) => {
@ -937,7 +935,7 @@ struct StructMemberDescriptionFactory<'tcx> {
}
impl<'tcx> StructMemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
fn create_member_descriptions<'a>(&self, cx: &CodegenCx<'a, 'tcx>)
-> Vec<MemberDescription> {
let layout = cx.layout_of(self.ty);
self.variant.fields.iter().enumerate().map(|(i, f)| {
@ -961,7 +959,7 @@ impl<'tcx> StructMemberDescriptionFactory<'tcx> {
}
fn prepare_struct_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn prepare_struct_metadata<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
struct_type: Ty<'tcx>,
unique_type_id: UniqueTypeId,
span: Span)
@ -1006,7 +1004,7 @@ struct TupleMemberDescriptionFactory<'tcx> {
}
impl<'tcx> TupleMemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
fn create_member_descriptions<'a>(&self, cx: &CodegenCx<'a, 'tcx>)
-> Vec<MemberDescription> {
let layout = cx.layout_of(self.ty);
self.component_types.iter().enumerate().map(|(i, &component_type)| {
@ -1023,7 +1021,7 @@ impl<'tcx> TupleMemberDescriptionFactory<'tcx> {
}
}
fn prepare_tuple_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn prepare_tuple_metadata<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
tuple_type: Ty<'tcx>,
component_types: &[Ty<'tcx>],
unique_type_id: UniqueTypeId,
@ -1059,7 +1057,7 @@ struct UnionMemberDescriptionFactory<'tcx> {
}
impl<'tcx> UnionMemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
fn create_member_descriptions<'a>(&self, cx: &CodegenCx<'a, 'tcx>)
-> Vec<MemberDescription> {
self.variant.fields.iter().enumerate().map(|(i, f)| {
let field = self.layout.field(cx, i);
@ -1076,7 +1074,7 @@ impl<'tcx> UnionMemberDescriptionFactory<'tcx> {
}
}
fn prepare_union_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn prepare_union_metadata<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
union_type: Ty<'tcx>,
unique_type_id: UniqueTypeId,
span: Span)
@ -1127,7 +1125,7 @@ struct EnumMemberDescriptionFactory<'tcx> {
}
impl<'tcx> EnumMemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
fn create_member_descriptions<'a>(&self, cx: &CodegenCx<'a, 'tcx>)
-> Vec<MemberDescription> {
let adt = &self.enum_type.ty_adt_def().unwrap();
match self.layout.variants {
@ -1212,7 +1210,7 @@ impl<'tcx> EnumMemberDescriptionFactory<'tcx> {
// of discriminant instead of us having to recover its path.
// Right now it's not even going to work for `niche_start > 0`,
// and for multiple niche variants it only supports the first.
fn compute_field_path<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn compute_field_path<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
name: &mut String,
layout: TyLayout<'tcx>,
offset: Size,
@ -1223,10 +1221,10 @@ impl<'tcx> EnumMemberDescriptionFactory<'tcx> {
continue;
}
let inner_offset = offset - field_offset;
let field = layout.field(ccx, i);
let field = layout.field(cx, i);
if inner_offset + size <= field.size {
write!(name, "{}$", i).unwrap();
compute_field_path(ccx, name, field, inner_offset, size);
compute_field_path(cx, name, field, inner_offset, size);
}
}
}
@ -1262,7 +1260,7 @@ struct VariantMemberDescriptionFactory<'tcx> {
}
impl<'tcx> VariantMemberDescriptionFactory<'tcx> {
fn create_member_descriptions<'a>(&self, cx: &CrateContext<'a, 'tcx>)
fn create_member_descriptions<'a>(&self, cx: &CodegenCx<'a, 'tcx>)
-> Vec<MemberDescription> {
self.args.iter().enumerate().map(|(i, &(ref name, ty))| {
let (size, align) = cx.size_and_align_of(ty);
@ -1292,7 +1290,7 @@ enum EnumDiscriminantInfo {
// of the variant, and (3) a MemberDescriptionFactory for producing the
// descriptions of the fields of the variant. This is a rudimentary version of a
// full RecursiveTypeDescription.
fn describe_enum_variant<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn describe_enum_variant<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
layout: layout::TyLayout<'tcx>,
variant: &'tcx ty::VariantDef,
discriminant_info: EnumDiscriminantInfo,
@ -1352,7 +1350,7 @@ fn describe_enum_variant<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
(metadata_stub, member_description_factory)
}
fn prepare_enum_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn prepare_enum_metadata<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
enum_type: Ty<'tcx>,
enum_def_id: DefId,
unique_type_id: UniqueTypeId,
@ -1370,7 +1368,7 @@ fn prepare_enum_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
let file_metadata = unknown_file_metadata(cx);
let def = enum_type.ty_adt_def().unwrap();
let enumerators_metadata: Vec<DIDescriptor> = def.discriminants(cx.tcx())
let enumerators_metadata: Vec<DIDescriptor> = def.discriminants(cx.tcx)
.zip(&def.variants)
.map(|(discr, v)| {
let token = v.name.as_str();
@ -1396,7 +1394,7 @@ fn prepare_enum_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
let (discriminant_size, discriminant_align) =
(discr.size(cx), discr.align(cx));
let discriminant_base_type_metadata =
type_metadata(cx, discr.to_ty(cx.tcx()), syntax_pos::DUMMY_SP);
type_metadata(cx, discr.to_ty(cx.tcx), syntax_pos::DUMMY_SP);
let discriminant_name = get_enum_discriminant_name(cx, enum_def_id);
let name = CString::new(discriminant_name.as_bytes()).unwrap();
@ -1472,10 +1470,10 @@ fn prepare_enum_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
}),
);
fn get_enum_discriminant_name(cx: &CrateContext,
fn get_enum_discriminant_name(cx: &CodegenCx,
def_id: DefId)
-> InternedString {
cx.tcx().item_name(def_id)
cx.tcx.item_name(def_id)
}
}
@ -1483,7 +1481,7 @@ fn prepare_enum_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
/// results in a LLVM struct.
///
/// Examples of Rust types to use this are: structs, tuples, boxes, vecs, and enums.
fn composite_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn composite_type_metadata<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
composite_type: Ty<'tcx>,
composite_type_name: &str,
composite_type_unique_id: UniqueTypeId,
@ -1509,7 +1507,7 @@ fn composite_type_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
return composite_type_metadata;
}
fn set_members_of_composite_type(cx: &CrateContext,
fn set_members_of_composite_type(cx: &CodegenCx,
composite_type_metadata: DICompositeType,
member_descriptions: &[MemberDescription]) {
// In some rare cases LLVM metadata uniquing would lead to an existing type
@ -1560,7 +1558,7 @@ fn set_members_of_composite_type(cx: &CrateContext,
// A convenience wrapper around LLVMRustDIBuilderCreateStructType(). Does not do
// any caching, does not add any fields to the struct. This can be done later
// with set_members_of_composite_type().
fn create_struct_stub<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn create_struct_stub<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
struct_type: Ty<'tcx>,
struct_type_name: &str,
unique_type_id: UniqueTypeId,
@ -1597,7 +1595,7 @@ fn create_struct_stub<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
return metadata_stub;
}
fn create_union_stub<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn create_union_stub<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
union_type: Ty<'tcx>,
union_type_name: &str,
unique_type_id: UniqueTypeId,
@ -1635,20 +1633,20 @@ fn create_union_stub<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
/// Creates debug information for the given global variable.
///
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_global_var_metadata(cx: &CrateContext,
pub fn create_global_var_metadata(cx: &CodegenCx,
node_id: ast::NodeId,
global: ValueRef) {
if cx.dbg_cx().is_none() {
if cx.dbg_cx.is_none() {
return;
}
let tcx = cx.tcx();
let tcx = cx.tcx;
let node_def_id = tcx.hir.local_def_id(node_id);
let no_mangle = attr::contains_name(&tcx.get_attrs(node_def_id), "no_mangle");
// We may want to remove the namespace scope if we're in an extern block, see:
// https://github.com/rust-lang/rust/pull/46457#issuecomment-351750952
let var_scope = get_namespace_for_item(cx, node_def_id);
let span = cx.tcx().def_span(node_def_id);
let span = cx.tcx.def_span(node_def_id);
let (file_metadata, line_number) = if span != syntax_pos::DUMMY_SP {
let loc = span_start(cx, span);
@ -1658,7 +1656,7 @@ pub fn create_global_var_metadata(cx: &CrateContext,
};
let is_local_to_unit = is_node_local_to_unit(cx, node_id);
let variable_type = Instance::mono(cx.tcx(), node_def_id).ty(cx.tcx());
let variable_type = Instance::mono(cx.tcx, node_def_id).ty(cx.tcx);
let type_metadata = type_metadata(cx, variable_type, span);
let var_name = tcx.item_name(node_def_id).to_string();
let var_name = CString::new(var_name).unwrap();
@ -1691,15 +1689,15 @@ pub fn create_global_var_metadata(cx: &CrateContext,
}
// Creates an "extension" of an existing DIScope into another file.
pub fn extend_scope_to_file(ccx: &CrateContext,
pub fn extend_scope_to_file(cx: &CodegenCx,
scope_metadata: DIScope,
file: &syntax_pos::FileMap,
defining_crate: CrateNum)
-> DILexicalBlock {
let file_metadata = file_metadata(ccx, &file.name, defining_crate);
let file_metadata = file_metadata(cx, &file.name, defining_crate);
unsafe {
llvm::LLVMRustDIBuilderCreateLexicalBlockFile(
DIB(ccx),
DIB(cx),
scope_metadata,
file_metadata)
}
@ -1709,10 +1707,10 @@ pub fn extend_scope_to_file(ccx: &CrateContext,
/// given type.
///
/// Adds the created metadata nodes directly to the crate's IR.
pub fn create_vtable_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
pub fn create_vtable_metadata<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
ty: ty::Ty<'tcx>,
vtable: ValueRef) {
if cx.dbg_cx().is_none() {
if cx.dbg_cx.is_none() {
return;
}
@ -1736,7 +1734,7 @@ pub fn create_vtable_metadata<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
unknown_file_metadata(cx),
UNKNOWN_LINE_NUMBER,
Size::from_bytes(0).bits(),
cx.tcx().data_layout.pointer_align.abi_bits() as u32,
cx.tcx.data_layout.pointer_align.abi_bits() as u32,
DIFlags::FlagArtificial,
ptr::null_mut(),
empty_array,

View file

@ -27,7 +27,7 @@ use rustc::hir::def_id::{DefId, CrateNum};
use rustc::ty::subst::Substs;
use abi::Abi;
use common::CrateContext;
use common::CodegenCx;
use builder::Builder;
use monomorphize::Instance;
use rustc::ty::{self, Ty};
@ -150,8 +150,8 @@ pub enum VariableKind {
}
/// Create any deferred debug metadata nodes
pub fn finalize(cx: &CrateContext) {
if cx.dbg_cx().is_none() {
pub fn finalize(cx: &CodegenCx) {
if cx.dbg_cx.is_none() {
return;
}
@ -176,21 +176,21 @@ pub fn finalize(cx: &CrateContext) {
// Android has the same issue (#22398)
if cx.sess().target.target.options.is_like_osx ||
cx.sess().target.target.options.is_like_android {
llvm::LLVMRustAddModuleFlag(cx.llmod(),
llvm::LLVMRustAddModuleFlag(cx.llmod,
"Dwarf Version\0".as_ptr() as *const _,
2)
}
// Indicate that we want CodeView debug information on MSVC
if cx.sess().target.target.options.is_like_msvc {
llvm::LLVMRustAddModuleFlag(cx.llmod(),
llvm::LLVMRustAddModuleFlag(cx.llmod,
"CodeView\0".as_ptr() as *const _,
1)
}
// Prevent bitcode readers from deleting the debug info.
let ptr = "Debug Info Version\0".as_ptr();
llvm::LLVMRustAddModuleFlag(cx.llmod(), ptr as *const _,
llvm::LLVMRustAddModuleFlag(cx.llmod, ptr as *const _,
llvm::LLVMRustDebugMetadataVersion());
};
}
@ -201,7 +201,7 @@ pub fn finalize(cx: &CrateContext) {
/// for debug info creation. The function may also return another variant of the
/// FunctionDebugContext enum which indicates why no debuginfo should be created
/// for the function.
pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
pub fn create_function_debug_context<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
instance: Instance<'tcx>,
sig: ty::FnSig<'tcx>,
llfn: ValueRef,
@ -210,7 +210,7 @@ pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
return FunctionDebugContext::DebugInfoDisabled;
}
for attr in instance.def.attrs(cx.tcx()).iter() {
for attr in instance.def.attrs(cx.tcx).iter() {
if attr.check_name("no_debug") {
return FunctionDebugContext::FunctionWithoutDebugInfo;
}
@ -235,15 +235,15 @@ pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
};
// Find the enclosing function, in case this is a closure.
let def_key = cx.tcx().def_key(def_id);
let def_key = cx.tcx.def_key(def_id);
let mut name = def_key.disambiguated_data.data.to_string();
let enclosing_fn_def_id = cx.tcx().closure_base_def_id(def_id);
let enclosing_fn_def_id = cx.tcx.closure_base_def_id(def_id);
// Get_template_parameters() will append a `<...>` clause to the function
// name if necessary.
let generics = cx.tcx().generics_of(enclosing_fn_def_id);
let substs = instance.substs.truncate_to(cx.tcx(), generics);
let generics = cx.tcx.generics_of(enclosing_fn_def_id);
let substs = instance.substs.truncate_to(cx.tcx, generics);
let template_parameters = get_template_parameters(cx,
&generics,
substs,
@ -255,7 +255,7 @@ pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
let scope_line = span_start(cx, span).line;
let local_id = cx.tcx().hir.as_local_node_id(instance.def_id());
let local_id = cx.tcx.hir.as_local_node_id(instance.def_id());
let is_local_to_unit = local_id.map_or(false, |id| is_node_local_to_unit(cx, id));
let function_name = CString::new(name).unwrap();
@ -299,7 +299,7 @@ pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
return FunctionDebugContext::RegularContext(fn_debug_context);
fn get_function_signature<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn get_function_signature<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
sig: ty::FnSig<'tcx>) -> DIArray {
if cx.sess().opts.debuginfo == LimitedDebugInfo {
return create_DIArray(DIB(cx), &[]);
@ -334,8 +334,8 @@ pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
signature.extend(inputs.iter().map(|&t| {
let t = match t.sty {
ty::TyArray(ct, _)
if (ct == cx.tcx().types.u8) || cx.layout_of(ct).is_zst() => {
cx.tcx().mk_imm_ptr(ct)
if (ct == cx.tcx.types.u8) || cx.layout_of(ct).is_zst() => {
cx.tcx.mk_imm_ptr(ct)
}
_ => t
};
@ -358,7 +358,7 @@ pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
return create_DIArray(DIB(cx), &signature[..]);
}
fn get_template_parameters<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn get_template_parameters<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
generics: &ty::Generics,
substs: &Substs<'tcx>,
file_metadata: DIFile,
@ -375,7 +375,7 @@ pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
name_to_append_suffix_to.push_str(",");
}
let actual_type = cx.tcx().fully_normalize_associated_types_in(&actual_type);
let actual_type = cx.tcx.fully_normalize_associated_types_in(&actual_type);
// Add actual type name to <...> clause of function name
let actual_type_name = compute_debuginfo_type_name(cx,
actual_type,
@ -388,7 +388,7 @@ pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
let template_params: Vec<_> = if cx.sess().opts.debuginfo == FullDebugInfo {
let names = get_type_parameter_names(cx, generics);
substs.types().zip(names).map(|(ty, name)| {
let actual_type = cx.tcx().fully_normalize_associated_types_in(&ty);
let actual_type = cx.tcx.fully_normalize_associated_types_in(&ty);
let actual_type_metadata = type_metadata(cx, actual_type, syntax_pos::DUMMY_SP);
let name = CString::new(name.as_str().as_bytes()).unwrap();
unsafe {
@ -409,24 +409,24 @@ pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
return create_DIArray(DIB(cx), &template_params[..]);
}
fn get_type_parameter_names(cx: &CrateContext, generics: &ty::Generics) -> Vec<ast::Name> {
fn get_type_parameter_names(cx: &CodegenCx, generics: &ty::Generics) -> Vec<ast::Name> {
let mut names = generics.parent.map_or(vec![], |def_id| {
get_type_parameter_names(cx, cx.tcx().generics_of(def_id))
get_type_parameter_names(cx, cx.tcx.generics_of(def_id))
});
names.extend(generics.types.iter().map(|param| param.name));
names
}
fn get_containing_scope<'ccx, 'tcx>(cx: &CrateContext<'ccx, 'tcx>,
fn get_containing_scope<'cx, 'tcx>(cx: &CodegenCx<'cx, 'tcx>,
instance: Instance<'tcx>)
-> DIScope {
// First, let's see if this is a method within an inherent impl. Because
// if yes, we want to make the result subroutine DIE a child of the
// subroutine's self-type.
let self_type = cx.tcx().impl_of_method(instance.def_id()).and_then(|impl_def_id| {
let self_type = cx.tcx.impl_of_method(instance.def_id()).and_then(|impl_def_id| {
// If the method does *not* belong to a trait, proceed
if cx.tcx().trait_id_of_impl(impl_def_id).is_none() {
let impl_self_ty = cx.tcx().trans_impl_self_ty(impl_def_id, instance.substs);
if cx.tcx.trait_id_of_impl(impl_def_id).is_none() {
let impl_self_ty = cx.tcx.trans_impl_self_ty(impl_def_id, instance.substs);
// Only "class" methods are generally understood by LLVM,
// so avoid methods on other types (e.g. `<*mut T>::null`).
@ -446,7 +446,7 @@ pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
self_type.unwrap_or_else(|| {
namespace::item_namespace(cx, DefId {
krate: instance.def_id().krate,
index: cx.tcx()
index: cx.tcx
.def_key(instance.def_id())
.parent
.expect("get_containing_scope: missing parent?")
@ -455,7 +455,7 @@ pub fn create_function_debug_context<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
}
}
pub fn declare_local<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
pub fn declare_local<'a, 'tcx>(bx: &Builder<'a, 'tcx>,
dbg_context: &FunctionDebugContext,
variable_name: ast::Name,
variable_type: Ty<'tcx>,
@ -463,7 +463,7 @@ pub fn declare_local<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
variable_access: VariableAccess,
variable_kind: VariableKind,
span: Span) {
let cx = bcx.ccx;
let cx = bx.cx;
let file = span_start(cx, span).file;
let file_metadata = file_metadata(cx,
@ -499,10 +499,10 @@ pub fn declare_local<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
align.abi() as u32,
)
};
source_loc::set_debug_location(bcx,
source_loc::set_debug_location(bx,
InternalDebugLocation::new(scope_metadata, loc.line, loc.col.to_usize()));
unsafe {
let debug_loc = llvm::LLVMGetCurrentDebugLocation(bcx.llbuilder);
let debug_loc = llvm::LLVMGetCurrentDebugLocation(bx.llbuilder);
let instr = llvm::LLVMRustDIBuilderInsertDeclareAtEnd(
DIB(cx),
alloca,
@ -510,9 +510,9 @@ pub fn declare_local<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
address_operations.as_ptr(),
address_operations.len() as c_uint,
debug_loc,
bcx.llbb());
bx.llbb());
llvm::LLVMSetInstDebugLocation(bcx.llbuilder, instr);
llvm::LLVMSetInstDebugLocation(bx.llbuilder, instr);
}
}
}
@ -520,7 +520,7 @@ pub fn declare_local<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
match variable_kind {
ArgumentVariable(_) | CapturedVariable => {
assert!(!dbg_context.get_ref(span).source_locations_enabled.get());
source_loc::set_debug_location(bcx, UnknownLocation);
source_loc::set_debug_location(bx, UnknownLocation);
}
_ => { /* nothing to do */ }
}

View file

@ -20,44 +20,44 @@ use llvm;
use llvm::debuginfo::DIScope;
use rustc::hir::def_id::DefId;
use rustc::hir::map::DefPathData;
use common::CrateContext;
use common::CodegenCx;
use std::ffi::CString;
use std::ptr;
pub fn mangled_name_of_instance<'a, 'tcx>(
ccx: &CrateContext<'a, 'tcx>,
cx: &CodegenCx<'a, 'tcx>,
instance: Instance<'tcx>,
) -> ty::SymbolName {
let tcx = ccx.tcx();
let tcx = cx.tcx;
tcx.symbol_name(instance)
}
pub fn mangled_name_of_item<'a, 'tcx>(
ccx: &CrateContext<'a, 'tcx>,
cx: &CodegenCx<'a, 'tcx>,
node_id: ast::NodeId,
) -> ty::SymbolName {
let tcx = ccx.tcx();
let tcx = cx.tcx;
let node_def_id = tcx.hir.local_def_id(node_id);
let instance = Instance::mono(tcx, node_def_id);
tcx.symbol_name(instance)
}
pub fn item_namespace(ccx: &CrateContext, def_id: DefId) -> DIScope {
if let Some(&scope) = debug_context(ccx).namespace_map.borrow().get(&def_id) {
pub fn item_namespace(cx: &CodegenCx, def_id: DefId) -> DIScope {
if let Some(&scope) = debug_context(cx).namespace_map.borrow().get(&def_id) {
return scope;
}
let def_key = ccx.tcx().def_key(def_id);
let def_key = cx.tcx.def_key(def_id);
let parent_scope = def_key.parent.map_or(ptr::null_mut(), |parent| {
item_namespace(ccx, DefId {
item_namespace(cx, DefId {
krate: def_id.krate,
index: parent
})
});
let namespace_name = match def_key.disambiguated_data.data {
DefPathData::CrateRoot => ccx.tcx().crate_name(def_id.krate).as_str(),
DefPathData::CrateRoot => cx.tcx.crate_name(def_id.krate).as_str(),
data => data.as_interned_str()
};
@ -65,13 +65,13 @@ pub fn item_namespace(ccx: &CrateContext, def_id: DefId) -> DIScope {
let scope = unsafe {
llvm::LLVMRustDIBuilderCreateNameSpace(
DIB(ccx),
DIB(cx),
parent_scope,
namespace_name.as_ptr(),
unknown_file_metadata(ccx),
unknown_file_metadata(cx),
UNKNOWN_LINE_NUMBER)
};
debug_context(ccx).namespace_map.borrow_mut().insert(def_id, scope);
debug_context(cx).namespace_map.borrow_mut().insert(def_id, scope);
scope
}

View file

@ -26,25 +26,25 @@ use syntax_pos::{Span, Pos};
///
/// Maps to a call to llvm::LLVMSetCurrentDebugLocation(...).
pub fn set_source_location(
debug_context: &FunctionDebugContext, builder: &Builder, scope: DIScope, span: Span
debug_context: &FunctionDebugContext, bx: &Builder, scope: DIScope, span: Span
) {
let function_debug_context = match *debug_context {
FunctionDebugContext::DebugInfoDisabled => return,
FunctionDebugContext::FunctionWithoutDebugInfo => {
set_debug_location(builder, UnknownLocation);
set_debug_location(bx, UnknownLocation);
return;
}
FunctionDebugContext::RegularContext(ref data) => data
};
let dbg_loc = if function_debug_context.source_locations_enabled.get() {
debug!("set_source_location: {}", builder.sess().codemap().span_to_string(span));
let loc = span_start(builder.ccx, span);
debug!("set_source_location: {}", bx.sess().codemap().span_to_string(span));
let loc = span_start(bx.cx, span);
InternalDebugLocation::new(scope, loc.line, loc.col.to_usize())
} else {
UnknownLocation
};
set_debug_location(builder, dbg_loc);
set_debug_location(bx, dbg_loc);
}
/// Enables emitting source locations for the given functions.
@ -79,7 +79,7 @@ impl InternalDebugLocation {
}
}
pub fn set_debug_location(builder: &Builder, debug_location: InternalDebugLocation) {
pub fn set_debug_location(bx: &Builder, debug_location: InternalDebugLocation) {
let metadata_node = match debug_location {
KnownLocation { scope, line, .. } => {
// Always set the column to zero like Clang and GCC
@ -88,7 +88,7 @@ pub fn set_debug_location(builder: &Builder, debug_location: InternalDebugLocati
unsafe {
llvm::LLVMRustDIBuilderCreateDebugLocation(
debug_context(builder.ccx).llcontext,
debug_context(bx.cx).llcontext,
line as c_uint,
col as c_uint,
scope,
@ -102,6 +102,6 @@ pub fn set_debug_location(builder: &Builder, debug_location: InternalDebugLocati
};
unsafe {
llvm::LLVMSetCurrentDebugLocation(builder.llbuilder, metadata_node);
llvm::LLVMSetCurrentDebugLocation(bx.llbuilder, metadata_node);
}
}

View file

@ -10,7 +10,7 @@
// Type Names for Debug Info.
use common::CrateContext;
use common::CodegenCx;
use rustc::hir::def_id::DefId;
use rustc::ty::subst::Substs;
use rustc::ty::{self, Ty};
@ -21,7 +21,7 @@ use rustc::hir;
// any caching, i.e. calling the function twice with the same type will also do
// the work twice. The `qualified` parameter only affects the first level of the
// type name, further levels (i.e. type parameters) are always fully qualified.
pub fn compute_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
pub fn compute_debuginfo_type_name<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
t: Ty<'tcx>,
qualified: bool)
-> String {
@ -32,7 +32,7 @@ pub fn compute_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
// Pushes the name of the type as it should be stored in debuginfo on the
// `output` String. See also compute_debuginfo_type_name().
pub fn push_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
pub fn push_debuginfo_type_name<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
t: Ty<'tcx>,
qualified: bool,
output: &mut String) {
@ -117,14 +117,14 @@ pub fn push_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
},
ty::TyDynamic(ref trait_data, ..) => {
if let Some(principal) = trait_data.principal() {
let principal = cx.tcx().erase_late_bound_regions_and_normalize(
let principal = cx.tcx.erase_late_bound_regions_and_normalize(
&principal);
push_item_name(cx, principal.def_id, false, output);
push_type_params(cx, principal.substs, output);
}
},
ty::TyFnDef(..) | ty::TyFnPtr(_) => {
let sig = t.fn_sig(cx.tcx());
let sig = t.fn_sig(cx.tcx);
if sig.unsafety() == hir::Unsafety::Unsafe {
output.push_str("unsafe ");
}
@ -138,7 +138,7 @@ pub fn push_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
output.push_str("fn(");
let sig = cx.tcx().erase_late_bound_regions_and_normalize(&sig);
let sig = cx.tcx.erase_late_bound_regions_and_normalize(&sig);
if !sig.inputs().is_empty() {
for &parameter_type in sig.inputs() {
push_debuginfo_type_name(cx, parameter_type, true, output);
@ -179,18 +179,18 @@ pub fn push_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
}
}
fn push_item_name(cx: &CrateContext,
fn push_item_name(cx: &CodegenCx,
def_id: DefId,
qualified: bool,
output: &mut String) {
if qualified {
output.push_str(&cx.tcx().crate_name(def_id.krate).as_str());
for path_element in cx.tcx().def_path(def_id).data {
output.push_str(&cx.tcx.crate_name(def_id.krate).as_str());
for path_element in cx.tcx.def_path(def_id).data {
output.push_str("::");
output.push_str(&path_element.data.as_interned_str());
}
} else {
output.push_str(&cx.tcx().item_name(def_id));
output.push_str(&cx.tcx.item_name(def_id));
}
}
@ -199,7 +199,7 @@ pub fn push_debuginfo_type_name<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
// reconstructed for items from non-local crates. For local crates, this
// would be possible but with inlining and LTO we have to use the least
// common denominator - otherwise we would run into conflicts.
fn push_type_params<'a, 'tcx>(cx: &CrateContext<'a, 'tcx>,
fn push_type_params<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
substs: &Substs<'tcx>,
output: &mut String) {
if substs.types().next().is_none() {

View file

@ -18,12 +18,12 @@ use rustc::ty::DefIdTree;
use llvm;
use llvm::debuginfo::{DIScope, DIBuilderRef, DIDescriptor, DIArray};
use common::{CrateContext};
use common::{CodegenCx};
use syntax_pos::{self, Span};
use syntax::ast;
pub fn is_node_local_to_unit(cx: &CrateContext, node_id: ast::NodeId) -> bool
pub fn is_node_local_to_unit(cx: &CodegenCx, node_id: ast::NodeId) -> bool
{
// The is_local_to_unit flag indicates whether a function is local to the
// current compilation unit (i.e. if it is *static* in the C-sense). The
@ -33,8 +33,8 @@ pub fn is_node_local_to_unit(cx: &CrateContext, node_id: ast::NodeId) -> bool
// visible). It might better to use the `exported_items` set from
// `driver::CrateAnalysis` in the future, but (atm) this set is not
// available in the translation pass.
let def_id = cx.tcx().hir.local_def_id(node_id);
!cx.tcx().is_exported_symbol(def_id)
let def_id = cx.tcx.hir.local_def_id(node_id);
!cx.tcx.is_exported_symbol(def_id)
}
#[allow(non_snake_case)]
@ -45,23 +45,23 @@ pub fn create_DIArray(builder: DIBuilderRef, arr: &[DIDescriptor]) -> DIArray {
}
/// Return syntax_pos::Loc corresponding to the beginning of the span
pub fn span_start(cx: &CrateContext, span: Span) -> syntax_pos::Loc {
pub fn span_start(cx: &CodegenCx, span: Span) -> syntax_pos::Loc {
cx.sess().codemap().lookup_char_pos(span.lo())
}
#[inline]
pub fn debug_context<'a, 'tcx>(cx: &'a CrateContext<'a, 'tcx>)
pub fn debug_context<'a, 'tcx>(cx: &'a CodegenCx<'a, 'tcx>)
-> &'a CrateDebugContext<'tcx> {
cx.dbg_cx().as_ref().unwrap()
cx.dbg_cx.as_ref().unwrap()
}
#[inline]
#[allow(non_snake_case)]
pub fn DIB(cx: &CrateContext) -> DIBuilderRef {
cx.dbg_cx().as_ref().unwrap().builder
pub fn DIB(cx: &CodegenCx) -> DIBuilderRef {
cx.dbg_cx.as_ref().unwrap().builder
}
pub fn get_namespace_for_item(cx: &CrateContext, def_id: DefId) -> DIScope {
item_namespace(cx, cx.tcx().parent(def_id)
pub fn get_namespace_for_item(cx: &CodegenCx, def_id: DefId) -> DIScope {
item_namespace(cx, cx.tcx.parent(def_id)
.expect("get_namespace_for_item: missing parent?"))
}

View file

@ -27,7 +27,7 @@ use rustc::session::config::Sanitizer;
use rustc_back::PanicStrategy;
use abi::{Abi, FnType};
use attributes;
use context::CrateContext;
use context::CodegenCx;
use common;
use type_::Type;
use value::Value;
@ -39,13 +39,13 @@ use std::ffi::CString;
///
/// If theres a value with the same name already declared, the function will
/// return its ValueRef instead.
pub fn declare_global(ccx: &CrateContext, name: &str, ty: Type) -> llvm::ValueRef {
pub fn declare_global(cx: &CodegenCx, name: &str, ty: Type) -> llvm::ValueRef {
debug!("declare_global(name={:?})", name);
let namebuf = CString::new(name).unwrap_or_else(|_|{
bug!("name {:?} contains an interior null byte", name)
});
unsafe {
llvm::LLVMRustGetOrInsertGlobal(ccx.llmod(), namebuf.as_ptr(), ty.to_ref())
llvm::LLVMRustGetOrInsertGlobal(cx.llmod, namebuf.as_ptr(), ty.to_ref())
}
}
@ -54,13 +54,13 @@ pub fn declare_global(ccx: &CrateContext, name: &str, ty: Type) -> llvm::ValueRe
///
/// If theres a value with the same name already declared, the function will
/// update the declaration and return existing ValueRef instead.
fn declare_raw_fn(ccx: &CrateContext, name: &str, callconv: llvm::CallConv, ty: Type) -> ValueRef {
fn declare_raw_fn(cx: &CodegenCx, name: &str, callconv: llvm::CallConv, ty: Type) -> ValueRef {
debug!("declare_raw_fn(name={:?}, ty={:?})", name, ty);
let namebuf = CString::new(name).unwrap_or_else(|_|{
bug!("name {:?} contains an interior null byte", name)
});
let llfn = unsafe {
llvm::LLVMRustGetOrInsertFunction(ccx.llmod(), namebuf.as_ptr(), ty.to_ref())
llvm::LLVMRustGetOrInsertFunction(cx.llmod, namebuf.as_ptr(), ty.to_ref())
};
llvm::SetFunctionCallConv(llfn, callconv);
@ -68,12 +68,12 @@ fn declare_raw_fn(ccx: &CrateContext, name: &str, callconv: llvm::CallConv, ty:
// be merged.
llvm::SetUnnamedAddr(llfn, true);
if ccx.tcx().sess.opts.cg.no_redzone
.unwrap_or(ccx.tcx().sess.target.target.options.disable_redzone) {
if cx.tcx.sess.opts.cg.no_redzone
.unwrap_or(cx.tcx.sess.target.target.options.disable_redzone) {
llvm::Attribute::NoRedZone.apply_llfn(Function, llfn);
}
if let Some(ref sanitizer) = ccx.tcx().sess.opts.debugging_opts.sanitizer {
if let Some(ref sanitizer) = cx.tcx.sess.opts.debugging_opts.sanitizer {
match *sanitizer {
Sanitizer::Address => {
llvm::Attribute::SanitizeAddress.apply_llfn(Function, llfn);
@ -88,7 +88,7 @@ fn declare_raw_fn(ccx: &CrateContext, name: &str, callconv: llvm::CallConv, ty:
}
}
match ccx.tcx().sess.opts.cg.opt_level.as_ref().map(String::as_ref) {
match cx.tcx.sess.opts.cg.opt_level.as_ref().map(String::as_ref) {
Some("s") => {
llvm::Attribute::OptimizeForSize.apply_llfn(Function, llfn);
},
@ -99,7 +99,7 @@ fn declare_raw_fn(ccx: &CrateContext, name: &str, callconv: llvm::CallConv, ty:
_ => {},
}
if ccx.tcx().sess.panic_strategy() != PanicStrategy::Unwind {
if cx.tcx.sess.panic_strategy() != PanicStrategy::Unwind {
attributes::unwind(llfn, false);
}
@ -114,8 +114,8 @@ fn declare_raw_fn(ccx: &CrateContext, name: &str, callconv: llvm::CallConv, ty:
///
/// If theres a value with the same name already declared, the function will
/// update the declaration and return existing ValueRef instead.
pub fn declare_cfn(ccx: &CrateContext, name: &str, fn_type: Type) -> ValueRef {
declare_raw_fn(ccx, name, llvm::CCallConv, fn_type)
pub fn declare_cfn(cx: &CodegenCx, name: &str, fn_type: Type) -> ValueRef {
declare_raw_fn(cx, name, llvm::CCallConv, fn_type)
}
@ -123,15 +123,15 @@ pub fn declare_cfn(ccx: &CrateContext, name: &str, fn_type: Type) -> ValueRef {
///
/// If theres a value with the same name already declared, the function will
/// update the declaration and return existing ValueRef instead.
pub fn declare_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, name: &str,
pub fn declare_fn<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>, name: &str,
fn_type: Ty<'tcx>) -> ValueRef {
debug!("declare_rust_fn(name={:?}, fn_type={:?})", name, fn_type);
let sig = common::ty_fn_sig(ccx, fn_type);
let sig = ccx.tcx().erase_late_bound_regions_and_normalize(&sig);
let sig = common::ty_fn_sig(cx, fn_type);
let sig = cx.tcx.erase_late_bound_regions_and_normalize(&sig);
debug!("declare_rust_fn (after region erasure) sig={:?}", sig);
let fty = FnType::new(ccx, sig, &[]);
let llfn = declare_raw_fn(ccx, name, fty.cconv, fty.llvm_type(ccx));
let fty = FnType::new(cx, sig, &[]);
let llfn = declare_raw_fn(cx, name, fty.cconv, fty.llvm_type(cx));
// FIXME(canndrew): This is_never should really be an is_uninhabited
if sig.output().is_never() {
@ -154,11 +154,11 @@ pub fn declare_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>, name: &str,
/// return None if the name already has a definition associated with it. In that
/// case an error should be reported to the user, because it usually happens due
/// to users fault (e.g. misuse of #[no_mangle] or #[export_name] attributes).
pub fn define_global(ccx: &CrateContext, name: &str, ty: Type) -> Option<ValueRef> {
if get_defined_value(ccx, name).is_some() {
pub fn define_global(cx: &CodegenCx, name: &str, ty: Type) -> Option<ValueRef> {
if get_defined_value(cx, name).is_some() {
None
} else {
Some(declare_global(ccx, name, ty))
Some(declare_global(cx, name, ty))
}
}
@ -167,13 +167,13 @@ pub fn define_global(ccx: &CrateContext, name: &str, ty: Type) -> Option<ValueRe
/// Use this function when you intend to define a function. This function will
/// return panic if the name already has a definition associated with it. This
/// can happen with #[no_mangle] or #[export_name], for example.
pub fn define_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
pub fn define_fn<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
name: &str,
fn_type: Ty<'tcx>) -> ValueRef {
if get_defined_value(ccx, name).is_some() {
ccx.sess().fatal(&format!("symbol `{}` already defined", name))
if get_defined_value(cx, name).is_some() {
cx.sess().fatal(&format!("symbol `{}` already defined", name))
} else {
declare_fn(ccx, name, fn_type)
declare_fn(cx, name, fn_type)
}
}
@ -182,22 +182,22 @@ pub fn define_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
/// Use this function when you intend to define a function. This function will
/// return panic if the name already has a definition associated with it. This
/// can happen with #[no_mangle] or #[export_name], for example.
pub fn define_internal_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
pub fn define_internal_fn<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
name: &str,
fn_type: Ty<'tcx>) -> ValueRef {
let llfn = define_fn(ccx, name, fn_type);
let llfn = define_fn(cx, name, fn_type);
unsafe { llvm::LLVMRustSetLinkage(llfn, llvm::Linkage::InternalLinkage) };
llfn
}
/// Get declared value by name.
pub fn get_declared_value(ccx: &CrateContext, name: &str) -> Option<ValueRef> {
pub fn get_declared_value(cx: &CodegenCx, name: &str) -> Option<ValueRef> {
debug!("get_declared_value(name={:?})", name);
let namebuf = CString::new(name).unwrap_or_else(|_|{
bug!("name {:?} contains an interior null byte", name)
});
let val = unsafe { llvm::LLVMRustGetNamedValue(ccx.llmod(), namebuf.as_ptr()) };
let val = unsafe { llvm::LLVMRustGetNamedValue(cx.llmod, namebuf.as_ptr()) };
if val.is_null() {
debug!("get_declared_value: {:?} value is null", name);
None
@ -209,8 +209,8 @@ pub fn get_declared_value(ccx: &CrateContext, name: &str) -> Option<ValueRef> {
/// Get defined or externally defined (AvailableExternally linkage) value by
/// name.
pub fn get_defined_value(ccx: &CrateContext, name: &str) -> Option<ValueRef> {
get_declared_value(ccx, name).and_then(|val|{
pub fn get_defined_value(cx: &CodegenCx, name: &str) -> Option<ValueRef> {
get_declared_value(cx, name).and_then(|val|{
let declaration = unsafe {
llvm::LLVMIsDeclaration(val) != 0
};

View file

@ -23,39 +23,39 @@ use rustc::ty::layout::LayoutOf;
use rustc::ty::{self, Ty};
use value::Value;
pub fn size_and_align_of_dst<'a, 'tcx>(bcx: &Builder<'a, 'tcx>, t: Ty<'tcx>, info: ValueRef)
pub fn size_and_align_of_dst<'a, 'tcx>(bx: &Builder<'a, 'tcx>, t: Ty<'tcx>, info: ValueRef)
-> (ValueRef, ValueRef) {
debug!("calculate size of DST: {}; with lost info: {:?}",
t, Value(info));
if bcx.ccx.shared().type_is_sized(t) {
let (size, align) = bcx.ccx.size_and_align_of(t);
if bx.cx.type_is_sized(t) {
let (size, align) = bx.cx.size_and_align_of(t);
debug!("size_and_align_of_dst t={} info={:?} size: {:?} align: {:?}",
t, Value(info), size, align);
let size = C_usize(bcx.ccx, size.bytes());
let align = C_usize(bcx.ccx, align.abi());
let size = C_usize(bx.cx, size.bytes());
let align = C_usize(bx.cx, align.abi());
return (size, align);
}
assert!(!info.is_null());
match t.sty {
ty::TyDynamic(..) => {
// load size/align from vtable
(meth::SIZE.get_usize(bcx, info), meth::ALIGN.get_usize(bcx, info))
(meth::SIZE.get_usize(bx, info), meth::ALIGN.get_usize(bx, info))
}
ty::TySlice(_) | ty::TyStr => {
let unit = t.sequence_element_type(bcx.tcx());
let unit = t.sequence_element_type(bx.tcx());
// The info in this case is the length of the str, so the size is that
// times the unit size.
let (size, align) = bcx.ccx.size_and_align_of(unit);
(bcx.mul(info, C_usize(bcx.ccx, size.bytes())),
C_usize(bcx.ccx, align.abi()))
let (size, align) = bx.cx.size_and_align_of(unit);
(bx.mul(info, C_usize(bx.cx, size.bytes())),
C_usize(bx.cx, align.abi()))
}
_ => {
let ccx = bcx.ccx;
let cx = bx.cx;
// First get the size of all statically known fields.
// Don't use size_of because it also rounds up to alignment, which we
// want to avoid, as the unsized field's alignment could be smaller.
assert!(!t.is_simd());
let layout = ccx.layout_of(t);
let layout = cx.layout_of(t);
debug!("DST {} layout: {:?}", t, layout);
let i = layout.fields.count() - 1;
@ -63,13 +63,13 @@ pub fn size_and_align_of_dst<'a, 'tcx>(bcx: &Builder<'a, 'tcx>, t: Ty<'tcx>, inf
let sized_align = layout.align.abi();
debug!("DST {} statically sized prefix size: {} align: {}",
t, sized_size, sized_align);
let sized_size = C_usize(ccx, sized_size);
let sized_align = C_usize(ccx, sized_align);
let sized_size = C_usize(cx, sized_size);
let sized_align = C_usize(cx, sized_align);
// Recurse to get the size of the dynamically sized field (must be
// the last field).
let field_ty = layout.field(ccx, i).ty;
let (unsized_size, mut unsized_align) = size_and_align_of_dst(bcx, field_ty, info);
let field_ty = layout.field(cx, i).ty;
let (unsized_size, mut unsized_align) = size_and_align_of_dst(bx, field_ty, info);
// FIXME (#26403, #27023): We should be adding padding
// to `sized_size` (to accommodate the `unsized_align`
@ -79,7 +79,7 @@ pub fn size_and_align_of_dst<'a, 'tcx>(bcx: &Builder<'a, 'tcx>, t: Ty<'tcx>, inf
// here. But this is where the add would go.)
// Return the sum of sizes and max of aligns.
let size = bcx.add(sized_size, unsized_size);
let size = bx.add(sized_size, unsized_size);
// Packed types ignore the alignment of their fields.
if let ty::TyAdt(def, _) = t.sty {
@ -95,9 +95,9 @@ pub fn size_and_align_of_dst<'a, 'tcx>(bcx: &Builder<'a, 'tcx>, t: Ty<'tcx>, inf
(Some(sized_align), Some(unsized_align)) => {
// If both alignments are constant, (the sized_align should always be), then
// pick the correct alignment statically.
C_usize(ccx, std::cmp::max(sized_align, unsized_align) as u64)
C_usize(cx, std::cmp::max(sized_align, unsized_align) as u64)
}
_ => bcx.select(bcx.icmp(llvm::IntUGT, sized_align, unsized_align),
_ => bx.select(bx.icmp(llvm::IntUGT, sized_align, unsized_align),
sized_align,
unsized_align)
};
@ -113,8 +113,8 @@ pub fn size_and_align_of_dst<'a, 'tcx>(bcx: &Builder<'a, 'tcx>, t: Ty<'tcx>, inf
//
// `(size + (align-1)) & -align`
let addend = bcx.sub(align, C_usize(bcx.ccx, 1));
let size = bcx.and(bcx.add(size, addend), bcx.neg(align));
let addend = bx.sub(align, C_usize(bx.cx, 1));
let size = bx.and(bx.add(size, addend), bx.neg(align));
(size, align)
}

File diff suppressed because it is too large Load diff

View file

@ -33,30 +33,30 @@ impl<'a, 'tcx> VirtualIndex {
VirtualIndex(index as u64 + 3)
}
pub fn get_fn(self, bcx: &Builder<'a, 'tcx>,
pub fn get_fn(self, bx: &Builder<'a, 'tcx>,
llvtable: ValueRef,
fn_ty: &FnType<'tcx>) -> ValueRef {
// Load the data pointer from the object.
debug!("get_fn({:?}, {:?})", Value(llvtable), self);
let llvtable = bcx.pointercast(llvtable, fn_ty.llvm_type(bcx.ccx).ptr_to().ptr_to());
let ptr_align = bcx.tcx().data_layout.pointer_align;
let ptr = bcx.load(bcx.inbounds_gep(llvtable, &[C_usize(bcx.ccx, self.0)]), ptr_align);
bcx.nonnull_metadata(ptr);
let llvtable = bx.pointercast(llvtable, fn_ty.llvm_type(bx.cx).ptr_to().ptr_to());
let ptr_align = bx.tcx().data_layout.pointer_align;
let ptr = bx.load(bx.inbounds_gep(llvtable, &[C_usize(bx.cx, self.0)]), ptr_align);
bx.nonnull_metadata(ptr);
// Vtable loads are invariant
bcx.set_invariant_load(ptr);
bx.set_invariant_load(ptr);
ptr
}
pub fn get_usize(self, bcx: &Builder<'a, 'tcx>, llvtable: ValueRef) -> ValueRef {
pub fn get_usize(self, bx: &Builder<'a, 'tcx>, llvtable: ValueRef) -> ValueRef {
// Load the data pointer from the object.
debug!("get_int({:?}, {:?})", Value(llvtable), self);
let llvtable = bcx.pointercast(llvtable, Type::isize(bcx.ccx).ptr_to());
let usize_align = bcx.tcx().data_layout.pointer_align;
let ptr = bcx.load(bcx.inbounds_gep(llvtable, &[C_usize(bcx.ccx, self.0)]), usize_align);
let llvtable = bx.pointercast(llvtable, Type::isize(bx.cx).ptr_to());
let usize_align = bx.tcx().data_layout.pointer_align;
let ptr = bx.load(bx.inbounds_gep(llvtable, &[C_usize(bx.cx, self.0)]), usize_align);
// Vtable loads are invariant
bcx.set_invariant_load(ptr);
bx.set_invariant_load(ptr);
ptr
}
}
@ -69,28 +69,28 @@ impl<'a, 'tcx> VirtualIndex {
/// The `trait_ref` encodes the erased self type. Hence if we are
/// making an object `Foo<Trait>` from a value of type `Foo<T>`, then
/// `trait_ref` would map `T:Trait`.
pub fn get_vtable<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
pub fn get_vtable<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
ty: Ty<'tcx>,
trait_ref: Option<ty::PolyExistentialTraitRef<'tcx>>)
-> ValueRef
{
let tcx = ccx.tcx();
let tcx = cx.tcx;
debug!("get_vtable(ty={:?}, trait_ref={:?})", ty, trait_ref);
// Check the cache.
if let Some(&val) = ccx.vtables().borrow().get(&(ty, trait_ref)) {
if let Some(&val) = cx.vtables.borrow().get(&(ty, trait_ref)) {
return val;
}
// Not in the cache. Build it.
let nullptr = C_null(Type::i8p(ccx));
let nullptr = C_null(Type::i8p(cx));
let (size, align) = ccx.size_and_align_of(ty);
let (size, align) = cx.size_and_align_of(ty);
let mut components: Vec<_> = [
callee::get_fn(ccx, monomorphize::resolve_drop_in_place(ccx.tcx(), ty)),
C_usize(ccx, size.bytes()),
C_usize(ccx, align.abi())
callee::get_fn(cx, monomorphize::resolve_drop_in_place(cx.tcx, ty)),
C_usize(cx, size.bytes()),
C_usize(cx, align.abi())
].iter().cloned().collect();
if let Some(trait_ref) = trait_ref {
@ -98,18 +98,18 @@ pub fn get_vtable<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
let methods = tcx.vtable_methods(trait_ref);
let methods = methods.iter().cloned().map(|opt_mth| {
opt_mth.map_or(nullptr, |(def_id, substs)| {
callee::resolve_and_get_fn(ccx, def_id, substs)
callee::resolve_and_get_fn(cx, def_id, substs)
})
});
components.extend(methods);
}
let vtable_const = C_struct(ccx, &components, false);
let align = ccx.data_layout().pointer_align;
let vtable = consts::addr_of(ccx, vtable_const, align, "vtable");
let vtable_const = C_struct(cx, &components, false);
let align = cx.data_layout().pointer_align;
let vtable = consts::addr_of(cx, vtable_const, align, "vtable");
debuginfo::create_vtable_metadata(ccx, ty, vtable);
debuginfo::create_vtable_metadata(cx, ty, vtable);
ccx.vtables().borrow_mut().insert((ty, trait_ref), vtable);
cx.vtables.borrow_mut().insert((ty, trait_ref), vtable);
vtable
}

View file

@ -20,18 +20,18 @@ use rustc::mir::traversal;
use rustc::ty;
use rustc::ty::layout::LayoutOf;
use type_of::LayoutLlvmExt;
use super::MirContext;
use super::FunctionCx;
pub fn memory_locals<'a, 'tcx>(mircx: &MirContext<'a, 'tcx>) -> BitVector {
let mir = mircx.mir;
let mut analyzer = LocalAnalyzer::new(mircx);
pub fn memory_locals<'a, 'tcx>(fx: &FunctionCx<'a, 'tcx>) -> BitVector {
let mir = fx.mir;
let mut analyzer = LocalAnalyzer::new(fx);
analyzer.visit_mir(mir);
for (index, ty) in mir.local_decls.iter().map(|l| l.ty).enumerate() {
let ty = mircx.monomorphize(&ty);
let ty = fx.monomorphize(&ty);
debug!("local {} has type {:?}", index, ty);
let layout = mircx.ccx.layout_of(ty);
let layout = fx.cx.layout_of(ty);
if layout.is_llvm_immediate() {
// These sorts of types are immediates that we can store
// in an ValueRef without an alloca.
@ -52,21 +52,21 @@ pub fn memory_locals<'a, 'tcx>(mircx: &MirContext<'a, 'tcx>) -> BitVector {
}
struct LocalAnalyzer<'mir, 'a: 'mir, 'tcx: 'a> {
cx: &'mir MirContext<'a, 'tcx>,
fx: &'mir FunctionCx<'a, 'tcx>,
memory_locals: BitVector,
seen_assigned: BitVector
}
impl<'mir, 'a, 'tcx> LocalAnalyzer<'mir, 'a, 'tcx> {
fn new(mircx: &'mir MirContext<'a, 'tcx>) -> LocalAnalyzer<'mir, 'a, 'tcx> {
fn new(fx: &'mir FunctionCx<'a, 'tcx>) -> LocalAnalyzer<'mir, 'a, 'tcx> {
let mut analyzer = LocalAnalyzer {
cx: mircx,
memory_locals: BitVector::new(mircx.mir.local_decls.len()),
seen_assigned: BitVector::new(mircx.mir.local_decls.len())
fx,
memory_locals: BitVector::new(fx.mir.local_decls.len()),
seen_assigned: BitVector::new(fx.mir.local_decls.len())
};
// Arguments get assigned to by means of the function being called
for idx in 0..mircx.mir.arg_count {
for idx in 0..fx.mir.arg_count {
analyzer.seen_assigned.insert(idx + 1);
}
@ -95,7 +95,7 @@ impl<'mir, 'a, 'tcx> Visitor<'tcx> for LocalAnalyzer<'mir, 'a, 'tcx> {
if let mir::Place::Local(index) = *place {
self.mark_assigned(index);
if !self.cx.rvalue_creates_operand(rvalue) {
if !self.fx.rvalue_creates_operand(rvalue) {
self.mark_as_memory(index);
}
} else {
@ -117,7 +117,7 @@ impl<'mir, 'a, 'tcx> Visitor<'tcx> for LocalAnalyzer<'mir, 'a, 'tcx> {
}, ..
}),
ref args, ..
} if Some(def_id) == self.cx.ccx.tcx().lang_items().box_free_fn() => {
} if Some(def_id) == self.fx.cx.tcx.lang_items().box_free_fn() => {
// box_free(x) shares with `drop x` the property that it
// is not guaranteed to be statically dominated by the
// definition of x, so x must always be in an alloca.
@ -136,7 +136,7 @@ impl<'mir, 'a, 'tcx> Visitor<'tcx> for LocalAnalyzer<'mir, 'a, 'tcx> {
context: PlaceContext<'tcx>,
location: Location) {
debug!("visit_place(place={:?}, context={:?})", place, context);
let ccx = self.cx.ccx;
let cx = self.fx.cx;
if let mir::Place::Projection(ref proj) = *place {
// Allow uses of projections that are ZSTs or from scalar fields.
@ -145,18 +145,18 @@ impl<'mir, 'a, 'tcx> Visitor<'tcx> for LocalAnalyzer<'mir, 'a, 'tcx> {
_ => false
};
if is_consume {
let base_ty = proj.base.ty(self.cx.mir, ccx.tcx());
let base_ty = self.cx.monomorphize(&base_ty);
let base_ty = proj.base.ty(self.fx.mir, cx.tcx);
let base_ty = self.fx.monomorphize(&base_ty);
// ZSTs don't require any actual memory access.
let elem_ty = base_ty.projection_ty(ccx.tcx(), &proj.elem).to_ty(ccx.tcx());
let elem_ty = self.cx.monomorphize(&elem_ty);
if ccx.layout_of(elem_ty).is_zst() {
let elem_ty = base_ty.projection_ty(cx.tcx, &proj.elem).to_ty(cx.tcx);
let elem_ty = self.fx.monomorphize(&elem_ty);
if cx.layout_of(elem_ty).is_zst() {
return;
}
if let mir::ProjectionElem::Field(..) = proj.elem {
let layout = ccx.layout_of(base_ty.to_ty(ccx.tcx()));
let layout = cx.layout_of(base_ty.to_ty(cx.tcx));
if layout.is_llvm_immediate() || layout.is_llvm_scalar_pair() {
// Recurse with the same context, instead of `Projection`,
// potentially stopping at non-operand projections,
@ -200,11 +200,11 @@ impl<'mir, 'a, 'tcx> Visitor<'tcx> for LocalAnalyzer<'mir, 'a, 'tcx> {
}
PlaceContext::Drop => {
let ty = mir::Place::Local(index).ty(self.cx.mir, self.cx.ccx.tcx());
let ty = self.cx.monomorphize(&ty.to_ty(self.cx.ccx.tcx()));
let ty = mir::Place::Local(index).ty(self.fx.mir, self.fx.cx.tcx);
let ty = self.fx.monomorphize(&ty.to_ty(self.fx.cx.tcx));
// Only need the place if we're actually dropping it.
if self.cx.ccx.shared().type_needs_drop(ty) {
if self.fx.cx.type_needs_drop(ty) {
self.mark_as_memory(index);
}
}

View file

@ -29,35 +29,35 @@ use type_::Type;
use syntax::symbol::Symbol;
use syntax_pos::Pos;
use super::{MirContext, LocalRef};
use super::{FunctionCx, LocalRef};
use super::constant::Const;
use super::place::PlaceRef;
use super::operand::OperandRef;
use super::operand::OperandValue::{Pair, Ref, Immediate};
impl<'a, 'tcx> MirContext<'a, 'tcx> {
impl<'a, 'tcx> FunctionCx<'a, 'tcx> {
pub fn trans_block(&mut self, bb: mir::BasicBlock) {
let mut bcx = self.get_builder(bb);
let mut bx = self.build_block(bb);
let data = &self.mir[bb];
debug!("trans_block({:?}={:?})", bb, data);
for statement in &data.statements {
bcx = self.trans_statement(bcx, statement);
bx = self.trans_statement(bx, statement);
}
self.trans_terminator(bcx, bb, data.terminator());
self.trans_terminator(bx, bb, data.terminator());
}
fn trans_terminator(&mut self,
mut bcx: Builder<'a, 'tcx>,
mut bx: Builder<'a, 'tcx>,
bb: mir::BasicBlock,
terminator: &mir::Terminator<'tcx>)
{
debug!("trans_terminator: {:?}", terminator);
// Create the cleanup bundle, if needed.
let tcx = bcx.tcx();
let tcx = bx.tcx();
let span = terminator.source_info.span;
let funclet_bb = self.cleanup_kinds[bb].funclet_bb(bb);
let funclet = funclet_bb.and_then(|funclet_bb| self.funclets[funclet_bb].as_ref());
@ -99,20 +99,20 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
}
};
let funclet_br = |this: &mut Self, bcx: Builder, target: mir::BasicBlock| {
let funclet_br = |this: &mut Self, bx: Builder, target: mir::BasicBlock| {
let (lltarget, is_cleanupret) = lltarget(this, target);
if is_cleanupret {
// micro-optimization: generate a `ret` rather than a jump
// to a trampoline.
bcx.cleanup_ret(cleanup_pad.unwrap(), Some(lltarget));
bx.cleanup_ret(cleanup_pad.unwrap(), Some(lltarget));
} else {
bcx.br(lltarget);
bx.br(lltarget);
}
};
let do_call = |
this: &mut Self,
bcx: Builder<'a, 'tcx>,
bx: Builder<'a, 'tcx>,
fn_ty: FnType<'tcx>,
fn_ptr: ValueRef,
llargs: &[ValueRef],
@ -120,25 +120,25 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
cleanup: Option<mir::BasicBlock>
| {
if let Some(cleanup) = cleanup {
let ret_bcx = if let Some((_, target)) = destination {
let ret_bx = if let Some((_, target)) = destination {
this.blocks[target]
} else {
this.unreachable_block()
};
let invokeret = bcx.invoke(fn_ptr,
let invokeret = bx.invoke(fn_ptr,
&llargs,
ret_bcx,
ret_bx,
llblock(this, cleanup),
cleanup_bundle);
fn_ty.apply_attrs_callsite(invokeret);
if let Some((ret_dest, target)) = destination {
let ret_bcx = this.get_builder(target);
this.set_debug_loc(&ret_bcx, terminator.source_info);
this.store_return(&ret_bcx, ret_dest, &fn_ty.ret, invokeret);
let ret_bx = this.build_block(target);
this.set_debug_loc(&ret_bx, terminator.source_info);
this.store_return(&ret_bx, ret_dest, &fn_ty.ret, invokeret);
}
} else {
let llret = bcx.call(fn_ptr, &llargs, cleanup_bundle);
let llret = bx.call(fn_ptr, &llargs, cleanup_bundle);
fn_ty.apply_attrs_callsite(llret);
if this.mir[bb].is_cleanup {
// Cleanup is always the cold path. Don't inline
@ -149,66 +149,66 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
}
if let Some((ret_dest, target)) = destination {
this.store_return(&bcx, ret_dest, &fn_ty.ret, llret);
funclet_br(this, bcx, target);
this.store_return(&bx, ret_dest, &fn_ty.ret, llret);
funclet_br(this, bx, target);
} else {
bcx.unreachable();
bx.unreachable();
}
}
};
self.set_debug_loc(&bcx, terminator.source_info);
self.set_debug_loc(&bx, terminator.source_info);
match terminator.kind {
mir::TerminatorKind::Resume => {
if let Some(cleanup_pad) = cleanup_pad {
bcx.cleanup_ret(cleanup_pad, None);
bx.cleanup_ret(cleanup_pad, None);
} else {
let slot = self.get_personality_slot(&bcx);
let lp0 = slot.project_field(&bcx, 0).load(&bcx).immediate();
let lp1 = slot.project_field(&bcx, 1).load(&bcx).immediate();
slot.storage_dead(&bcx);
let slot = self.get_personality_slot(&bx);
let lp0 = slot.project_field(&bx, 0).load(&bx).immediate();
let lp1 = slot.project_field(&bx, 1).load(&bx).immediate();
slot.storage_dead(&bx);
if !bcx.sess().target.target.options.custom_unwind_resume {
if !bx.sess().target.target.options.custom_unwind_resume {
let mut lp = C_undef(self.landing_pad_type());
lp = bcx.insert_value(lp, lp0, 0);
lp = bcx.insert_value(lp, lp1, 1);
bcx.resume(lp);
lp = bx.insert_value(lp, lp0, 0);
lp = bx.insert_value(lp, lp1, 1);
bx.resume(lp);
} else {
bcx.call(bcx.ccx.eh_unwind_resume(), &[lp0], cleanup_bundle);
bcx.unreachable();
bx.call(bx.cx.eh_unwind_resume(), &[lp0], cleanup_bundle);
bx.unreachable();
}
}
}
mir::TerminatorKind::Abort => {
// Call core::intrinsics::abort()
let fnname = bcx.ccx.get_intrinsic(&("llvm.trap"));
bcx.call(fnname, &[], None);
bcx.unreachable();
let fnname = bx.cx.get_intrinsic(&("llvm.trap"));
bx.call(fnname, &[], None);
bx.unreachable();
}
mir::TerminatorKind::Goto { target } => {
funclet_br(self, bcx, target);
funclet_br(self, bx, target);
}
mir::TerminatorKind::SwitchInt { ref discr, switch_ty, ref values, ref targets } => {
let discr = self.trans_operand(&bcx, discr);
if switch_ty == bcx.tcx().types.bool {
let discr = self.trans_operand(&bx, discr);
if switch_ty == bx.tcx().types.bool {
let lltrue = llblock(self, targets[0]);
let llfalse = llblock(self, targets[1]);
if let [ConstInt::U8(0)] = values[..] {
bcx.cond_br(discr.immediate(), llfalse, lltrue);
bx.cond_br(discr.immediate(), llfalse, lltrue);
} else {
bcx.cond_br(discr.immediate(), lltrue, llfalse);
bx.cond_br(discr.immediate(), lltrue, llfalse);
}
} else {
let (otherwise, targets) = targets.split_last().unwrap();
let switch = bcx.switch(discr.immediate(),
let switch = bx.switch(discr.immediate(),
llblock(self, *otherwise), values.len());
for (value, target) in values.iter().zip(targets) {
let val = Const::from_constint(bcx.ccx, value);
let val = Const::from_constint(bx.cx, value);
let llbb = llblock(self, *target);
bcx.add_case(switch, val.llval, llbb)
bx.add_case(switch, val.llval, llbb)
}
}
}
@ -216,16 +216,16 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
mir::TerminatorKind::Return => {
let llval = match self.fn_ty.ret.mode {
PassMode::Ignore | PassMode::Indirect(_) => {
bcx.ret_void();
bx.ret_void();
return;
}
PassMode::Direct(_) | PassMode::Pair(..) => {
let op = self.trans_consume(&bcx, &mir::Place::Local(mir::RETURN_PLACE));
let op = self.trans_consume(&bx, &mir::Place::Local(mir::RETURN_PLACE));
if let Ref(llval, align) = op.val {
bcx.load(llval, align)
bx.load(llval, align)
} else {
op.immediate_or_packed_pair(&bcx)
op.immediate_or_packed_pair(&bx)
}
}
@ -242,8 +242,8 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
};
let llslot = match op.val {
Immediate(_) | Pair(..) => {
let scratch = PlaceRef::alloca(&bcx, self.fn_ty.ret.layout, "ret");
op.val.store(&bcx, scratch);
let scratch = PlaceRef::alloca(&bx, self.fn_ty.ret.layout, "ret");
op.val.store(&bx, scratch);
scratch.llval
}
Ref(llval, align) => {
@ -252,53 +252,53 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
llval
}
};
bcx.load(
bcx.pointercast(llslot, cast_ty.llvm_type(bcx.ccx).ptr_to()),
bx.load(
bx.pointercast(llslot, cast_ty.llvm_type(bx.cx).ptr_to()),
self.fn_ty.ret.layout.align)
}
};
bcx.ret(llval);
bx.ret(llval);
}
mir::TerminatorKind::Unreachable => {
bcx.unreachable();
bx.unreachable();
}
mir::TerminatorKind::Drop { ref location, target, unwind } => {
let ty = location.ty(self.mir, bcx.tcx()).to_ty(bcx.tcx());
let ty = location.ty(self.mir, bx.tcx()).to_ty(bx.tcx());
let ty = self.monomorphize(&ty);
let drop_fn = monomorphize::resolve_drop_in_place(bcx.ccx.tcx(), ty);
let drop_fn = monomorphize::resolve_drop_in_place(bx.cx.tcx, ty);
if let ty::InstanceDef::DropGlue(_, None) = drop_fn.def {
// we don't actually need to drop anything.
funclet_br(self, bcx, target);
funclet_br(self, bx, target);
return
}
let place = self.trans_place(&bcx, location);
let place = self.trans_place(&bx, location);
let mut args: &[_] = &[place.llval, place.llextra];
args = &args[..1 + place.has_extra() as usize];
let (drop_fn, fn_ty) = match ty.sty {
ty::TyDynamic(..) => {
let fn_ty = drop_fn.ty(bcx.ccx.tcx());
let sig = common::ty_fn_sig(bcx.ccx, fn_ty);
let sig = bcx.tcx().erase_late_bound_regions_and_normalize(&sig);
let fn_ty = FnType::new_vtable(bcx.ccx, sig, &[]);
let fn_ty = drop_fn.ty(bx.cx.tcx);
let sig = common::ty_fn_sig(bx.cx, fn_ty);
let sig = bx.tcx().erase_late_bound_regions_and_normalize(&sig);
let fn_ty = FnType::new_vtable(bx.cx, sig, &[]);
args = &args[..1];
(meth::DESTRUCTOR.get_fn(&bcx, place.llextra, &fn_ty), fn_ty)
(meth::DESTRUCTOR.get_fn(&bx, place.llextra, &fn_ty), fn_ty)
}
_ => {
(callee::get_fn(bcx.ccx, drop_fn),
FnType::of_instance(bcx.ccx, &drop_fn))
(callee::get_fn(bx.cx, drop_fn),
FnType::of_instance(bx.cx, &drop_fn))
}
};
do_call(self, bcx, fn_ty, drop_fn, args,
do_call(self, bx, fn_ty, drop_fn, args,
Some((ReturnDest::Nothing, target)),
unwind);
}
mir::TerminatorKind::Assert { ref cond, expected, ref msg, target, cleanup } => {
let cond = self.trans_operand(&bcx, cond).immediate();
let cond = self.trans_operand(&bx, cond).immediate();
let mut const_cond = common::const_to_opt_u128(cond, false).map(|c| c == 1);
// This case can currently arise only from functions marked
@ -308,7 +308,7 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
// NOTE: Unlike binops, negation doesn't have its own
// checked operation, just a comparison with the minimum
// value, so we have to check for the assert message.
if !bcx.ccx.check_overflow() {
if !bx.cx.check_overflow {
use rustc_const_math::ConstMathErr::Overflow;
use rustc_const_math::Op::Neg;
@ -319,33 +319,33 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
// Don't translate the panic block if success if known.
if const_cond == Some(expected) {
funclet_br(self, bcx, target);
funclet_br(self, bx, target);
return;
}
// Pass the condition through llvm.expect for branch hinting.
let expect = bcx.ccx.get_intrinsic(&"llvm.expect.i1");
let cond = bcx.call(expect, &[cond, C_bool(bcx.ccx, expected)], None);
let expect = bx.cx.get_intrinsic(&"llvm.expect.i1");
let cond = bx.call(expect, &[cond, C_bool(bx.cx, expected)], None);
// Create the failure block and the conditional branch to it.
let lltarget = llblock(self, target);
let panic_block = self.new_block("panic");
if expected {
bcx.cond_br(cond, lltarget, panic_block.llbb());
bx.cond_br(cond, lltarget, panic_block.llbb());
} else {
bcx.cond_br(cond, panic_block.llbb(), lltarget);
bx.cond_br(cond, panic_block.llbb(), lltarget);
}
// After this point, bcx is the block for the call to panic.
bcx = panic_block;
self.set_debug_loc(&bcx, terminator.source_info);
// After this point, bx is the block for the call to panic.
bx = panic_block;
self.set_debug_loc(&bx, terminator.source_info);
// Get the location information.
let loc = bcx.sess().codemap().lookup_char_pos(span.lo());
let loc = bx.sess().codemap().lookup_char_pos(span.lo());
let filename = Symbol::intern(&loc.file.name.to_string()).as_str();
let filename = C_str_slice(bcx.ccx, filename);
let line = C_u32(bcx.ccx, loc.line as u32);
let col = C_u32(bcx.ccx, loc.col.to_usize() as u32 + 1);
let filename = C_str_slice(bx.cx, filename);
let line = C_u32(bx.cx, loc.line as u32);
let col = C_u32(bx.cx, loc.col.to_usize() as u32 + 1);
let align = tcx.data_layout.aggregate_align
.max(tcx.data_layout.i32_align)
.max(tcx.data_layout.pointer_align);
@ -353,8 +353,8 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
// Put together the arguments to the panic entry point.
let (lang_item, args, const_err) = match *msg {
mir::AssertMessage::BoundsCheck { ref len, ref index } => {
let len = self.trans_operand(&mut bcx, len).immediate();
let index = self.trans_operand(&mut bcx, index).immediate();
let len = self.trans_operand(&mut bx, len).immediate();
let index = self.trans_operand(&mut bx, index).immediate();
let const_err = common::const_to_opt_u128(len, false)
.and_then(|len| common::const_to_opt_u128(index, false)
@ -363,8 +363,8 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
index: index as u64
}));
let file_line_col = C_struct(bcx.ccx, &[filename, line, col], false);
let file_line_col = consts::addr_of(bcx.ccx,
let file_line_col = C_struct(bx.cx, &[filename, line, col], false);
let file_line_col = consts::addr_of(bx.cx,
file_line_col,
align,
"panic_bounds_check_loc");
@ -374,11 +374,11 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
}
mir::AssertMessage::Math(ref err) => {
let msg_str = Symbol::intern(err.description()).as_str();
let msg_str = C_str_slice(bcx.ccx, msg_str);
let msg_file_line_col = C_struct(bcx.ccx,
let msg_str = C_str_slice(bx.cx, msg_str);
let msg_file_line_col = C_struct(bx.cx,
&[msg_str, filename, line, col],
false);
let msg_file_line_col = consts::addr_of(bcx.ccx,
let msg_file_line_col = consts::addr_of(bx.cx,
msg_file_line_col,
align,
"panic_loc");
@ -394,11 +394,11 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
"generator resumed after panicking"
};
let msg_str = Symbol::intern(str).as_str();
let msg_str = C_str_slice(bcx.ccx, msg_str);
let msg_file_line_col = C_struct(bcx.ccx,
let msg_str = C_str_slice(bx.cx, msg_str);
let msg_file_line_col = C_struct(bx.cx,
&[msg_str, filename, line, col],
false);
let msg_file_line_col = consts::addr_of(bcx.ccx,
let msg_file_line_col = consts::addr_of(bx.cx,
msg_file_line_col,
align,
"panic_loc");
@ -413,21 +413,21 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
if const_cond == Some(!expected) {
if let Some(err) = const_err {
let err = ConstEvalErr{ span: span, kind: err };
let mut diag = bcx.tcx().sess.struct_span_warn(
let mut diag = bx.tcx().sess.struct_span_warn(
span, "this expression will panic at run-time");
err.note(bcx.tcx(), span, "expression", &mut diag);
err.note(bx.tcx(), span, "expression", &mut diag);
diag.emit();
}
}
// Obtain the panic entry point.
let def_id = common::langcall(bcx.tcx(), Some(span), "", lang_item);
let instance = ty::Instance::mono(bcx.tcx(), def_id);
let fn_ty = FnType::of_instance(bcx.ccx, &instance);
let llfn = callee::get_fn(bcx.ccx, instance);
let def_id = common::langcall(bx.tcx(), Some(span), "", lang_item);
let instance = ty::Instance::mono(bx.tcx(), def_id);
let fn_ty = FnType::of_instance(bx.cx, &instance);
let llfn = callee::get_fn(bx.cx, instance);
// Translate the actual panic invoke/call.
do_call(self, bcx, fn_ty, llfn, &args, None, cleanup);
do_call(self, bx, fn_ty, llfn, &args, None, cleanup);
}
mir::TerminatorKind::DropAndReplace { .. } => {
@ -436,11 +436,11 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
mir::TerminatorKind::Call { ref func, ref args, ref destination, cleanup } => {
// Create the callee. This is a fn ptr or zero-sized and hence a kind of scalar.
let callee = self.trans_operand(&bcx, func);
let callee = self.trans_operand(&bx, func);
let (instance, mut llfn) = match callee.layout.ty.sty {
ty::TyFnDef(def_id, substs) => {
(Some(ty::Instance::resolve(bcx.ccx.tcx(),
(Some(ty::Instance::resolve(bx.cx.tcx,
ty::ParamEnv::empty(traits::Reveal::All),
def_id,
substs).unwrap()),
@ -452,42 +452,42 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
_ => bug!("{} is not callable", callee.layout.ty)
};
let def = instance.map(|i| i.def);
let sig = callee.layout.ty.fn_sig(bcx.tcx());
let sig = bcx.tcx().erase_late_bound_regions_and_normalize(&sig);
let sig = callee.layout.ty.fn_sig(bx.tcx());
let sig = bx.tcx().erase_late_bound_regions_and_normalize(&sig);
let abi = sig.abi;
// Handle intrinsics old trans wants Expr's for, ourselves.
let intrinsic = match def {
Some(ty::InstanceDef::Intrinsic(def_id))
=> Some(bcx.tcx().item_name(def_id)),
=> Some(bx.tcx().item_name(def_id)),
_ => None
};
let intrinsic = intrinsic.as_ref().map(|s| &s[..]);
if intrinsic == Some("transmute") {
let &(ref dest, target) = destination.as_ref().unwrap();
self.trans_transmute(&bcx, &args[0], dest);
funclet_br(self, bcx, target);
self.trans_transmute(&bx, &args[0], dest);
funclet_br(self, bx, target);
return;
}
let extra_args = &args[sig.inputs().len()..];
let extra_args = extra_args.iter().map(|op_arg| {
let op_ty = op_arg.ty(self.mir, bcx.tcx());
let op_ty = op_arg.ty(self.mir, bx.tcx());
self.monomorphize(&op_ty)
}).collect::<Vec<_>>();
let fn_ty = match def {
Some(ty::InstanceDef::Virtual(..)) => {
FnType::new_vtable(bcx.ccx, sig, &extra_args)
FnType::new_vtable(bx.cx, sig, &extra_args)
}
Some(ty::InstanceDef::DropGlue(_, None)) => {
// empty drop glue - a nop.
let &(_, target) = destination.as_ref().unwrap();
funclet_br(self, bcx, target);
funclet_br(self, bx, target);
return;
}
_ => FnType::new(bcx.ccx, sig, &extra_args)
_ => FnType::new(bx.cx, sig, &extra_args)
};
// The arguments we'll be passing. Plus one to account for outptr, if used.
@ -497,7 +497,7 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
// Prepare the return value destination
let ret_dest = if let Some((ref dest, _)) = *destination {
let is_intrinsic = intrinsic.is_some();
self.make_return_dest(&bcx, dest, &fn_ty.ret, &mut llargs,
self.make_return_dest(&bx, dest, &fn_ty.ret, &mut llargs,
is_intrinsic)
} else {
ReturnDest::Nothing
@ -509,7 +509,7 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
let dest = match ret_dest {
_ if fn_ty.ret.is_indirect() => llargs[0],
ReturnDest::Nothing => {
C_undef(fn_ty.ret.memory_ty(bcx.ccx).ptr_to())
C_undef(fn_ty.ret.memory_ty(bx.cx).ptr_to())
}
ReturnDest::IndirectOperand(dst, _) |
ReturnDest::Store(dst) => dst.llval,
@ -529,31 +529,31 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
span_bug!(span, "shuffle indices must be constant");
}
mir::Operand::Constant(ref constant) => {
let val = self.trans_constant(&bcx, constant);
let val = self.trans_constant(&bx, constant);
return OperandRef {
val: Immediate(val.llval),
layout: bcx.ccx.layout_of(val.ty)
layout: bx.cx.layout_of(val.ty)
};
}
}
}
self.trans_operand(&bcx, arg)
self.trans_operand(&bx, arg)
}).collect();
let callee_ty = instance.as_ref().unwrap().ty(bcx.ccx.tcx());
trans_intrinsic_call(&bcx, callee_ty, &fn_ty, &args, dest,
let callee_ty = instance.as_ref().unwrap().ty(bx.cx.tcx);
trans_intrinsic_call(&bx, callee_ty, &fn_ty, &args, dest,
terminator.source_info.span);
if let ReturnDest::IndirectOperand(dst, _) = ret_dest {
self.store_return(&bcx, ret_dest, &fn_ty.ret, dst.llval);
self.store_return(&bx, ret_dest, &fn_ty.ret, dst.llval);
}
if let Some((_, target)) = *destination {
funclet_br(self, bcx, target);
funclet_br(self, bx, target);
} else {
bcx.unreachable();
bx.unreachable();
}
return;
@ -568,11 +568,11 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
};
for (i, arg) in first_args.iter().enumerate() {
let mut op = self.trans_operand(&bcx, arg);
let mut op = self.trans_operand(&bx, arg);
if let (0, Some(ty::InstanceDef::Virtual(_, idx))) = (i, def) {
if let Pair(data_ptr, meta) = op.val {
llfn = Some(meth::VirtualIndex::from_index(idx)
.get_fn(&bcx, meta, &fn_ty));
.get_fn(&bx, meta, &fn_ty));
llargs.push(data_ptr);
continue;
}
@ -583,27 +583,27 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
match (arg, op.val) {
(&mir::Operand::Copy(_), Ref(..)) |
(&mir::Operand::Constant(_), Ref(..)) => {
let tmp = PlaceRef::alloca(&bcx, op.layout, "const");
op.val.store(&bcx, tmp);
let tmp = PlaceRef::alloca(&bx, op.layout, "const");
op.val.store(&bx, tmp);
op.val = Ref(tmp.llval, tmp.align);
}
_ => {}
}
self.trans_argument(&bcx, op, &mut llargs, &fn_ty.args[i]);
self.trans_argument(&bx, op, &mut llargs, &fn_ty.args[i]);
}
if let Some(tup) = untuple {
self.trans_arguments_untupled(&bcx, tup, &mut llargs,
self.trans_arguments_untupled(&bx, tup, &mut llargs,
&fn_ty.args[first_args.len()..])
}
let fn_ptr = match (llfn, instance) {
(Some(llfn), _) => llfn,
(None, Some(instance)) => callee::get_fn(bcx.ccx, instance),
(None, Some(instance)) => callee::get_fn(bx.cx, instance),
_ => span_bug!(span, "no llfn for call"),
};
do_call(self, bcx, fn_ty, fn_ptr, &llargs,
do_call(self, bx, fn_ty, fn_ptr, &llargs,
destination.as_ref().map(|&(_, target)| (ret_dest, target)),
cleanup);
}
@ -614,13 +614,13 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
}
fn trans_argument(&mut self,
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
op: OperandRef<'tcx>,
llargs: &mut Vec<ValueRef>,
arg: &ArgType<'tcx>) {
// Fill padding with undef value, where applicable.
if let Some(ty) = arg.pad {
llargs.push(C_undef(ty.llvm_type(bcx.ccx)));
llargs.push(C_undef(ty.llvm_type(bx.cx)));
}
if arg.is_ignore() {
@ -643,12 +643,12 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
Immediate(_) | Pair(..) => {
match arg.mode {
PassMode::Indirect(_) | PassMode::Cast(_) => {
let scratch = PlaceRef::alloca(bcx, arg.layout, "arg");
op.val.store(bcx, scratch);
let scratch = PlaceRef::alloca(bx, arg.layout, "arg");
op.val.store(bx, scratch);
(scratch.llval, scratch.align, true)
}
_ => {
(op.immediate_or_packed_pair(bcx), arg.layout.align, false)
(op.immediate_or_packed_pair(bx), arg.layout.align, false)
}
}
}
@ -658,8 +658,8 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
// think that ATM (Rust 1.16) we only pass temporaries, but we shouldn't
// have scary latent bugs around.
let scratch = PlaceRef::alloca(bcx, arg.layout, "arg");
base::memcpy_ty(bcx, scratch.llval, llval, op.layout, align);
let scratch = PlaceRef::alloca(bx, arg.layout, "arg");
base::memcpy_ty(bx, scratch.llval, llval, op.layout, align);
(scratch.llval, scratch.align, true)
} else {
(llval, align, true)
@ -670,7 +670,7 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
if by_ref && !arg.is_indirect() {
// Have to load the argument, maybe while casting it.
if let PassMode::Cast(ty) = arg.mode {
llval = bcx.load(bcx.pointercast(llval, ty.llvm_type(bcx.ccx).ptr_to()),
llval = bx.load(bx.pointercast(llval, ty.llvm_type(bx.cx).ptr_to()),
align.min(arg.layout.align));
} else {
// We can't use `PlaceRef::load` here because the argument
@ -678,14 +678,14 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
// used for this call is passing it by-value. In that case,
// the load would just produce `OperandValue::Ref` instead
// of the `OperandValue::Immediate` we need for the call.
llval = bcx.load(llval, align);
llval = bx.load(llval, align);
if let layout::Abi::Scalar(ref scalar) = arg.layout.abi {
if scalar.is_bool() {
bcx.range_metadata(llval, 0..2);
bx.range_metadata(llval, 0..2);
}
}
// We store bools as i8 so we need to truncate to i1.
llval = base::to_immediate(bcx, llval, arg.layout);
llval = base::to_immediate(bx, llval, arg.layout);
}
}
@ -693,38 +693,38 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
}
fn trans_arguments_untupled(&mut self,
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
operand: &mir::Operand<'tcx>,
llargs: &mut Vec<ValueRef>,
args: &[ArgType<'tcx>]) {
let tuple = self.trans_operand(bcx, operand);
let tuple = self.trans_operand(bx, operand);
// Handle both by-ref and immediate tuples.
if let Ref(llval, align) = tuple.val {
let tuple_ptr = PlaceRef::new_sized(llval, tuple.layout, align);
for i in 0..tuple.layout.fields.count() {
let field_ptr = tuple_ptr.project_field(bcx, i);
self.trans_argument(bcx, field_ptr.load(bcx), llargs, &args[i]);
let field_ptr = tuple_ptr.project_field(bx, i);
self.trans_argument(bx, field_ptr.load(bx), llargs, &args[i]);
}
} else {
// If the tuple is immediate, the elements are as well.
for i in 0..tuple.layout.fields.count() {
let op = tuple.extract_field(bcx, i);
self.trans_argument(bcx, op, llargs, &args[i]);
let op = tuple.extract_field(bx, i);
self.trans_argument(bx, op, llargs, &args[i]);
}
}
}
fn get_personality_slot(&mut self, bcx: &Builder<'a, 'tcx>) -> PlaceRef<'tcx> {
let ccx = bcx.ccx;
fn get_personality_slot(&mut self, bx: &Builder<'a, 'tcx>) -> PlaceRef<'tcx> {
let cx = bx.cx;
if let Some(slot) = self.personality_slot {
slot
} else {
let layout = ccx.layout_of(ccx.tcx().intern_tup(&[
ccx.tcx().mk_mut_ptr(ccx.tcx().types.u8),
ccx.tcx().types.i32
let layout = cx.layout_of(cx.tcx.intern_tup(&[
cx.tcx.mk_mut_ptr(cx.tcx.types.u8),
cx.tcx.types.i32
], false));
let slot = PlaceRef::alloca(bcx, layout, "personalityslot");
let slot = PlaceRef::alloca(bx, layout, "personalityslot");
self.personality_slot = Some(slot);
slot
}
@ -745,28 +745,28 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
}
fn landing_pad_uncached(&mut self, target_bb: BasicBlockRef) -> BasicBlockRef {
if base::wants_msvc_seh(self.ccx.sess()) {
if base::wants_msvc_seh(self.cx.sess()) {
span_bug!(self.mir.span, "landing pad was not inserted?")
}
let bcx = self.new_block("cleanup");
let bx = self.new_block("cleanup");
let llpersonality = self.ccx.eh_personality();
let llpersonality = self.cx.eh_personality();
let llretty = self.landing_pad_type();
let lp = bcx.landing_pad(llretty, llpersonality, 1);
bcx.set_cleanup(lp);
let lp = bx.landing_pad(llretty, llpersonality, 1);
bx.set_cleanup(lp);
let slot = self.get_personality_slot(&bcx);
slot.storage_live(&bcx);
Pair(bcx.extract_value(lp, 0), bcx.extract_value(lp, 1)).store(&bcx, slot);
let slot = self.get_personality_slot(&bx);
slot.storage_live(&bx);
Pair(bx.extract_value(lp, 0), bx.extract_value(lp, 1)).store(&bx, slot);
bcx.br(target_bb);
bcx.llbb()
bx.br(target_bb);
bx.llbb()
}
fn landing_pad_type(&self) -> Type {
let ccx = self.ccx;
Type::struct_(ccx, &[Type::i8p(ccx), Type::i32(ccx)], false)
let cx = self.cx;
Type::struct_(cx, &[Type::i8p(cx), Type::i32(cx)], false)
}
fn unreachable_block(&mut self) -> BasicBlockRef {
@ -779,16 +779,16 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
}
pub fn new_block(&self, name: &str) -> Builder<'a, 'tcx> {
Builder::new_block(self.ccx, self.llfn, name)
Builder::new_block(self.cx, self.llfn, name)
}
pub fn get_builder(&self, bb: mir::BasicBlock) -> Builder<'a, 'tcx> {
let builder = Builder::with_ccx(self.ccx);
builder.position_at_end(self.blocks[bb]);
builder
pub fn build_block(&self, bb: mir::BasicBlock) -> Builder<'a, 'tcx> {
let bx = Builder::with_cx(self.cx);
bx.position_at_end(self.blocks[bb]);
bx
}
fn make_return_dest(&mut self, bcx: &Builder<'a, 'tcx>,
fn make_return_dest(&mut self, bx: &Builder<'a, 'tcx>,
dest: &mir::Place<'tcx>, fn_ret: &ArgType<'tcx>,
llargs: &mut Vec<ValueRef>, is_intrinsic: bool)
-> ReturnDest<'tcx> {
@ -805,16 +805,16 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
return if fn_ret.is_indirect() {
// Odd, but possible, case, we have an operand temporary,
// but the calling convention has an indirect return.
let tmp = PlaceRef::alloca(bcx, fn_ret.layout, "tmp_ret");
tmp.storage_live(bcx);
let tmp = PlaceRef::alloca(bx, fn_ret.layout, "tmp_ret");
tmp.storage_live(bx);
llargs.push(tmp.llval);
ReturnDest::IndirectOperand(tmp, index)
} else if is_intrinsic {
// Currently, intrinsics always need a location to store
// the result. so we create a temporary alloca for the
// result
let tmp = PlaceRef::alloca(bcx, fn_ret.layout, "tmp_ret");
tmp.storage_live(bcx);
let tmp = PlaceRef::alloca(bx, fn_ret.layout, "tmp_ret");
tmp.storage_live(bx);
ReturnDest::IndirectOperand(tmp, index)
} else {
ReturnDest::DirectOperand(index)
@ -825,7 +825,7 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
}
}
} else {
self.trans_place(bcx, dest)
self.trans_place(bx, dest)
};
if fn_ret.is_indirect() {
if dest.align.abi() < dest.layout.align.abi() {
@ -844,20 +844,20 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
}
}
fn trans_transmute(&mut self, bcx: &Builder<'a, 'tcx>,
fn trans_transmute(&mut self, bx: &Builder<'a, 'tcx>,
src: &mir::Operand<'tcx>,
dst: &mir::Place<'tcx>) {
if let mir::Place::Local(index) = *dst {
match self.locals[index] {
LocalRef::Place(place) => self.trans_transmute_into(bcx, src, place),
LocalRef::Place(place) => self.trans_transmute_into(bx, src, place),
LocalRef::Operand(None) => {
let dst_layout = bcx.ccx.layout_of(self.monomorphized_place_ty(dst));
let dst_layout = bx.cx.layout_of(self.monomorphized_place_ty(dst));
assert!(!dst_layout.ty.has_erasable_regions());
let place = PlaceRef::alloca(bcx, dst_layout, "transmute_temp");
place.storage_live(bcx);
self.trans_transmute_into(bcx, src, place);
let op = place.load(bcx);
place.storage_dead(bcx);
let place = PlaceRef::alloca(bx, dst_layout, "transmute_temp");
place.storage_live(bx);
self.trans_transmute_into(bx, src, place);
let op = place.load(bx);
place.storage_dead(bx);
self.locals[index] = LocalRef::Operand(Some(op));
}
LocalRef::Operand(Some(op)) => {
@ -866,25 +866,25 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
}
}
} else {
let dst = self.trans_place(bcx, dst);
self.trans_transmute_into(bcx, src, dst);
let dst = self.trans_place(bx, dst);
self.trans_transmute_into(bx, src, dst);
}
}
fn trans_transmute_into(&mut self, bcx: &Builder<'a, 'tcx>,
fn trans_transmute_into(&mut self, bx: &Builder<'a, 'tcx>,
src: &mir::Operand<'tcx>,
dst: PlaceRef<'tcx>) {
let src = self.trans_operand(bcx, src);
let llty = src.layout.llvm_type(bcx.ccx);
let cast_ptr = bcx.pointercast(dst.llval, llty.ptr_to());
let src = self.trans_operand(bx, src);
let llty = src.layout.llvm_type(bx.cx);
let cast_ptr = bx.pointercast(dst.llval, llty.ptr_to());
let align = src.layout.align.min(dst.layout.align);
src.val.store(bcx, PlaceRef::new_sized(cast_ptr, src.layout, align));
src.val.store(bx, PlaceRef::new_sized(cast_ptr, src.layout, align));
}
// Stores the return value of a function call into it's final location.
fn store_return(&mut self,
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
dest: ReturnDest<'tcx>,
ret_ty: &ArgType<'tcx>,
llval: ValueRef) {
@ -892,23 +892,23 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
match dest {
Nothing => (),
Store(dst) => ret_ty.store(bcx, llval, dst),
Store(dst) => ret_ty.store(bx, llval, dst),
IndirectOperand(tmp, index) => {
let op = tmp.load(bcx);
tmp.storage_dead(bcx);
let op = tmp.load(bx);
tmp.storage_dead(bx);
self.locals[index] = LocalRef::Operand(Some(op));
}
DirectOperand(index) => {
// If there is a cast, we have to store and reload.
let op = if let PassMode::Cast(_) = ret_ty.mode {
let tmp = PlaceRef::alloca(bcx, ret_ty.layout, "tmp_ret");
tmp.storage_live(bcx);
ret_ty.store(bcx, llval, tmp);
let op = tmp.load(bcx);
tmp.storage_dead(bcx);
let tmp = PlaceRef::alloca(bx, ret_ty.layout, "tmp_ret");
tmp.storage_live(bx);
ret_ty.store(bx, llval, tmp);
let op = tmp.load(bx);
tmp.storage_dead(bx);
op
} else {
OperandRef::from_immediate_or_packed_pair(bcx, llval, ret_ty.layout)
OperandRef::from_immediate_or_packed_pair(bx, llval, ret_ty.layout)
};
self.locals[index] = LocalRef::Operand(Some(op));
}

View file

@ -27,7 +27,7 @@ use base;
use abi::{self, Abi};
use callee;
use builder::Builder;
use common::{self, CrateContext, const_get_elt, val_ty};
use common::{self, CodegenCx, const_get_elt, val_ty};
use common::{C_array, C_bool, C_bytes, C_int, C_uint, C_uint_big, C_u32, C_u64};
use common::{C_null, C_struct, C_str_slice, C_undef, C_usize, C_vector, C_fat_ptr};
use common::const_to_opt_u128;
@ -43,7 +43,7 @@ use std::fmt;
use std::ptr;
use super::operand::{OperandRef, OperandValue};
use super::MirContext;
use super::FunctionCx;
/// A sized constant rvalue.
/// The LLVM type might not be the same for a single Rust type,
@ -62,46 +62,46 @@ impl<'a, 'tcx> Const<'tcx> {
}
}
pub fn from_constint(ccx: &CrateContext<'a, 'tcx>, ci: &ConstInt) -> Const<'tcx> {
let tcx = ccx.tcx();
pub fn from_constint(cx: &CodegenCx<'a, 'tcx>, ci: &ConstInt) -> Const<'tcx> {
let tcx = cx.tcx;
let (llval, ty) = match *ci {
I8(v) => (C_int(Type::i8(ccx), v as i64), tcx.types.i8),
I16(v) => (C_int(Type::i16(ccx), v as i64), tcx.types.i16),
I32(v) => (C_int(Type::i32(ccx), v as i64), tcx.types.i32),
I64(v) => (C_int(Type::i64(ccx), v as i64), tcx.types.i64),
I128(v) => (C_uint_big(Type::i128(ccx), v as u128), tcx.types.i128),
Isize(v) => (C_int(Type::isize(ccx), v.as_i64()), tcx.types.isize),
U8(v) => (C_uint(Type::i8(ccx), v as u64), tcx.types.u8),
U16(v) => (C_uint(Type::i16(ccx), v as u64), tcx.types.u16),
U32(v) => (C_uint(Type::i32(ccx), v as u64), tcx.types.u32),
U64(v) => (C_uint(Type::i64(ccx), v), tcx.types.u64),
U128(v) => (C_uint_big(Type::i128(ccx), v), tcx.types.u128),
Usize(v) => (C_uint(Type::isize(ccx), v.as_u64()), tcx.types.usize),
I8(v) => (C_int(Type::i8(cx), v as i64), tcx.types.i8),
I16(v) => (C_int(Type::i16(cx), v as i64), tcx.types.i16),
I32(v) => (C_int(Type::i32(cx), v as i64), tcx.types.i32),
I64(v) => (C_int(Type::i64(cx), v as i64), tcx.types.i64),
I128(v) => (C_uint_big(Type::i128(cx), v as u128), tcx.types.i128),
Isize(v) => (C_int(Type::isize(cx), v.as_i64()), tcx.types.isize),
U8(v) => (C_uint(Type::i8(cx), v as u64), tcx.types.u8),
U16(v) => (C_uint(Type::i16(cx), v as u64), tcx.types.u16),
U32(v) => (C_uint(Type::i32(cx), v as u64), tcx.types.u32),
U64(v) => (C_uint(Type::i64(cx), v), tcx.types.u64),
U128(v) => (C_uint_big(Type::i128(cx), v), tcx.types.u128),
Usize(v) => (C_uint(Type::isize(cx), v.as_u64()), tcx.types.usize),
};
Const { llval: llval, ty: ty }
}
/// Translate ConstVal into a LLVM constant value.
pub fn from_constval(ccx: &CrateContext<'a, 'tcx>,
pub fn from_constval(cx: &CodegenCx<'a, 'tcx>,
cv: &ConstVal,
ty: Ty<'tcx>)
-> Const<'tcx> {
let llty = ccx.layout_of(ty).llvm_type(ccx);
let llty = cx.layout_of(ty).llvm_type(cx);
let val = match *cv {
ConstVal::Float(v) => {
let bits = match v.ty {
ast::FloatTy::F32 => C_u32(ccx, v.bits as u32),
ast::FloatTy::F64 => C_u64(ccx, v.bits as u64)
ast::FloatTy::F32 => C_u32(cx, v.bits as u32),
ast::FloatTy::F64 => C_u64(cx, v.bits as u64)
};
consts::bitcast(bits, llty)
}
ConstVal::Bool(v) => C_bool(ccx, v),
ConstVal::Integral(ref i) => return Const::from_constint(ccx, i),
ConstVal::Str(ref v) => C_str_slice(ccx, v.clone()),
ConstVal::Bool(v) => C_bool(cx, v),
ConstVal::Integral(ref i) => return Const::from_constint(cx, i),
ConstVal::Str(ref v) => C_str_slice(cx, v.clone()),
ConstVal::ByteStr(v) => {
consts::addr_of(ccx, C_bytes(ccx, v.data), ccx.align_of(ty), "byte_str")
consts::addr_of(cx, C_bytes(cx, v.data), cx.align_of(ty), "byte_str")
}
ConstVal::Char(c) => C_uint(Type::char(ccx), c as u64),
ConstVal::Char(c) => C_uint(Type::char(cx), c as u64),
ConstVal::Function(..) => C_undef(llty),
ConstVal::Variant(_) |
ConstVal::Aggregate(..) |
@ -115,11 +115,11 @@ impl<'a, 'tcx> Const<'tcx> {
Const::new(val, ty)
}
fn get_field(&self, ccx: &CrateContext<'a, 'tcx>, i: usize) -> ValueRef {
let layout = ccx.layout_of(self.ty);
let field = layout.field(ccx, i);
fn get_field(&self, cx: &CodegenCx<'a, 'tcx>, i: usize) -> ValueRef {
let layout = cx.layout_of(self.ty);
let field = layout.field(cx, i);
if field.is_zst() {
return C_undef(field.immediate_llvm_type(ccx));
return C_undef(field.immediate_llvm_type(cx));
}
let offset = layout.fields.offset(i);
match layout.abi {
@ -130,12 +130,12 @@ impl<'a, 'tcx> Const<'tcx> {
layout::Abi::ScalarPair(ref a, ref b) => {
if offset.bytes() == 0 {
assert_eq!(field.size, a.value.size(ccx));
assert_eq!(field.size, a.value.size(cx));
const_get_elt(self.llval, 0)
} else {
assert_eq!(offset, a.value.size(ccx)
.abi_align(b.value.align(ccx)));
assert_eq!(field.size, b.value.size(ccx));
assert_eq!(offset, a.value.size(cx)
.abi_align(b.value.align(cx)));
assert_eq!(field.size, b.value.size(cx));
const_get_elt(self.llval, 1)
}
}
@ -145,14 +145,14 @@ impl<'a, 'tcx> Const<'tcx> {
}
}
fn get_pair(&self, ccx: &CrateContext<'a, 'tcx>) -> (ValueRef, ValueRef) {
(self.get_field(ccx, 0), self.get_field(ccx, 1))
fn get_pair(&self, cx: &CodegenCx<'a, 'tcx>) -> (ValueRef, ValueRef) {
(self.get_field(cx, 0), self.get_field(cx, 1))
}
fn get_fat_ptr(&self, ccx: &CrateContext<'a, 'tcx>) -> (ValueRef, ValueRef) {
fn get_fat_ptr(&self, cx: &CodegenCx<'a, 'tcx>) -> (ValueRef, ValueRef) {
assert_eq!(abi::FAT_PTR_ADDR, 0);
assert_eq!(abi::FAT_PTR_EXTRA, 1);
self.get_pair(ccx)
self.get_pair(cx)
}
fn as_place(&self) -> ConstPlace<'tcx> {
@ -163,9 +163,9 @@ impl<'a, 'tcx> Const<'tcx> {
}
}
pub fn to_operand(&self, ccx: &CrateContext<'a, 'tcx>) -> OperandRef<'tcx> {
let layout = ccx.layout_of(self.ty);
let llty = layout.immediate_llvm_type(ccx);
pub fn to_operand(&self, cx: &CodegenCx<'a, 'tcx>) -> OperandRef<'tcx> {
let layout = cx.layout_of(self.ty);
let llty = layout.immediate_llvm_type(cx);
let llvalty = val_ty(self.llval);
let val = if llty == llvalty && layout.is_llvm_scalar_pair() {
@ -178,9 +178,9 @@ impl<'a, 'tcx> Const<'tcx> {
} else {
// Otherwise, or if the value is not immediate, we create
// a constant LLVM global and cast its address if necessary.
let align = ccx.align_of(self.ty);
let ptr = consts::addr_of(ccx, self.llval, align, "const");
OperandValue::Ref(consts::ptrcast(ptr, layout.llvm_type(ccx).ptr_to()),
let align = cx.align_of(self.ty);
let ptr = consts::addr_of(cx, self.llval, align, "const");
OperandValue::Ref(consts::ptrcast(ptr, layout.llvm_type(cx).ptr_to()),
layout.align)
};
@ -232,10 +232,10 @@ impl<'tcx> ConstPlace<'tcx> {
}
}
pub fn len<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> ValueRef {
pub fn len<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> ValueRef {
match self.ty.sty {
ty::TyArray(_, n) => {
C_usize(ccx, n.val.to_const_int().unwrap().to_u64().unwrap())
C_usize(cx, n.val.to_const_int().unwrap().to_u64().unwrap())
}
ty::TySlice(_) | ty::TyStr => {
assert!(self.llextra != ptr::null_mut());
@ -249,7 +249,7 @@ impl<'tcx> ConstPlace<'tcx> {
/// Machinery for translating a constant's MIR to LLVM values.
/// FIXME(eddyb) use miri and lower its allocations to LLVM.
struct MirConstContext<'a, 'tcx: 'a> {
ccx: &'a CrateContext<'a, 'tcx>,
cx: &'a CodegenCx<'a, 'tcx>,
mir: &'a mir::Mir<'tcx>,
/// Type parameters for const fn and associated constants.
@ -270,13 +270,13 @@ fn add_err<'tcx, U, V>(failure: &mut Result<U, ConstEvalErr<'tcx>>,
}
impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
fn new(ccx: &'a CrateContext<'a, 'tcx>,
fn new(cx: &'a CodegenCx<'a, 'tcx>,
mir: &'a mir::Mir<'tcx>,
substs: &'tcx Substs<'tcx>,
args: IndexVec<mir::Local, Result<Const<'tcx>, ConstEvalErr<'tcx>>>)
-> MirConstContext<'a, 'tcx> {
let mut context = MirConstContext {
ccx,
cx,
mir,
substs,
locals: (0..mir.local_decls.len()).map(|_| None).collect(),
@ -289,27 +289,27 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
context
}
fn trans_def(ccx: &'a CrateContext<'a, 'tcx>,
fn trans_def(cx: &'a CodegenCx<'a, 'tcx>,
def_id: DefId,
substs: &'tcx Substs<'tcx>,
args: IndexVec<mir::Local, Result<Const<'tcx>, ConstEvalErr<'tcx>>>)
-> Result<Const<'tcx>, ConstEvalErr<'tcx>> {
let instance = ty::Instance::resolve(ccx.tcx(),
let instance = ty::Instance::resolve(cx.tcx,
ty::ParamEnv::empty(traits::Reveal::All),
def_id,
substs).unwrap();
let mir = ccx.tcx().instance_mir(instance.def);
MirConstContext::new(ccx, &mir, instance.substs, args).trans()
let mir = cx.tcx.instance_mir(instance.def);
MirConstContext::new(cx, &mir, instance.substs, args).trans()
}
fn monomorphize<T>(&self, value: &T) -> T
where T: TransNormalize<'tcx>
{
self.ccx.tcx().trans_apply_param_substs(self.substs, value)
self.cx.tcx.trans_apply_param_substs(self.substs, value)
}
fn trans(&mut self) -> Result<Const<'tcx>, ConstEvalErr<'tcx>> {
let tcx = self.ccx.tcx();
let tcx = self.cx.tcx;
let mut bb = mir::START_BLOCK;
// Make sure to evaluate all statemenets to
@ -399,13 +399,13 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
let result = if fn_ty.fn_sig(tcx).abi() == Abi::RustIntrinsic {
match &tcx.item_name(def_id)[..] {
"size_of" => {
let llval = C_usize(self.ccx,
self.ccx.size_of(substs.type_at(0)).bytes());
let llval = C_usize(self.cx,
self.cx.size_of(substs.type_at(0)).bytes());
Ok(Const::new(llval, tcx.types.usize))
}
"min_align_of" => {
let llval = C_usize(self.ccx,
self.ccx.align_of(substs.type_at(0)).abi());
let llval = C_usize(self.cx,
self.cx.align_of(substs.type_at(0)).abi());
Ok(Const::new(llval, tcx.types.usize))
}
_ => span_bug!(span, "{:?} in constant", terminator.kind)
@ -430,12 +430,12 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
match const_scalar_checked_binop(tcx, op, lhs, rhs, ty) {
Some((llval, of)) => {
Ok(trans_const_adt(
self.ccx,
self.cx,
binop_ty,
&mir::AggregateKind::Tuple,
&[
Const::new(llval, val_ty),
Const::new(C_bool(self.ccx, of), tcx.types.bool)
Const::new(C_bool(self.cx, of), tcx.types.bool)
]))
}
None => {
@ -447,7 +447,7 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
}
})()
} else {
MirConstContext::trans_def(self.ccx, def_id, substs, arg_vals)
MirConstContext::trans_def(self.cx, def_id, substs, arg_vals)
};
add_err(&mut failure, &result);
self.store(dest, result, span);
@ -462,7 +462,7 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
}
fn is_binop_lang_item(&mut self, def_id: DefId) -> Option<(mir::BinOp, bool)> {
let tcx = self.ccx.tcx();
let tcx = self.cx.tcx;
let items = tcx.lang_items();
let def_id = Some(def_id);
if items.i128_add_fn() == def_id { Some((mir::BinOp::Add, false)) }
@ -505,7 +505,7 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
fn const_place(&self, place: &mir::Place<'tcx>, span: Span)
-> Result<ConstPlace<'tcx>, ConstEvalErr<'tcx>> {
let tcx = self.ccx.tcx();
let tcx = self.cx.tcx;
if let mir::Place::Local(index) = *place {
return self.locals[index].clone().unwrap_or_else(|| {
@ -517,7 +517,7 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
mir::Place::Local(_) => bug!(), // handled above
mir::Place::Static(box mir::Static { def_id, ty }) => {
ConstPlace {
base: Base::Static(consts::get_static(self.ccx, def_id)),
base: Base::Static(consts::get_static(self.cx, def_id)),
llextra: ptr::null_mut(),
ty: self.monomorphize(&ty),
}
@ -528,30 +528,30 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
.projection_ty(tcx, &projection.elem);
let base = tr_base.to_const(span);
let projected_ty = self.monomorphize(&projected_ty).to_ty(tcx);
let has_metadata = self.ccx.shared().type_has_metadata(projected_ty);
let has_metadata = self.cx.type_has_metadata(projected_ty);
let (projected, llextra) = match projection.elem {
mir::ProjectionElem::Deref => {
let (base, extra) = if !has_metadata {
(base.llval, ptr::null_mut())
} else {
base.get_fat_ptr(self.ccx)
base.get_fat_ptr(self.cx)
};
if self.ccx.statics().borrow().contains_key(&base) {
if self.cx.statics.borrow().contains_key(&base) {
(Base::Static(base), extra)
} else if let ty::TyStr = projected_ty.sty {
(Base::Str(base), extra)
} else {
let v = base;
let v = self.ccx.const_unsized().borrow().get(&v).map_or(v, |&v| v);
let v = self.cx.const_unsized.borrow().get(&v).map_or(v, |&v| v);
let mut val = unsafe { llvm::LLVMGetInitializer(v) };
if val.is_null() {
span_bug!(span, "dereference of non-constant pointer `{:?}`",
Value(base));
}
let layout = self.ccx.layout_of(projected_ty);
let layout = self.cx.layout_of(projected_ty);
if let layout::Abi::Scalar(ref scalar) = layout.abi {
let i1_type = Type::i1(self.ccx);
let i1_type = Type::i1(self.cx);
if scalar.is_bool() && val_ty(val) != i1_type {
unsafe {
val = llvm::LLVMConstTrunc(val, i1_type.to_ref());
@ -562,7 +562,7 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
}
}
mir::ProjectionElem::Field(ref field, _) => {
let llprojected = base.get_field(self.ccx, field.index());
let llprojected = base.get_field(self.cx, field.index());
let llextra = if !has_metadata {
ptr::null_mut()
} else {
@ -581,11 +581,11 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
};
// Produce an undef instead of a LLVM assertion on OOB.
let len = common::const_to_uint(tr_base.len(self.ccx));
let len = common::const_to_uint(tr_base.len(self.cx));
let llelem = if iv < len as u128 {
const_get_elt(base.llval, iv as u64)
} else {
C_undef(self.ccx.layout_of(projected_ty).llvm_type(self.ccx))
C_undef(self.cx.layout_of(projected_ty).llvm_type(self.cx))
};
(Base::Value(llelem), ptr::null_mut())
@ -616,14 +616,14 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
match constant.literal.clone() {
mir::Literal::Promoted { index } => {
let mir = &self.mir.promoted[index];
MirConstContext::new(self.ccx, mir, self.substs, IndexVec::new()).trans()
MirConstContext::new(self.cx, mir, self.substs, IndexVec::new()).trans()
}
mir::Literal::Value { value } => {
if let ConstVal::Unevaluated(def_id, substs) = value.val {
let substs = self.monomorphize(&substs);
MirConstContext::trans_def(self.ccx, def_id, substs, IndexVec::new())
MirConstContext::trans_def(self.cx, def_id, substs, IndexVec::new())
} else {
Ok(Const::from_constval(self.ccx, &value.val, ty))
Ok(Const::from_constval(self.cx, &value.val, ty))
}
}
}
@ -640,12 +640,12 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
let elem_ty = array_ty.builtin_index().unwrap_or_else(|| {
bug!("bad array type {:?}", array_ty)
});
let llunitty = self.ccx.layout_of(elem_ty).llvm_type(self.ccx);
let llunitty = self.cx.layout_of(elem_ty).llvm_type(self.cx);
// If the array contains enums, an LLVM array won't work.
let val = if fields.iter().all(|&f| val_ty(f) == llunitty) {
C_array(llunitty, fields)
} else {
C_struct(self.ccx, fields, false)
C_struct(self.cx, fields, false)
};
Const::new(val, array_ty)
}
@ -653,7 +653,7 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
fn const_rvalue(&self, rvalue: &mir::Rvalue<'tcx>,
dest_ty: Ty<'tcx>, span: Span)
-> Result<Const<'tcx>, ConstEvalErr<'tcx>> {
let tcx = self.ccx.tcx();
let tcx = self.cx.tcx;
debug!("const_rvalue({:?}: {:?} @ {:?})", rvalue, dest_ty, span);
let val = match *rvalue {
mir::Rvalue::Use(ref operand) => self.const_operand(operand, span)?,
@ -695,7 +695,7 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
}
failure?;
trans_const_adt(self.ccx, dest_ty, kind, &fields)
trans_const_adt(self.cx, dest_ty, kind, &fields)
}
mir::Rvalue::Cast(ref kind, ref source, cast_ty) => {
@ -706,7 +706,7 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
mir::CastKind::ReifyFnPointer => {
match operand.ty.sty {
ty::TyFnDef(def_id, substs) => {
callee::resolve_and_get_fn(self.ccx, def_id, substs)
callee::resolve_and_get_fn(self.cx, def_id, substs)
}
_ => {
span_bug!(span, "{} cannot be reified to a fn ptr",
@ -728,7 +728,7 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
let input = tcx.erase_late_bound_regions_and_normalize(&input);
let substs = tcx.mk_substs([operand.ty, input]
.iter().cloned().map(Kind::from));
callee::resolve_and_get_fn(self.ccx, call_once, substs)
callee::resolve_and_get_fn(self.cx, call_once, substs)
}
_ => {
bug!("{} cannot be cast to a fn ptr", operand.ty)
@ -742,14 +742,14 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
mir::CastKind::Unsize => {
let pointee_ty = operand.ty.builtin_deref(true, ty::NoPreference)
.expect("consts: unsizing got non-pointer type").ty;
let (base, old_info) = if !self.ccx.shared().type_is_sized(pointee_ty) {
let (base, old_info) = if !self.cx.type_is_sized(pointee_ty) {
// Normally, the source is a thin pointer and we are
// adding extra info to make a fat pointer. The exception
// is when we are upcasting an existing object fat pointer
// to use a different vtable. In that case, we want to
// load out the original data pointer so we can repackage
// it.
let (base, extra) = operand.get_fat_ptr(self.ccx);
let (base, extra) = operand.get_fat_ptr(self.cx);
(base, Some(extra))
} else {
(operand.llval, None)
@ -757,28 +757,28 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
let unsized_ty = cast_ty.builtin_deref(true, ty::NoPreference)
.expect("consts: unsizing got non-pointer target type").ty;
let ptr_ty = self.ccx.layout_of(unsized_ty).llvm_type(self.ccx).ptr_to();
let ptr_ty = self.cx.layout_of(unsized_ty).llvm_type(self.cx).ptr_to();
let base = consts::ptrcast(base, ptr_ty);
let info = base::unsized_info(self.ccx, pointee_ty,
let info = base::unsized_info(self.cx, pointee_ty,
unsized_ty, old_info);
if old_info.is_none() {
let prev_const = self.ccx.const_unsized().borrow_mut()
let prev_const = self.cx.const_unsized.borrow_mut()
.insert(base, operand.llval);
assert!(prev_const.is_none() || prev_const == Some(operand.llval));
}
C_fat_ptr(self.ccx, base, info)
C_fat_ptr(self.cx, base, info)
}
mir::CastKind::Misc if self.ccx.layout_of(operand.ty).is_llvm_immediate() => {
mir::CastKind::Misc if self.cx.layout_of(operand.ty).is_llvm_immediate() => {
let r_t_in = CastTy::from_ty(operand.ty).expect("bad input type for cast");
let r_t_out = CastTy::from_ty(cast_ty).expect("bad output type for cast");
let cast_layout = self.ccx.layout_of(cast_ty);
let cast_layout = self.cx.layout_of(cast_ty);
assert!(cast_layout.is_llvm_immediate());
let ll_t_out = cast_layout.immediate_llvm_type(self.ccx);
let ll_t_out = cast_layout.immediate_llvm_type(self.cx);
let llval = operand.llval;
let mut signed = false;
let l = self.ccx.layout_of(operand.ty);
let l = self.cx.layout_of(operand.ty);
if let layout::Abi::Scalar(ref scalar) = l.abi {
if let layout::Int(_, true) = scalar.value {
signed = true;
@ -792,17 +792,17 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
llvm::LLVMConstIntCast(llval, ll_t_out.to_ref(), s)
}
(CastTy::Int(_), CastTy::Float) => {
cast_const_int_to_float(self.ccx, llval, signed, ll_t_out)
cast_const_int_to_float(self.cx, llval, signed, ll_t_out)
}
(CastTy::Float, CastTy::Float) => {
llvm::LLVMConstFPCast(llval, ll_t_out.to_ref())
}
(CastTy::Float, CastTy::Int(IntTy::I)) => {
cast_const_float_to_int(self.ccx, &operand,
cast_const_float_to_int(self.cx, &operand,
true, ll_t_out, span)
}
(CastTy::Float, CastTy::Int(_)) => {
cast_const_float_to_int(self.ccx, &operand,
cast_const_float_to_int(self.cx, &operand,
false, ll_t_out, span)
}
(CastTy::Ptr(_), CastTy::Ptr(_)) |
@ -813,7 +813,7 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
(CastTy::Int(_), CastTy::Ptr(_)) => {
let s = signed as llvm::Bool;
let usize_llval = llvm::LLVMConstIntCast(llval,
self.ccx.isize_ty().to_ref(), s);
self.cx.isize_ty.to_ref(), s);
llvm::LLVMConstIntToPtr(usize_llval, ll_t_out.to_ref())
}
(CastTy::Ptr(_), CastTy::Int(_)) |
@ -825,18 +825,18 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
}
}
mir::CastKind::Misc => { // Casts from a fat-ptr.
let l = self.ccx.layout_of(operand.ty);
let cast = self.ccx.layout_of(cast_ty);
let l = self.cx.layout_of(operand.ty);
let cast = self.cx.layout_of(cast_ty);
if l.is_llvm_scalar_pair() {
let (data_ptr, meta) = operand.get_fat_ptr(self.ccx);
let (data_ptr, meta) = operand.get_fat_ptr(self.cx);
if cast.is_llvm_scalar_pair() {
let data_cast = consts::ptrcast(data_ptr,
cast.scalar_pair_element_llvm_type(self.ccx, 0));
C_fat_ptr(self.ccx, data_cast, meta)
cast.scalar_pair_element_llvm_type(self.cx, 0));
C_fat_ptr(self.cx, data_cast, meta)
} else { // cast to thin-ptr
// Cast of fat-ptr to thin-ptr is an extraction of data-ptr and
// pointer-cast of that pointer to desired pointer type.
let llcast_ty = cast.immediate_llvm_type(self.ccx);
let llcast_ty = cast.immediate_llvm_type(self.cx);
consts::ptrcast(data_ptr, llcast_ty)
}
} else {
@ -857,32 +857,32 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
let base = match tr_place.base {
Base::Value(llval) => {
// FIXME: may be wrong for &*(&simd_vec as &fmt::Debug)
let align = if self.ccx.shared().type_is_sized(ty) {
self.ccx.align_of(ty)
let align = if self.cx.type_is_sized(ty) {
self.cx.align_of(ty)
} else {
self.ccx.tcx().data_layout.pointer_align
self.cx.tcx.data_layout.pointer_align
};
if bk == mir::BorrowKind::Mut {
consts::addr_of_mut(self.ccx, llval, align, "ref_mut")
consts::addr_of_mut(self.cx, llval, align, "ref_mut")
} else {
consts::addr_of(self.ccx, llval, align, "ref")
consts::addr_of(self.cx, llval, align, "ref")
}
}
Base::Str(llval) |
Base::Static(llval) => llval
};
let ptr = if self.ccx.shared().type_is_sized(ty) {
let ptr = if self.cx.type_is_sized(ty) {
base
} else {
C_fat_ptr(self.ccx, base, tr_place.llextra)
C_fat_ptr(self.cx, base, tr_place.llextra)
};
Const::new(ptr, ref_ty)
}
mir::Rvalue::Len(ref place) => {
let tr_place = self.const_place(place, span)?;
Const::new(tr_place.len(self.ccx), tcx.types.usize)
Const::new(tr_place.len(self.cx), tcx.types.usize)
}
mir::Rvalue::BinaryOp(op, ref lhs, ref rhs) => {
@ -905,9 +905,9 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
match const_scalar_checked_binop(tcx, op, lhs, rhs, ty) {
Some((llval, of)) => {
trans_const_adt(self.ccx, binop_ty, &mir::AggregateKind::Tuple, &[
trans_const_adt(self.cx, binop_ty, &mir::AggregateKind::Tuple, &[
Const::new(llval, val_ty),
Const::new(C_bool(self.ccx, of), tcx.types.bool)
Const::new(C_bool(self.cx, of), tcx.types.bool)
])
}
None => {
@ -941,8 +941,8 @@ impl<'a, 'tcx> MirConstContext<'a, 'tcx> {
}
mir::Rvalue::NullaryOp(mir::NullOp::SizeOf, ty) => {
assert!(self.ccx.shared().type_is_sized(ty));
let llval = C_usize(self.ccx, self.ccx.size_of(ty).bytes());
assert!(self.cx.type_is_sized(ty));
let llval = C_usize(self.cx, self.cx.size_of(ty).bytes());
Const::new(llval, tcx.types.usize)
}
@ -1060,7 +1060,7 @@ pub fn const_scalar_checked_binop<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
}
}
unsafe fn cast_const_float_to_int(ccx: &CrateContext,
unsafe fn cast_const_float_to_int(cx: &CodegenCx,
operand: &Const,
signed: bool,
int_ty: Type,
@ -1074,7 +1074,7 @@ unsafe fn cast_const_float_to_int(ccx: &CrateContext,
// One way that might happen would be if addresses could be turned into integers in constant
// expressions, but that doesn't appear to be possible?
// In any case, an ICE is better than producing undef.
let llval_bits = consts::bitcast(llval, Type::ix(ccx, float_bits as u64));
let llval_bits = consts::bitcast(llval, Type::ix(cx, float_bits as u64));
let bits = const_to_opt_u128(llval_bits, false).unwrap_or_else(|| {
panic!("could not get bits of constant float {:?}",
Value(llval));
@ -1090,12 +1090,12 @@ unsafe fn cast_const_float_to_int(ccx: &CrateContext,
};
if cast_result.status.contains(Status::INVALID_OP) {
let err = ConstEvalErr { span: span, kind: ErrKind::CannotCast };
err.report(ccx.tcx(), span, "expression");
err.report(cx.tcx, span, "expression");
}
C_uint_big(int_ty, cast_result.value)
}
unsafe fn cast_const_int_to_float(ccx: &CrateContext,
unsafe fn cast_const_int_to_float(cx: &CodegenCx,
llval: ValueRef,
signed: bool,
float_ty: Type) -> ValueRef {
@ -1111,16 +1111,16 @@ unsafe fn cast_const_int_to_float(ccx: &CrateContext,
llvm::LLVMConstSIToFP(llval, float_ty.to_ref())
} else if float_ty.float_width() == 32 && value >= MAX_F32_PLUS_HALF_ULP {
// We're casting to f32 and the value is > f32::MAX + 0.5 ULP -> round up to infinity.
let infinity_bits = C_u32(ccx, ieee::Single::INFINITY.to_bits() as u32);
let infinity_bits = C_u32(cx, ieee::Single::INFINITY.to_bits() as u32);
consts::bitcast(infinity_bits, float_ty)
} else {
llvm::LLVMConstUIToFP(llval, float_ty.to_ref())
}
}
impl<'a, 'tcx> MirContext<'a, 'tcx> {
impl<'a, 'tcx> FunctionCx<'a, 'tcx> {
pub fn trans_constant(&mut self,
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
constant: &mir::Constant<'tcx>)
-> Const<'tcx>
{
@ -1129,21 +1129,21 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
let result = match constant.literal.clone() {
mir::Literal::Promoted { index } => {
let mir = &self.mir.promoted[index];
MirConstContext::new(bcx.ccx, mir, self.param_substs, IndexVec::new()).trans()
MirConstContext::new(bx.cx, mir, self.param_substs, IndexVec::new()).trans()
}
mir::Literal::Value { value } => {
if let ConstVal::Unevaluated(def_id, substs) = value.val {
let substs = self.monomorphize(&substs);
MirConstContext::trans_def(bcx.ccx, def_id, substs, IndexVec::new())
MirConstContext::trans_def(bx.cx, def_id, substs, IndexVec::new())
} else {
Ok(Const::from_constval(bcx.ccx, &value.val, ty))
Ok(Const::from_constval(bx.cx, &value.val, ty))
}
}
};
let result = result.unwrap_or_else(|_| {
// We've errored, so we don't have to produce working code.
let llty = bcx.ccx.layout_of(ty).llvm_type(bcx.ccx);
let llty = bx.cx.layout_of(ty).llvm_type(bx.cx);
Const::new(C_undef(llty), ty)
});
@ -1154,11 +1154,11 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
pub fn trans_static_initializer<'a, 'tcx>(
ccx: &CrateContext<'a, 'tcx>,
cx: &CodegenCx<'a, 'tcx>,
def_id: DefId)
-> Result<ValueRef, ConstEvalErr<'tcx>>
{
MirConstContext::trans_def(ccx, def_id, Substs::empty(), IndexVec::new())
MirConstContext::trans_def(cx, def_id, Substs::empty(), IndexVec::new())
.map(|c| c.llval)
}
@ -1182,19 +1182,19 @@ pub fn trans_static_initializer<'a, 'tcx>(
/// this could be changed in the future to avoid allocating unnecessary
/// space after values of shorter-than-maximum cases.
fn trans_const_adt<'a, 'tcx>(
ccx: &CrateContext<'a, 'tcx>,
cx: &CodegenCx<'a, 'tcx>,
t: Ty<'tcx>,
kind: &mir::AggregateKind,
vals: &[Const<'tcx>]
) -> Const<'tcx> {
let l = ccx.layout_of(t);
let l = cx.layout_of(t);
let variant_index = match *kind {
mir::AggregateKind::Adt(_, index, _, _) => index,
_ => 0,
};
if let layout::Abi::Uninhabited = l.abi {
return Const::new(C_undef(l.llvm_type(ccx)), t);
return Const::new(C_undef(l.llvm_type(cx)), t);
}
match l.variants {
@ -1203,14 +1203,14 @@ fn trans_const_adt<'a, 'tcx>(
if let layout::FieldPlacement::Union(_) = l.fields {
assert_eq!(variant_index, 0);
assert_eq!(vals.len(), 1);
let (field_size, field_align) = ccx.size_and_align_of(vals[0].ty);
let (field_size, field_align) = cx.size_and_align_of(vals[0].ty);
let contents = [
vals[0].llval,
padding(ccx, l.size - field_size)
padding(cx, l.size - field_size)
];
let packed = l.align.abi() < field_align.abi();
Const::new(C_struct(ccx, &contents, packed), t)
Const::new(C_struct(cx, &contents, packed), t)
} else {
if let layout::Abi::Vector { .. } = l.abi {
if let layout::FieldPlacement::Array { .. } = l.fields {
@ -1218,24 +1218,24 @@ fn trans_const_adt<'a, 'tcx>(
.collect::<Vec<_>>()), t);
}
}
build_const_struct(ccx, l, vals, None)
build_const_struct(cx, l, vals, None)
}
}
layout::Variants::Tagged { .. } => {
let discr = match *kind {
mir::AggregateKind::Adt(adt_def, _, _, _) => {
adt_def.discriminant_for_variant(ccx.tcx(), variant_index)
adt_def.discriminant_for_variant(cx.tcx, variant_index)
.to_u128_unchecked() as u64
},
_ => 0,
};
let discr_field = l.field(ccx, 0);
let discr = C_int(discr_field.llvm_type(ccx), discr as i64);
let discr_field = l.field(cx, 0);
let discr = C_int(discr_field.llvm_type(cx), discr as i64);
if let layout::Abi::Scalar(_) = l.abi {
Const::new(discr, t)
} else {
let discr = Const::new(discr, discr_field.ty);
build_const_struct(ccx, l.for_variant(ccx, variant_index), vals, Some(discr))
build_const_struct(cx, l.for_variant(cx, variant_index), vals, Some(discr))
}
}
layout::Variants::NicheFilling {
@ -1245,10 +1245,10 @@ fn trans_const_adt<'a, 'tcx>(
..
} => {
if variant_index == dataful_variant {
build_const_struct(ccx, l.for_variant(ccx, dataful_variant), vals, None)
build_const_struct(cx, l.for_variant(cx, dataful_variant), vals, None)
} else {
let niche = l.field(ccx, 0);
let niche_llty = niche.llvm_type(ccx);
let niche = l.field(cx, 0);
let niche_llty = niche.llvm_type(cx);
let niche_value = ((variant_index - niche_variants.start) as u128)
.wrapping_add(niche_start);
// FIXME(eddyb) Check the actual primitive type here.
@ -1258,7 +1258,7 @@ fn trans_const_adt<'a, 'tcx>(
} else {
C_uint_big(niche_llty, niche_value)
};
build_const_struct(ccx, l, &[Const::new(niche_llval, niche.ty)], None)
build_const_struct(cx, l, &[Const::new(niche_llval, niche.ty)], None)
}
}
}
@ -1272,7 +1272,7 @@ fn trans_const_adt<'a, 'tcx>(
/// initializer is 4-byte aligned then simply translating the tuple as
/// a two-element struct will locate it at offset 4, and accesses to it
/// will read the wrong memory.
fn build_const_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn build_const_struct<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
layout: layout::TyLayout<'tcx>,
vals: &[Const<'tcx>],
discr: Option<Const<'tcx>>)
@ -1285,16 +1285,16 @@ fn build_const_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
layout::Abi::Vector { .. } if discr.is_none() => {
let mut non_zst_fields = vals.iter().enumerate().map(|(i, f)| {
(f, layout.fields.offset(i))
}).filter(|&(f, _)| !ccx.layout_of(f.ty).is_zst());
}).filter(|&(f, _)| !cx.layout_of(f.ty).is_zst());
match (non_zst_fields.next(), non_zst_fields.next()) {
(Some((x, offset)), None) if offset.bytes() == 0 => {
return Const::new(x.llval, layout.ty);
}
(Some((a, a_offset)), Some((b, _))) if a_offset.bytes() == 0 => {
return Const::new(C_struct(ccx, &[a.llval, b.llval], false), layout.ty);
return Const::new(C_struct(cx, &[a.llval, b.llval], false), layout.ty);
}
(Some((a, _)), Some((b, b_offset))) if b_offset.bytes() == 0 => {
return Const::new(C_struct(ccx, &[b.llval, a.llval], false), layout.ty);
return Const::new(C_struct(cx, &[b.llval, a.llval], false), layout.ty);
}
_ => {}
}
@ -1309,7 +1309,7 @@ fn build_const_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
cfields.reserve(discr.is_some() as usize + 1 + layout.fields.count() * 2);
if let Some(discr) = discr {
let (field_size, field_align) = ccx.size_and_align_of(discr.ty);
let (field_size, field_align) = cx.size_and_align_of(discr.ty);
packed |= layout.align.abi() < field_align.abi();
cfields.push(discr.llval);
offset = field_size;
@ -1319,19 +1319,19 @@ fn build_const_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
(vals[i], layout.fields.offset(i))
});
for (val, target_offset) in parts {
let (field_size, field_align) = ccx.size_and_align_of(val.ty);
let (field_size, field_align) = cx.size_and_align_of(val.ty);
packed |= layout.align.abi() < field_align.abi();
cfields.push(padding(ccx, target_offset - offset));
cfields.push(padding(cx, target_offset - offset));
cfields.push(val.llval);
offset = target_offset + field_size;
}
// Pad to the size of the whole type, not e.g. the variant.
cfields.push(padding(ccx, ccx.size_of(layout.ty) - offset));
cfields.push(padding(cx, cx.size_of(layout.ty) - offset));
Const::new(C_struct(ccx, &cfields, packed), layout.ty)
Const::new(C_struct(cx, &cfields, packed), layout.ty)
}
fn padding(ccx: &CrateContext, size: Size) -> ValueRef {
C_undef(Type::array(&Type::i8(ccx), size.bytes()))
fn padding(cx: &CodegenCx, size: Size) -> ValueRef {
C_undef(Type::array(&Type::i8(cx), size.bytes()))
}

View file

@ -19,7 +19,7 @@ use rustc::infer::TransNormalize;
use rustc::session::config::FullDebugInfo;
use base;
use builder::Builder;
use common::{CrateContext, Funclet};
use common::{CodegenCx, Funclet};
use debuginfo::{self, declare_local, VariableAccess, VariableKind, FunctionDebugContext};
use monomorphize::Instance;
use abi::{ArgAttribute, FnType, PassMode};
@ -41,14 +41,14 @@ use rustc::mir::traversal;
use self::operand::{OperandRef, OperandValue};
/// Master context for translating MIR.
pub struct MirContext<'a, 'tcx:'a> {
pub struct FunctionCx<'a, 'tcx:'a> {
mir: &'a mir::Mir<'tcx>,
debug_context: debuginfo::FunctionDebugContext,
llfn: ValueRef,
ccx: &'a CrateContext<'a, 'tcx>,
cx: &'a CodegenCx<'a, 'tcx>,
fn_ty: FnType<'tcx>,
@ -102,16 +102,16 @@ pub struct MirContext<'a, 'tcx:'a> {
param_substs: &'tcx Substs<'tcx>,
}
impl<'a, 'tcx> MirContext<'a, 'tcx> {
impl<'a, 'tcx> FunctionCx<'a, 'tcx> {
pub fn monomorphize<T>(&self, value: &T) -> T
where T: TransNormalize<'tcx>
{
self.ccx.tcx().trans_apply_param_substs(self.param_substs, value)
self.cx.tcx.trans_apply_param_substs(self.param_substs, value)
}
pub fn set_debug_loc(&mut self, bcx: &Builder, source_info: mir::SourceInfo) {
pub fn set_debug_loc(&mut self, bx: &Builder, source_info: mir::SourceInfo) {
let (scope, span) = self.debug_loc(source_info);
debuginfo::set_source_location(&self.debug_context, bcx, scope, span);
debuginfo::set_source_location(&self.debug_context, bx, scope, span);
}
pub fn debug_loc(&mut self, source_info: mir::SourceInfo) -> (DIScope, Span) {
@ -128,7 +128,7 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
// locations of macro expansions with that of the outermost expansion site
// (unless the crate is being compiled with `-Z debug-macros`).
if source_info.span.ctxt() == NO_EXPANSION ||
self.ccx.sess().opts.debugging_opts.debug_macros {
self.cx.sess().opts.debugging_opts.debug_macros {
let scope = self.scope_metadata_for_loc(source_info.scope, source_info.span.lo());
(scope, source_info.span)
} else {
@ -158,9 +158,9 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
let scope_metadata = self.scopes[scope_id].scope_metadata;
if pos < self.scopes[scope_id].file_start_pos ||
pos >= self.scopes[scope_id].file_end_pos {
let cm = self.ccx.sess().codemap();
let cm = self.cx.sess().codemap();
let defining_crate = self.debug_context.get_ref(DUMMY_SP).defining_crate;
debuginfo::extend_scope_to_file(self.ccx,
debuginfo::extend_scope_to_file(self.cx,
scope_metadata,
&cm.lookup_char_pos(pos).file,
defining_crate)
@ -176,12 +176,12 @@ enum LocalRef<'tcx> {
}
impl<'a, 'tcx> LocalRef<'tcx> {
fn new_operand(ccx: &CrateContext<'a, 'tcx>, layout: TyLayout<'tcx>) -> LocalRef<'tcx> {
fn new_operand(cx: &CodegenCx<'a, 'tcx>, layout: TyLayout<'tcx>) -> LocalRef<'tcx> {
if layout.is_zst() {
// Zero-size temporaries aren't always initialized, which
// doesn't matter because they don't contain data, but
// we need something in the operand.
LocalRef::Operand(Some(OperandRef::new_zst(ccx, layout)))
LocalRef::Operand(Some(OperandRef::new_zst(cx, layout)))
} else {
LocalRef::Operand(None)
}
@ -191,46 +191,46 @@ impl<'a, 'tcx> LocalRef<'tcx> {
///////////////////////////////////////////////////////////////////////////
pub fn trans_mir<'a, 'tcx: 'a>(
ccx: &'a CrateContext<'a, 'tcx>,
cx: &'a CodegenCx<'a, 'tcx>,
llfn: ValueRef,
mir: &'a Mir<'tcx>,
instance: Instance<'tcx>,
sig: ty::FnSig<'tcx>,
) {
let fn_ty = FnType::new(ccx, sig, &[]);
let fn_ty = FnType::new(cx, sig, &[]);
debug!("fn_ty: {:?}", fn_ty);
let debug_context =
debuginfo::create_function_debug_context(ccx, instance, sig, llfn, mir);
let bcx = Builder::new_block(ccx, llfn, "start");
debuginfo::create_function_debug_context(cx, instance, sig, llfn, mir);
let bx = Builder::new_block(cx, llfn, "start");
if mir.basic_blocks().iter().any(|bb| bb.is_cleanup) {
bcx.set_personality_fn(ccx.eh_personality());
bx.set_personality_fn(cx.eh_personality());
}
let cleanup_kinds = analyze::cleanup_kinds(&mir);
// Allocate a `Block` for every basic block, except
// the start block, if nothing loops back to it.
let reentrant_start_block = !mir.predecessors_for(mir::START_BLOCK).is_empty();
let block_bcxs: IndexVec<mir::BasicBlock, BasicBlockRef> =
let block_bxs: IndexVec<mir::BasicBlock, BasicBlockRef> =
mir.basic_blocks().indices().map(|bb| {
if bb == mir::START_BLOCK && !reentrant_start_block {
bcx.llbb()
bx.llbb()
} else {
bcx.build_sibling_block(&format!("{:?}", bb)).llbb()
bx.build_sibling_block(&format!("{:?}", bb)).llbb()
}
}).collect();
// Compute debuginfo scopes from MIR scopes.
let scopes = debuginfo::create_mir_scopes(ccx, mir, &debug_context);
let (landing_pads, funclets) = create_funclets(&bcx, &cleanup_kinds, &block_bcxs);
let scopes = debuginfo::create_mir_scopes(cx, mir, &debug_context);
let (landing_pads, funclets) = create_funclets(&bx, &cleanup_kinds, &block_bxs);
let mut mircx = MirContext {
let mut fx = FunctionCx {
mir,
llfn,
fn_ty,
ccx,
cx,
personality_slot: None,
blocks: block_bcxs,
blocks: block_bxs,
unreachable_block: None,
cleanup_kinds,
landing_pads,
@ -244,51 +244,51 @@ pub fn trans_mir<'a, 'tcx: 'a>(
},
};
let memory_locals = analyze::memory_locals(&mircx);
let memory_locals = analyze::memory_locals(&fx);
// Allocate variable and temp allocas
mircx.locals = {
let args = arg_local_refs(&bcx, &mircx, &mircx.scopes, &memory_locals);
fx.locals = {
let args = arg_local_refs(&bx, &fx, &fx.scopes, &memory_locals);
let mut allocate_local = |local| {
let decl = &mir.local_decls[local];
let layout = bcx.ccx.layout_of(mircx.monomorphize(&decl.ty));
let layout = bx.cx.layout_of(fx.monomorphize(&decl.ty));
assert!(!layout.ty.has_erasable_regions());
if let Some(name) = decl.name {
// User variable
let debug_scope = mircx.scopes[decl.source_info.scope];
let dbg = debug_scope.is_valid() && bcx.sess().opts.debuginfo == FullDebugInfo;
let debug_scope = fx.scopes[decl.source_info.scope];
let dbg = debug_scope.is_valid() && bx.sess().opts.debuginfo == FullDebugInfo;
if !memory_locals.contains(local.index()) && !dbg {
debug!("alloc: {:?} ({}) -> operand", local, name);
return LocalRef::new_operand(bcx.ccx, layout);
return LocalRef::new_operand(bx.cx, layout);
}
debug!("alloc: {:?} ({}) -> place", local, name);
let place = PlaceRef::alloca(&bcx, layout, &name.as_str());
let place = PlaceRef::alloca(&bx, layout, &name.as_str());
if dbg {
let (scope, span) = mircx.debug_loc(decl.source_info);
declare_local(&bcx, &mircx.debug_context, name, layout.ty, scope,
let (scope, span) = fx.debug_loc(decl.source_info);
declare_local(&bx, &fx.debug_context, name, layout.ty, scope,
VariableAccess::DirectVariable { alloca: place.llval },
VariableKind::LocalVariable, span);
}
LocalRef::Place(place)
} else {
// Temporary or return place
if local == mir::RETURN_PLACE && mircx.fn_ty.ret.is_indirect() {
if local == mir::RETURN_PLACE && fx.fn_ty.ret.is_indirect() {
debug!("alloc: {:?} (return place) -> place", local);
let llretptr = llvm::get_param(llfn, 0);
LocalRef::Place(PlaceRef::new_sized(llretptr, layout, layout.align))
} else if memory_locals.contains(local.index()) {
debug!("alloc: {:?} -> place", local);
LocalRef::Place(PlaceRef::alloca(&bcx, layout, &format!("{:?}", local)))
LocalRef::Place(PlaceRef::alloca(&bx, layout, &format!("{:?}", local)))
} else {
// If this is an immediate local, we do not create an
// alloca in advance. Instead we wait until we see the
// definition and update the operand there.
debug!("alloc: {:?} -> operand", local);
LocalRef::new_operand(bcx.ccx, layout)
LocalRef::new_operand(bx.cx, layout)
}
}
};
@ -302,13 +302,13 @@ pub fn trans_mir<'a, 'tcx: 'a>(
// Branch to the START block, if it's not the entry block.
if reentrant_start_block {
bcx.br(mircx.blocks[mir::START_BLOCK]);
bx.br(fx.blocks[mir::START_BLOCK]);
}
// Up until here, IR instructions for this function have explicitly not been annotated with
// source code location, so we don't step into call setup code. From here on, source location
// emitting should be enabled.
debuginfo::start_emitting_source_locations(&mircx.debug_context);
debuginfo::start_emitting_source_locations(&fx.debug_context);
let rpo = traversal::reverse_postorder(&mir);
let mut visited = BitVector::new(mir.basic_blocks().len());
@ -316,7 +316,7 @@ pub fn trans_mir<'a, 'tcx: 'a>(
// Translate the body of each block using reverse postorder
for (bb, _) in rpo {
visited.insert(bb.index());
mircx.trans_block(bb);
fx.trans_block(bb);
}
// Remove blocks that haven't been visited, or have no
@ -326,26 +326,26 @@ pub fn trans_mir<'a, 'tcx: 'a>(
if !visited.contains(bb.index()) {
debug!("trans_mir: block {:?} was not visited", bb);
unsafe {
llvm::LLVMDeleteBasicBlock(mircx.blocks[bb]);
llvm::LLVMDeleteBasicBlock(fx.blocks[bb]);
}
}
}
}
fn create_funclets<'a, 'tcx>(
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
cleanup_kinds: &IndexVec<mir::BasicBlock, CleanupKind>,
block_bcxs: &IndexVec<mir::BasicBlock, BasicBlockRef>)
block_bxs: &IndexVec<mir::BasicBlock, BasicBlockRef>)
-> (IndexVec<mir::BasicBlock, Option<BasicBlockRef>>,
IndexVec<mir::BasicBlock, Option<Funclet>>)
{
block_bcxs.iter_enumerated().zip(cleanup_kinds).map(|((bb, &llbb), cleanup_kind)| {
block_bxs.iter_enumerated().zip(cleanup_kinds).map(|((bb, &llbb), cleanup_kind)| {
match *cleanup_kind {
CleanupKind::Funclet if base::wants_msvc_seh(bcx.sess()) => {
let cleanup_bcx = bcx.build_sibling_block(&format!("funclet_{:?}", bb));
let cleanup = cleanup_bcx.cleanup_pad(None, &[]);
cleanup_bcx.br(llbb);
(Some(cleanup_bcx.llbb()), Some(Funclet::new(cleanup)))
CleanupKind::Funclet if base::wants_msvc_seh(bx.sess()) => {
let cleanup_bx = bx.build_sibling_block(&format!("funclet_{:?}", bb));
let cleanup = cleanup_bx.cleanup_pad(None, &[]);
cleanup_bx.br(llbb);
(Some(cleanup_bx.llbb()), Some(Funclet::new(cleanup)))
}
_ => (None, None)
}
@ -355,19 +355,19 @@ fn create_funclets<'a, 'tcx>(
/// Produce, for each argument, a `ValueRef` pointing at the
/// argument's value. As arguments are places, these are always
/// indirect.
fn arg_local_refs<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
mircx: &MirContext<'a, 'tcx>,
fn arg_local_refs<'a, 'tcx>(bx: &Builder<'a, 'tcx>,
fx: &FunctionCx<'a, 'tcx>,
scopes: &IndexVec<mir::VisibilityScope, debuginfo::MirDebugScope>,
memory_locals: &BitVector)
-> Vec<LocalRef<'tcx>> {
let mir = mircx.mir;
let tcx = bcx.tcx();
let mir = fx.mir;
let tcx = bx.tcx();
let mut idx = 0;
let mut llarg_idx = mircx.fn_ty.ret.is_indirect() as usize;
let mut llarg_idx = fx.fn_ty.ret.is_indirect() as usize;
// Get the argument scope, if it exists and if we need it.
let arg_scope = scopes[mir::ARGUMENT_VISIBILITY_SCOPE];
let arg_scope = if arg_scope.is_valid() && bcx.sess().opts.debuginfo == FullDebugInfo {
let arg_scope = if arg_scope.is_valid() && bx.sess().opts.debuginfo == FullDebugInfo {
Some(arg_scope.scope_metadata)
} else {
None
@ -392,17 +392,17 @@ fn arg_local_refs<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
// to reconstruct it into a tuple local variable, from multiple
// individual LLVM function arguments.
let arg_ty = mircx.monomorphize(&arg_decl.ty);
let arg_ty = fx.monomorphize(&arg_decl.ty);
let tupled_arg_tys = match arg_ty.sty {
ty::TyTuple(ref tys, _) => tys,
_ => bug!("spread argument isn't a tuple?!")
};
let place = PlaceRef::alloca(bcx, bcx.ccx.layout_of(arg_ty), &name);
let place = PlaceRef::alloca(bx, bx.cx.layout_of(arg_ty), &name);
for i in 0..tupled_arg_tys.len() {
let arg = &mircx.fn_ty.args[idx];
let arg = &fx.fn_ty.args[idx];
idx += 1;
arg.store_fn_arg(bcx, &mut llarg_idx, place.project_field(bcx, i));
arg.store_fn_arg(bx, &mut llarg_idx, place.project_field(bx, i));
}
// Now that we have one alloca that contains the aggregate value,
@ -412,8 +412,8 @@ fn arg_local_refs<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
alloca: place.llval
};
declare_local(
bcx,
&mircx.debug_context,
bx,
&fx.debug_context,
arg_decl.name.unwrap_or(keywords::Invalid.name()),
arg_ty, scope,
variable_access,
@ -425,7 +425,7 @@ fn arg_local_refs<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
return LocalRef::Place(place);
}
let arg = &mircx.fn_ty.args[idx];
let arg = &fx.fn_ty.args[idx];
idx += 1;
if arg.pad.is_some() {
llarg_idx += 1;
@ -438,22 +438,22 @@ fn arg_local_refs<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
let local = |op| LocalRef::Operand(Some(op));
match arg.mode {
PassMode::Ignore => {
return local(OperandRef::new_zst(bcx.ccx, arg.layout));
return local(OperandRef::new_zst(bx.cx, arg.layout));
}
PassMode::Direct(_) => {
let llarg = llvm::get_param(bcx.llfn(), llarg_idx as c_uint);
bcx.set_value_name(llarg, &name);
let llarg = llvm::get_param(bx.llfn(), llarg_idx as c_uint);
bx.set_value_name(llarg, &name);
llarg_idx += 1;
return local(
OperandRef::from_immediate_or_packed_pair(bcx, llarg, arg.layout));
OperandRef::from_immediate_or_packed_pair(bx, llarg, arg.layout));
}
PassMode::Pair(..) => {
let a = llvm::get_param(bcx.llfn(), llarg_idx as c_uint);
bcx.set_value_name(a, &(name.clone() + ".0"));
let a = llvm::get_param(bx.llfn(), llarg_idx as c_uint);
bx.set_value_name(a, &(name.clone() + ".0"));
llarg_idx += 1;
let b = llvm::get_param(bcx.llfn(), llarg_idx as c_uint);
bcx.set_value_name(b, &(name + ".1"));
let b = llvm::get_param(bx.llfn(), llarg_idx as c_uint);
bx.set_value_name(b, &(name + ".1"));
llarg_idx += 1;
return local(OperandRef {
@ -469,13 +469,13 @@ fn arg_local_refs<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
// Don't copy an indirect argument to an alloca, the caller
// already put it in a temporary alloca and gave it up.
// FIXME: lifetimes
let llarg = llvm::get_param(bcx.llfn(), llarg_idx as c_uint);
bcx.set_value_name(llarg, &name);
let llarg = llvm::get_param(bx.llfn(), llarg_idx as c_uint);
bx.set_value_name(llarg, &name);
llarg_idx += 1;
PlaceRef::new_sized(llarg, arg.layout, arg.layout.align)
} else {
let tmp = PlaceRef::alloca(bcx, arg.layout, &name);
arg.store_fn_arg(bcx, &mut llarg_idx, tmp);
let tmp = PlaceRef::alloca(bx, arg.layout, &name);
arg.store_fn_arg(bx, &mut llarg_idx, tmp);
tmp
};
arg_scope.map(|scope| {
@ -498,8 +498,8 @@ fn arg_local_refs<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
}
declare_local(
bcx,
&mircx.debug_context,
bx,
&fx.debug_context,
arg_decl.name.unwrap_or(keywords::Invalid.name()),
arg.layout.ty,
scope,
@ -512,7 +512,7 @@ fn arg_local_refs<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
// Or is it the closure environment?
let (closure_layout, env_ref) = match arg.layout.ty.sty {
ty::TyRef(_, mt) | ty::TyRawPtr(mt) => (bcx.ccx.layout_of(mt.ty), true),
ty::TyRef(_, mt) | ty::TyRawPtr(mt) => (bx.cx.layout_of(mt.ty), true),
_ => (arg.layout, false)
};
@ -530,10 +530,10 @@ fn arg_local_refs<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
// doesn't actually strip the offset when splitting the closure
// environment into its components so it ends up out of bounds.
let env_ptr = if !env_ref {
let scratch = PlaceRef::alloca(bcx,
bcx.ccx.layout_of(tcx.mk_mut_ptr(arg.layout.ty)),
let scratch = PlaceRef::alloca(bx,
bx.cx.layout_of(tcx.mk_mut_ptr(arg.layout.ty)),
"__debuginfo_env_ptr");
bcx.store(place.llval, scratch.llval, scratch.align);
bx.store(place.llval, scratch.llval, scratch.align);
scratch.llval
} else {
place.llval
@ -567,8 +567,8 @@ fn arg_local_refs<'a, 'tcx>(bcx: &Builder<'a, 'tcx>,
address_operations: &ops
};
declare_local(
bcx,
&mircx.debug_context,
bx,
&fx.debug_context,
decl.debug_name,
ty,
scope,

View file

@ -15,7 +15,7 @@ use rustc::mir;
use rustc_data_structures::indexed_vec::Idx;
use base;
use common::{self, CrateContext, C_undef, C_usize};
use common::{self, CodegenCx, C_undef, C_usize};
use builder::Builder;
use value::Value;
use type_of::LayoutLlvmExt;
@ -24,7 +24,7 @@ use type_::Type;
use std::fmt;
use std::ptr;
use super::{MirContext, LocalRef};
use super::{FunctionCx, LocalRef};
use super::place::PlaceRef;
/// The representation of a Rust value. The enum variant is in fact
@ -81,11 +81,11 @@ impl<'tcx> fmt::Debug for OperandRef<'tcx> {
}
impl<'a, 'tcx> OperandRef<'tcx> {
pub fn new_zst(ccx: &CrateContext<'a, 'tcx>,
pub fn new_zst(cx: &CodegenCx<'a, 'tcx>,
layout: TyLayout<'tcx>) -> OperandRef<'tcx> {
assert!(layout.is_zst());
OperandRef {
val: OperandValue::Immediate(C_undef(layout.immediate_llvm_type(ccx))),
val: OperandValue::Immediate(C_undef(layout.immediate_llvm_type(cx))),
layout
}
}
@ -99,7 +99,7 @@ impl<'a, 'tcx> OperandRef<'tcx> {
}
}
pub fn deref(self, ccx: &CrateContext<'a, 'tcx>) -> PlaceRef<'tcx> {
pub fn deref(self, cx: &CodegenCx<'a, 'tcx>) -> PlaceRef<'tcx> {
let projected_ty = self.layout.ty.builtin_deref(true, ty::NoPreference)
.unwrap_or_else(|| bug!("deref of non-pointer {:?}", self)).ty;
let (llptr, llextra) = match self.val {
@ -107,7 +107,7 @@ impl<'a, 'tcx> OperandRef<'tcx> {
OperandValue::Pair(llptr, llextra) => (llptr, llextra),
OperandValue::Ref(..) => bug!("Deref of by-Ref operand {:?}", self)
};
let layout = ccx.layout_of(projected_ty);
let layout = cx.layout_of(projected_ty);
PlaceRef {
llval: llptr,
llextra,
@ -118,15 +118,15 @@ impl<'a, 'tcx> OperandRef<'tcx> {
/// If this operand is a `Pair`, we return an aggregate with the two values.
/// For other cases, see `immediate`.
pub fn immediate_or_packed_pair(self, bcx: &Builder<'a, 'tcx>) -> ValueRef {
pub fn immediate_or_packed_pair(self, bx: &Builder<'a, 'tcx>) -> ValueRef {
if let OperandValue::Pair(a, b) = self.val {
let llty = self.layout.llvm_type(bcx.ccx);
let llty = self.layout.llvm_type(bx.cx);
debug!("Operand::immediate_or_packed_pair: packing {:?} into {:?}",
self, llty);
// Reconstruct the immediate aggregate.
let mut llpair = C_undef(llty);
llpair = bcx.insert_value(llpair, a, 0);
llpair = bcx.insert_value(llpair, b, 1);
llpair = bx.insert_value(llpair, a, 0);
llpair = bx.insert_value(llpair, b, 1);
llpair
} else {
self.immediate()
@ -134,7 +134,7 @@ impl<'a, 'tcx> OperandRef<'tcx> {
}
/// If the type is a pair, we return a `Pair`, otherwise, an `Immediate`.
pub fn from_immediate_or_packed_pair(bcx: &Builder<'a, 'tcx>,
pub fn from_immediate_or_packed_pair(bx: &Builder<'a, 'tcx>,
llval: ValueRef,
layout: TyLayout<'tcx>)
-> OperandRef<'tcx> {
@ -143,23 +143,23 @@ impl<'a, 'tcx> OperandRef<'tcx> {
llval, layout);
// Deconstruct the immediate aggregate.
OperandValue::Pair(bcx.extract_value(llval, 0),
bcx.extract_value(llval, 1))
OperandValue::Pair(bx.extract_value(llval, 0),
bx.extract_value(llval, 1))
} else {
OperandValue::Immediate(llval)
};
OperandRef { val, layout }
}
pub fn extract_field(&self, bcx: &Builder<'a, 'tcx>, i: usize) -> OperandRef<'tcx> {
let field = self.layout.field(bcx.ccx, i);
pub fn extract_field(&self, bx: &Builder<'a, 'tcx>, i: usize) -> OperandRef<'tcx> {
let field = self.layout.field(bx.cx, i);
let offset = self.layout.fields.offset(i);
let mut val = match (self.val, &self.layout.abi) {
// If we're uninhabited, or the field is ZST, it has no data.
_ if self.layout.abi == layout::Abi::Uninhabited || field.is_zst() => {
return OperandRef {
val: OperandValue::Immediate(C_undef(field.immediate_llvm_type(bcx.ccx))),
val: OperandValue::Immediate(C_undef(field.immediate_llvm_type(bx.cx))),
layout: field
};
}
@ -174,12 +174,12 @@ impl<'a, 'tcx> OperandRef<'tcx> {
// Extract a scalar component from a pair.
(OperandValue::Pair(a_llval, b_llval), &layout::Abi::ScalarPair(ref a, ref b)) => {
if offset.bytes() == 0 {
assert_eq!(field.size, a.value.size(bcx.ccx));
assert_eq!(field.size, a.value.size(bx.cx));
OperandValue::Immediate(a_llval)
} else {
assert_eq!(offset, a.value.size(bcx.ccx)
.abi_align(b.value.align(bcx.ccx)));
assert_eq!(field.size, b.value.size(bcx.ccx));
assert_eq!(offset, a.value.size(bx.cx)
.abi_align(b.value.align(bx.cx)));
assert_eq!(field.size, b.value.size(bx.cx));
OperandValue::Immediate(b_llval)
}
}
@ -187,7 +187,7 @@ impl<'a, 'tcx> OperandRef<'tcx> {
// `#[repr(simd)]` types are also immediate.
(OperandValue::Immediate(llval), &layout::Abi::Vector { .. }) => {
OperandValue::Immediate(
bcx.extract_element(llval, C_usize(bcx.ccx, i as u64)))
bx.extract_element(llval, C_usize(bx.cx, i as u64)))
}
_ => bug!("OperandRef::extract_field({:?}): not applicable", self)
@ -196,11 +196,11 @@ impl<'a, 'tcx> OperandRef<'tcx> {
// HACK(eddyb) have to bitcast pointers until LLVM removes pointee types.
match val {
OperandValue::Immediate(ref mut llval) => {
*llval = bcx.bitcast(*llval, field.immediate_llvm_type(bcx.ccx));
*llval = bx.bitcast(*llval, field.immediate_llvm_type(bx.cx));
}
OperandValue::Pair(ref mut a, ref mut b) => {
*a = bcx.bitcast(*a, field.scalar_pair_element_llvm_type(bcx.ccx, 0));
*b = bcx.bitcast(*b, field.scalar_pair_element_llvm_type(bcx.ccx, 1));
*a = bx.bitcast(*a, field.scalar_pair_element_llvm_type(bx.cx, 0));
*b = bx.bitcast(*b, field.scalar_pair_element_llvm_type(bx.cx, 1));
}
OperandValue::Ref(..) => bug!()
}
@ -213,7 +213,7 @@ impl<'a, 'tcx> OperandRef<'tcx> {
}
impl<'a, 'tcx> OperandValue {
pub fn store(self, bcx: &Builder<'a, 'tcx>, dest: PlaceRef<'tcx>) {
pub fn store(self, bx: &Builder<'a, 'tcx>, dest: PlaceRef<'tcx>) {
debug!("OperandRef::store: operand={:?}, dest={:?}", self, dest);
// Avoid generating stores of zero-sized values, because the only way to have a zero-sized
// value is through `undef`, and store itself is useless.
@ -222,28 +222,28 @@ impl<'a, 'tcx> OperandValue {
}
match self {
OperandValue::Ref(r, source_align) =>
base::memcpy_ty(bcx, dest.llval, r, dest.layout,
base::memcpy_ty(bx, dest.llval, r, dest.layout,
source_align.min(dest.align)),
OperandValue::Immediate(s) => {
bcx.store(base::from_immediate(bcx, s), dest.llval, dest.align);
bx.store(base::from_immediate(bx, s), dest.llval, dest.align);
}
OperandValue::Pair(a, b) => {
for (i, &x) in [a, b].iter().enumerate() {
let mut llptr = bcx.struct_gep(dest.llval, i as u64);
let mut llptr = bx.struct_gep(dest.llval, i as u64);
// Make sure to always store i1 as i8.
if common::val_ty(x) == Type::i1(bcx.ccx) {
llptr = bcx.pointercast(llptr, Type::i8p(bcx.ccx));
if common::val_ty(x) == Type::i1(bx.cx) {
llptr = bx.pointercast(llptr, Type::i8p(bx.cx));
}
bcx.store(base::from_immediate(bcx, x), llptr, dest.align);
bx.store(base::from_immediate(bx, x), llptr, dest.align);
}
}
}
}
}
impl<'a, 'tcx> MirContext<'a, 'tcx> {
impl<'a, 'tcx> FunctionCx<'a, 'tcx> {
fn maybe_trans_consume_direct(&mut self,
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
place: &mir::Place<'tcx>)
-> Option<OperandRef<'tcx>>
{
@ -267,19 +267,19 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
// Moves out of scalar and scalar pair fields are trivial.
if let &mir::Place::Projection(ref proj) = place {
if let Some(o) = self.maybe_trans_consume_direct(bcx, &proj.base) {
if let Some(o) = self.maybe_trans_consume_direct(bx, &proj.base) {
match proj.elem {
mir::ProjectionElem::Field(ref f, _) => {
return Some(o.extract_field(bcx, f.index()));
return Some(o.extract_field(bx, f.index()));
}
mir::ProjectionElem::Index(_) |
mir::ProjectionElem::ConstantIndex { .. } => {
// ZSTs don't require any actual memory access.
// FIXME(eddyb) deduplicate this with the identical
// checks in `trans_consume` and `extract_field`.
let elem = o.layout.field(bcx.ccx, 0);
let elem = o.layout.field(bx.cx, 0);
if elem.is_zst() {
return Some(OperandRef::new_zst(bcx.ccx, elem));
return Some(OperandRef::new_zst(bx.cx, elem));
}
}
_ => {}
@ -291,31 +291,31 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
}
pub fn trans_consume(&mut self,
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
place: &mir::Place<'tcx>)
-> OperandRef<'tcx>
{
debug!("trans_consume(place={:?})", place);
let ty = self.monomorphized_place_ty(place);
let layout = bcx.ccx.layout_of(ty);
let layout = bx.cx.layout_of(ty);
// ZSTs don't require any actual memory access.
if layout.is_zst() {
return OperandRef::new_zst(bcx.ccx, layout);
return OperandRef::new_zst(bx.cx, layout);
}
if let Some(o) = self.maybe_trans_consume_direct(bcx, place) {
if let Some(o) = self.maybe_trans_consume_direct(bx, place) {
return o;
}
// for most places, to consume them we just load them
// out from their home
self.trans_place(bcx, place).load(bcx)
self.trans_place(bx, place).load(bx)
}
pub fn trans_operand(&mut self,
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
operand: &mir::Operand<'tcx>)
-> OperandRef<'tcx>
{
@ -324,15 +324,15 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
match *operand {
mir::Operand::Copy(ref place) |
mir::Operand::Move(ref place) => {
self.trans_consume(bcx, place)
self.trans_consume(bx, place)
}
mir::Operand::Constant(ref constant) => {
let val = self.trans_constant(&bcx, constant);
let operand = val.to_operand(bcx.ccx);
let val = self.trans_constant(&bx, constant);
let operand = val.to_operand(bx.cx);
if let OperandValue::Ref(ptr, align) = operand.val {
// If this is a OperandValue::Ref to an immediate constant, load it.
PlaceRef::new_sized(ptr, operand.layout, align).load(bcx)
PlaceRef::new_sized(ptr, operand.layout, align).load(bx)
} else {
operand
}

View file

@ -16,7 +16,7 @@ use rustc::mir::tcx::PlaceTy;
use rustc_data_structures::indexed_vec::Idx;
use base;
use builder::Builder;
use common::{CrateContext, C_usize, C_u8, C_u32, C_uint, C_int, C_null, C_uint_big};
use common::{CodegenCx, C_usize, C_u8, C_u32, C_uint, C_int, C_null, C_uint_big};
use consts;
use type_of::LayoutLlvmExt;
use type_::Type;
@ -25,7 +25,7 @@ use glue;
use std::ptr;
use super::{MirContext, LocalRef};
use super::{FunctionCx, LocalRef};
use super::operand::{OperandRef, OperandValue};
#[derive(Copy, Clone, Debug)]
@ -56,21 +56,21 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
}
}
pub fn alloca(bcx: &Builder<'a, 'tcx>, layout: TyLayout<'tcx>, name: &str)
pub fn alloca(bx: &Builder<'a, 'tcx>, layout: TyLayout<'tcx>, name: &str)
-> PlaceRef<'tcx> {
debug!("alloca({:?}: {:?})", name, layout);
let tmp = bcx.alloca(layout.llvm_type(bcx.ccx), name, layout.align);
let tmp = bx.alloca(layout.llvm_type(bx.cx), name, layout.align);
Self::new_sized(tmp, layout, layout.align)
}
pub fn len(&self, ccx: &CrateContext<'a, 'tcx>) -> ValueRef {
pub fn len(&self, cx: &CodegenCx<'a, 'tcx>) -> ValueRef {
if let layout::FieldPlacement::Array { count, .. } = self.layout.fields {
if self.layout.is_unsized() {
assert!(self.has_extra());
assert_eq!(count, 0);
self.llextra
} else {
C_usize(ccx, count)
C_usize(cx, count)
}
} else {
bug!("unexpected layout `{:#?}` in PlaceRef::len", self.layout)
@ -81,19 +81,19 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
!self.llextra.is_null()
}
pub fn load(&self, bcx: &Builder<'a, 'tcx>) -> OperandRef<'tcx> {
pub fn load(&self, bx: &Builder<'a, 'tcx>) -> OperandRef<'tcx> {
debug!("PlaceRef::load: {:?}", self);
assert!(!self.has_extra());
if self.layout.is_zst() {
return OperandRef::new_zst(bcx.ccx, self.layout);
return OperandRef::new_zst(bx.cx, self.layout);
}
let scalar_load_metadata = |load, scalar: &layout::Scalar| {
let (min, max) = (scalar.valid_range.start, scalar.valid_range.end);
let max_next = max.wrapping_add(1);
let bits = scalar.value.size(bcx.ccx).bits();
let bits = scalar.value.size(bx.cx).bits();
assert!(bits <= 128);
let mask = !0u128 >> (128 - bits);
// For a (max) value of -1, max will be `-1 as usize`, which overflows.
@ -106,10 +106,10 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
layout::Int(..) if max_next & mask != min & mask => {
// llvm::ConstantRange can deal with ranges that wrap around,
// so an overflow on (max + 1) is fine.
bcx.range_metadata(load, min..max_next);
bx.range_metadata(load, min..max_next);
}
layout::Pointer if 0 < min && min < max => {
bcx.nonnull_metadata(load);
bx.nonnull_metadata(load);
}
_ => {}
}
@ -127,24 +127,24 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
let llval = if !const_llval.is_null() {
const_llval
} else {
let load = bcx.load(self.llval, self.align);
let load = bx.load(self.llval, self.align);
if let layout::Abi::Scalar(ref scalar) = self.layout.abi {
scalar_load_metadata(load, scalar);
}
load
};
OperandValue::Immediate(base::to_immediate(bcx, llval, self.layout))
OperandValue::Immediate(base::to_immediate(bx, llval, self.layout))
} else if let layout::Abi::ScalarPair(ref a, ref b) = self.layout.abi {
let load = |i, scalar: &layout::Scalar| {
let mut llptr = bcx.struct_gep(self.llval, i as u64);
let mut llptr = bx.struct_gep(self.llval, i as u64);
// Make sure to always load i1 as i8.
if scalar.is_bool() {
llptr = bcx.pointercast(llptr, Type::i8p(bcx.ccx));
llptr = bx.pointercast(llptr, Type::i8p(bx.cx));
}
let load = bcx.load(llptr, self.align);
let load = bx.load(llptr, self.align);
scalar_load_metadata(load, scalar);
if scalar.is_bool() {
bcx.trunc(load, Type::i1(bcx.ccx))
bx.trunc(load, Type::i1(bx.cx))
} else {
load
}
@ -158,9 +158,9 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
}
/// Access a field, at a point when the value's case is known.
pub fn project_field(self, bcx: &Builder<'a, 'tcx>, ix: usize) -> PlaceRef<'tcx> {
let ccx = bcx.ccx;
let field = self.layout.field(ccx, ix);
pub fn project_field(self, bx: &Builder<'a, 'tcx>, ix: usize) -> PlaceRef<'tcx> {
let cx = bx.cx;
let field = self.layout.field(cx, ix);
let offset = self.layout.fields.offset(ix);
let align = self.align.min(self.layout.align).min(field.align);
@ -170,15 +170,15 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
self.llval
} else if let layout::Abi::ScalarPair(ref a, ref b) = self.layout.abi {
// Offsets have to match either first or second field.
assert_eq!(offset, a.value.size(ccx).abi_align(b.value.align(ccx)));
bcx.struct_gep(self.llval, 1)
assert_eq!(offset, a.value.size(cx).abi_align(b.value.align(cx)));
bx.struct_gep(self.llval, 1)
} else {
bcx.struct_gep(self.llval, self.layout.llvm_field_index(ix))
bx.struct_gep(self.llval, self.layout.llvm_field_index(ix))
};
PlaceRef {
// HACK(eddyb) have to bitcast pointers until LLVM removes pointee types.
llval: bcx.pointercast(llval, field.llvm_type(ccx).ptr_to()),
llextra: if ccx.shared().type_has_metadata(field.ty) {
llval: bx.pointercast(llval, field.llvm_type(cx).ptr_to()),
llextra: if cx.type_has_metadata(field.ty) {
self.llextra
} else {
ptr::null_mut()
@ -228,10 +228,10 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
let meta = self.llextra;
let unaligned_offset = C_usize(ccx, offset.bytes());
let unaligned_offset = C_usize(cx, offset.bytes());
// Get the alignment of the field
let (_, unsized_align) = glue::size_and_align_of_dst(bcx, field.ty, meta);
let (_, unsized_align) = glue::size_and_align_of_dst(bx, field.ty, meta);
// Bump the unaligned offset up to the appropriate alignment using the
// following expression:
@ -239,22 +239,22 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
// (unaligned offset + (align - 1)) & -align
// Calculate offset
let align_sub_1 = bcx.sub(unsized_align, C_usize(ccx, 1u64));
let offset = bcx.and(bcx.add(unaligned_offset, align_sub_1),
bcx.neg(unsized_align));
let align_sub_1 = bx.sub(unsized_align, C_usize(cx, 1u64));
let offset = bx.and(bx.add(unaligned_offset, align_sub_1),
bx.neg(unsized_align));
debug!("struct_field_ptr: DST field offset: {:?}", Value(offset));
// Cast and adjust pointer
let byte_ptr = bcx.pointercast(self.llval, Type::i8p(ccx));
let byte_ptr = bcx.gep(byte_ptr, &[offset]);
let byte_ptr = bx.pointercast(self.llval, Type::i8p(cx));
let byte_ptr = bx.gep(byte_ptr, &[offset]);
// Finally, cast back to the type expected
let ll_fty = field.llvm_type(ccx);
let ll_fty = field.llvm_type(cx);
debug!("struct_field_ptr: Field type is {:?}", ll_fty);
PlaceRef {
llval: bcx.pointercast(byte_ptr, ll_fty.ptr_to()),
llval: bx.pointercast(byte_ptr, ll_fty.ptr_to()),
llextra: self.llextra,
layout: field,
align,
@ -262,8 +262,8 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
}
/// Obtain the actual discriminant of a value.
pub fn trans_get_discr(self, bcx: &Builder<'a, 'tcx>, cast_to: Ty<'tcx>) -> ValueRef {
let cast_to = bcx.ccx.layout_of(cast_to).immediate_llvm_type(bcx.ccx);
pub fn trans_get_discr(self, bx: &Builder<'a, 'tcx>, cast_to: Ty<'tcx>) -> ValueRef {
let cast_to = bx.cx.layout_of(cast_to).immediate_llvm_type(bx.cx);
match self.layout.variants {
layout::Variants::Single { index } => {
return C_uint(cast_to, index as u64);
@ -272,8 +272,8 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
layout::Variants::NicheFilling { .. } => {},
}
let discr = self.project_field(bcx, 0);
let lldiscr = discr.load(bcx).immediate();
let discr = self.project_field(bx, 0);
let lldiscr = discr.load(bx).immediate();
match self.layout.variants {
layout::Variants::Single { .. } => bug!(),
layout::Variants::Tagged { ref discr, .. } => {
@ -281,7 +281,7 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
layout::Int(_, signed) => signed,
_ => false
};
bcx.intcast(lldiscr, cast_to, signed)
bx.intcast(lldiscr, cast_to, signed)
}
layout::Variants::NicheFilling {
dataful_variant,
@ -289,7 +289,7 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
niche_start,
..
} => {
let niche_llty = discr.layout.immediate_llvm_type(bcx.ccx);
let niche_llty = discr.layout.immediate_llvm_type(bx.cx);
if niche_variants.start == niche_variants.end {
// FIXME(eddyb) Check the actual primitive type here.
let niche_llval = if niche_start == 0 {
@ -298,16 +298,16 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
} else {
C_uint_big(niche_llty, niche_start)
};
bcx.select(bcx.icmp(llvm::IntEQ, lldiscr, niche_llval),
bx.select(bx.icmp(llvm::IntEQ, lldiscr, niche_llval),
C_uint(cast_to, niche_variants.start as u64),
C_uint(cast_to, dataful_variant as u64))
} else {
// Rebase from niche values to discriminant values.
let delta = niche_start.wrapping_sub(niche_variants.start as u128);
let lldiscr = bcx.sub(lldiscr, C_uint_big(niche_llty, delta));
let lldiscr = bx.sub(lldiscr, C_uint_big(niche_llty, delta));
let lldiscr_max = C_uint(niche_llty, niche_variants.end as u64);
bcx.select(bcx.icmp(llvm::IntULE, lldiscr, lldiscr_max),
bcx.intcast(lldiscr, cast_to, false),
bx.select(bx.icmp(llvm::IntULE, lldiscr, lldiscr_max),
bx.intcast(lldiscr, cast_to, false),
C_uint(cast_to, dataful_variant as u64))
}
}
@ -316,8 +316,8 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
/// Set the discriminant for a new value of the given case of the given
/// representation.
pub fn trans_set_discr(&self, bcx: &Builder<'a, 'tcx>, variant_index: usize) {
if self.layout.for_variant(bcx.ccx, variant_index).abi == layout::Abi::Uninhabited {
pub fn trans_set_discr(&self, bx: &Builder<'a, 'tcx>, variant_index: usize) {
if self.layout.for_variant(bx.cx, variant_index).abi == layout::Abi::Uninhabited {
return;
}
match self.layout.variants {
@ -325,11 +325,11 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
assert_eq!(index, variant_index);
}
layout::Variants::Tagged { .. } => {
let ptr = self.project_field(bcx, 0);
let ptr = self.project_field(bx, 0);
let to = self.layout.ty.ty_adt_def().unwrap()
.discriminant_for_variant(bcx.tcx(), variant_index)
.discriminant_for_variant(bx.tcx(), variant_index)
.to_u128_unchecked() as u64;
bcx.store(C_int(ptr.layout.llvm_type(bcx.ccx), to as i64),
bx.store(C_int(ptr.layout.llvm_type(bx.cx), to as i64),
ptr.llval, ptr.align);
}
layout::Variants::NicheFilling {
@ -339,20 +339,20 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
..
} => {
if variant_index != dataful_variant {
if bcx.sess().target.target.arch == "arm" ||
bcx.sess().target.target.arch == "aarch64" {
if bx.sess().target.target.arch == "arm" ||
bx.sess().target.target.arch == "aarch64" {
// Issue #34427: As workaround for LLVM bug on ARM,
// use memset of 0 before assigning niche value.
let llptr = bcx.pointercast(self.llval, Type::i8(bcx.ccx).ptr_to());
let fill_byte = C_u8(bcx.ccx, 0);
let llptr = bx.pointercast(self.llval, Type::i8(bx.cx).ptr_to());
let fill_byte = C_u8(bx.cx, 0);
let (size, align) = self.layout.size_and_align();
let size = C_usize(bcx.ccx, size.bytes());
let align = C_u32(bcx.ccx, align.abi() as u32);
base::call_memset(bcx, llptr, fill_byte, size, align, false);
let size = C_usize(bx.cx, size.bytes());
let align = C_u32(bx.cx, align.abi() as u32);
base::call_memset(bx, llptr, fill_byte, size, align, false);
}
let niche = self.project_field(bcx, 0);
let niche_llty = niche.layout.immediate_llvm_type(bcx.ccx);
let niche = self.project_field(bx, 0);
let niche_llty = niche.layout.immediate_llvm_type(bx.cx);
let niche_value = ((variant_index - niche_variants.start) as u128)
.wrapping_add(niche_start);
// FIXME(eddyb) Check the actual primitive type here.
@ -362,52 +362,52 @@ impl<'a, 'tcx> PlaceRef<'tcx> {
} else {
C_uint_big(niche_llty, niche_value)
};
OperandValue::Immediate(niche_llval).store(bcx, niche);
OperandValue::Immediate(niche_llval).store(bx, niche);
}
}
}
}
pub fn project_index(&self, bcx: &Builder<'a, 'tcx>, llindex: ValueRef)
pub fn project_index(&self, bx: &Builder<'a, 'tcx>, llindex: ValueRef)
-> PlaceRef<'tcx> {
PlaceRef {
llval: bcx.inbounds_gep(self.llval, &[C_usize(bcx.ccx, 0), llindex]),
llval: bx.inbounds_gep(self.llval, &[C_usize(bx.cx, 0), llindex]),
llextra: ptr::null_mut(),
layout: self.layout.field(bcx.ccx, 0),
layout: self.layout.field(bx.cx, 0),
align: self.align
}
}
pub fn project_downcast(&self, bcx: &Builder<'a, 'tcx>, variant_index: usize)
pub fn project_downcast(&self, bx: &Builder<'a, 'tcx>, variant_index: usize)
-> PlaceRef<'tcx> {
let mut downcast = *self;
downcast.layout = self.layout.for_variant(bcx.ccx, variant_index);
downcast.layout = self.layout.for_variant(bx.cx, variant_index);
// Cast to the appropriate variant struct type.
let variant_ty = downcast.layout.llvm_type(bcx.ccx);
downcast.llval = bcx.pointercast(downcast.llval, variant_ty.ptr_to());
let variant_ty = downcast.layout.llvm_type(bx.cx);
downcast.llval = bx.pointercast(downcast.llval, variant_ty.ptr_to());
downcast
}
pub fn storage_live(&self, bcx: &Builder<'a, 'tcx>) {
bcx.lifetime_start(self.llval, self.layout.size);
pub fn storage_live(&self, bx: &Builder<'a, 'tcx>) {
bx.lifetime_start(self.llval, self.layout.size);
}
pub fn storage_dead(&self, bcx: &Builder<'a, 'tcx>) {
bcx.lifetime_end(self.llval, self.layout.size);
pub fn storage_dead(&self, bx: &Builder<'a, 'tcx>) {
bx.lifetime_end(self.llval, self.layout.size);
}
}
impl<'a, 'tcx> MirContext<'a, 'tcx> {
impl<'a, 'tcx> FunctionCx<'a, 'tcx> {
pub fn trans_place(&mut self,
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
place: &mir::Place<'tcx>)
-> PlaceRef<'tcx> {
debug!("trans_place(place={:?})", place);
let ccx = bcx.ccx;
let tcx = ccx.tcx();
let cx = bx.cx;
let tcx = cx.tcx;
if let mir::Place::Local(index) = *place {
match self.locals[index] {
@ -423,66 +423,66 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
let result = match *place {
mir::Place::Local(_) => bug!(), // handled above
mir::Place::Static(box mir::Static { def_id, ty }) => {
let layout = ccx.layout_of(self.monomorphize(&ty));
PlaceRef::new_sized(consts::get_static(ccx, def_id), layout, layout.align)
let layout = cx.layout_of(self.monomorphize(&ty));
PlaceRef::new_sized(consts::get_static(cx, def_id), layout, layout.align)
},
mir::Place::Projection(box mir::Projection {
ref base,
elem: mir::ProjectionElem::Deref
}) => {
// Load the pointer from its location.
self.trans_consume(bcx, base).deref(bcx.ccx)
self.trans_consume(bx, base).deref(bx.cx)
}
mir::Place::Projection(ref projection) => {
let tr_base = self.trans_place(bcx, &projection.base);
let tr_base = self.trans_place(bx, &projection.base);
match projection.elem {
mir::ProjectionElem::Deref => bug!(),
mir::ProjectionElem::Field(ref field, _) => {
tr_base.project_field(bcx, field.index())
tr_base.project_field(bx, field.index())
}
mir::ProjectionElem::Index(index) => {
let index = &mir::Operand::Copy(mir::Place::Local(index));
let index = self.trans_operand(bcx, index);
let index = self.trans_operand(bx, index);
let llindex = index.immediate();
tr_base.project_index(bcx, llindex)
tr_base.project_index(bx, llindex)
}
mir::ProjectionElem::ConstantIndex { offset,
from_end: false,
min_length: _ } => {
let lloffset = C_usize(bcx.ccx, offset as u64);
tr_base.project_index(bcx, lloffset)
let lloffset = C_usize(bx.cx, offset as u64);
tr_base.project_index(bx, lloffset)
}
mir::ProjectionElem::ConstantIndex { offset,
from_end: true,
min_length: _ } => {
let lloffset = C_usize(bcx.ccx, offset as u64);
let lllen = tr_base.len(bcx.ccx);
let llindex = bcx.sub(lllen, lloffset);
tr_base.project_index(bcx, llindex)
let lloffset = C_usize(bx.cx, offset as u64);
let lllen = tr_base.len(bx.cx);
let llindex = bx.sub(lllen, lloffset);
tr_base.project_index(bx, llindex)
}
mir::ProjectionElem::Subslice { from, to } => {
let mut subslice = tr_base.project_index(bcx,
C_usize(bcx.ccx, from as u64));
let mut subslice = tr_base.project_index(bx,
C_usize(bx.cx, from as u64));
let projected_ty = PlaceTy::Ty { ty: tr_base.layout.ty }
.projection_ty(tcx, &projection.elem).to_ty(bcx.tcx());
subslice.layout = bcx.ccx.layout_of(self.monomorphize(&projected_ty));
.projection_ty(tcx, &projection.elem).to_ty(bx.tcx());
subslice.layout = bx.cx.layout_of(self.monomorphize(&projected_ty));
if subslice.layout.is_unsized() {
assert!(tr_base.has_extra());
subslice.llextra = bcx.sub(tr_base.llextra,
C_usize(bcx.ccx, (from as u64) + (to as u64)));
subslice.llextra = bx.sub(tr_base.llextra,
C_usize(bx.cx, (from as u64) + (to as u64)));
}
// Cast the place pointer type to the new
// array or slice type (*[%_; new_len]).
subslice.llval = bcx.pointercast(subslice.llval,
subslice.layout.llvm_type(bcx.ccx).ptr_to());
subslice.llval = bx.pointercast(subslice.llval,
subslice.layout.llvm_type(bx.cx).ptr_to());
subslice
}
mir::ProjectionElem::Downcast(_, v) => {
tr_base.project_downcast(bcx, v)
tr_base.project_downcast(bx, v)
}
}
}
@ -492,7 +492,7 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
}
pub fn monomorphized_place_ty(&self, place: &mir::Place<'tcx>) -> Ty<'tcx> {
let tcx = self.ccx.tcx();
let tcx = self.cx.tcx;
let place_ty = place.ty(self.mir, tcx);
self.monomorphize(&place_ty.to_ty(tcx))
}

View file

@ -29,14 +29,14 @@ use type_::Type;
use type_of::LayoutLlvmExt;
use value::Value;
use super::{MirContext, LocalRef};
use super::{FunctionCx, LocalRef};
use super::constant::const_scalar_checked_binop;
use super::operand::{OperandRef, OperandValue};
use super::place::PlaceRef;
impl<'a, 'tcx> MirContext<'a, 'tcx> {
impl<'a, 'tcx> FunctionCx<'a, 'tcx> {
pub fn trans_rvalue(&mut self,
bcx: Builder<'a, 'tcx>,
bx: Builder<'a, 'tcx>,
dest: PlaceRef<'tcx>,
rvalue: &mir::Rvalue<'tcx>)
-> Builder<'a, 'tcx>
@ -46,11 +46,11 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
match *rvalue {
mir::Rvalue::Use(ref operand) => {
let tr_operand = self.trans_operand(&bcx, operand);
let tr_operand = self.trans_operand(&bx, operand);
// FIXME: consider not copying constants through stack. (fixable by translating
// constants into OperandValue::Ref, why dont we do that yet if we dont?)
tr_operand.val.store(&bcx, dest);
bcx
tr_operand.val.store(&bx, dest);
bx
}
mir::Rvalue::Cast(mir::CastKind::Unsize, ref source, _) => {
@ -59,16 +59,16 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
if dest.layout.is_llvm_scalar_pair() {
// into-coerce of a thin pointer to a fat pointer - just
// use the operand path.
let (bcx, temp) = self.trans_rvalue_operand(bcx, rvalue);
temp.val.store(&bcx, dest);
return bcx;
let (bx, temp) = self.trans_rvalue_operand(bx, rvalue);
temp.val.store(&bx, dest);
return bx;
}
// Unsize of a nontrivial struct. I would prefer for
// this to be eliminated by MIR translation, but
// `CoerceUnsized` can be passed by a where-clause,
// so the (generic) MIR may not be able to expand it.
let operand = self.trans_operand(&bcx, source);
let operand = self.trans_operand(&bx, source);
match operand.val {
OperandValue::Pair(..) |
OperandValue::Immediate(_) => {
@ -79,79 +79,79 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
// index into the struct, and this case isn't
// important enough for it.
debug!("trans_rvalue: creating ugly alloca");
let scratch = PlaceRef::alloca(&bcx, operand.layout, "__unsize_temp");
scratch.storage_live(&bcx);
operand.val.store(&bcx, scratch);
base::coerce_unsized_into(&bcx, scratch, dest);
scratch.storage_dead(&bcx);
let scratch = PlaceRef::alloca(&bx, operand.layout, "__unsize_temp");
scratch.storage_live(&bx);
operand.val.store(&bx, scratch);
base::coerce_unsized_into(&bx, scratch, dest);
scratch.storage_dead(&bx);
}
OperandValue::Ref(llref, align) => {
let source = PlaceRef::new_sized(llref, operand.layout, align);
base::coerce_unsized_into(&bcx, source, dest);
base::coerce_unsized_into(&bx, source, dest);
}
}
bcx
bx
}
mir::Rvalue::Repeat(ref elem, count) => {
let tr_elem = self.trans_operand(&bcx, elem);
let tr_elem = self.trans_operand(&bx, elem);
// Do not generate the loop for zero-sized elements or empty arrays.
if dest.layout.is_zst() {
return bcx;
return bx;
}
let start = dest.project_index(&bcx, C_usize(bcx.ccx, 0)).llval;
let start = dest.project_index(&bx, C_usize(bx.cx, 0)).llval;
if let OperandValue::Immediate(v) = tr_elem.val {
let align = C_i32(bcx.ccx, dest.align.abi() as i32);
let size = C_usize(bcx.ccx, dest.layout.size.bytes());
let align = C_i32(bx.cx, dest.align.abi() as i32);
let size = C_usize(bx.cx, dest.layout.size.bytes());
// Use llvm.memset.p0i8.* to initialize all zero arrays
if common::is_const_integral(v) && common::const_to_uint(v) == 0 {
let fill = C_u8(bcx.ccx, 0);
base::call_memset(&bcx, start, fill, size, align, false);
return bcx;
let fill = C_u8(bx.cx, 0);
base::call_memset(&bx, start, fill, size, align, false);
return bx;
}
// Use llvm.memset.p0i8.* to initialize byte arrays
let v = base::from_immediate(&bcx, v);
if common::val_ty(v) == Type::i8(bcx.ccx) {
base::call_memset(&bcx, start, v, size, align, false);
return bcx;
let v = base::from_immediate(&bx, v);
if common::val_ty(v) == Type::i8(bx.cx) {
base::call_memset(&bx, start, v, size, align, false);
return bx;
}
}
let count = count.as_u64();
let count = C_usize(bcx.ccx, count);
let end = dest.project_index(&bcx, count).llval;
let count = C_usize(bx.cx, count);
let end = dest.project_index(&bx, count).llval;
let header_bcx = bcx.build_sibling_block("repeat_loop_header");
let body_bcx = bcx.build_sibling_block("repeat_loop_body");
let next_bcx = bcx.build_sibling_block("repeat_loop_next");
let header_bx = bx.build_sibling_block("repeat_loop_header");
let body_bx = bx.build_sibling_block("repeat_loop_body");
let next_bx = bx.build_sibling_block("repeat_loop_next");
bcx.br(header_bcx.llbb());
let current = header_bcx.phi(common::val_ty(start), &[start], &[bcx.llbb()]);
bx.br(header_bx.llbb());
let current = header_bx.phi(common::val_ty(start), &[start], &[bx.llbb()]);
let keep_going = header_bcx.icmp(llvm::IntNE, current, end);
header_bcx.cond_br(keep_going, body_bcx.llbb(), next_bcx.llbb());
let keep_going = header_bx.icmp(llvm::IntNE, current, end);
header_bx.cond_br(keep_going, body_bx.llbb(), next_bx.llbb());
tr_elem.val.store(&body_bcx,
tr_elem.val.store(&body_bx,
PlaceRef::new_sized(current, tr_elem.layout, dest.align));
let next = body_bcx.inbounds_gep(current, &[C_usize(bcx.ccx, 1)]);
body_bcx.br(header_bcx.llbb());
header_bcx.add_incoming_to_phi(current, next, body_bcx.llbb());
let next = body_bx.inbounds_gep(current, &[C_usize(bx.cx, 1)]);
body_bx.br(header_bx.llbb());
header_bx.add_incoming_to_phi(current, next, body_bx.llbb());
next_bcx
next_bx
}
mir::Rvalue::Aggregate(ref kind, ref operands) => {
let (dest, active_field_index) = match **kind {
mir::AggregateKind::Adt(adt_def, variant_index, _, active_field_index) => {
dest.trans_set_discr(&bcx, variant_index);
dest.trans_set_discr(&bx, variant_index);
if adt_def.is_enum() {
(dest.project_downcast(&bcx, variant_index), active_field_index)
(dest.project_downcast(&bx, variant_index), active_field_index)
} else {
(dest, active_field_index)
}
@ -159,27 +159,27 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
_ => (dest, None)
};
for (i, operand) in operands.iter().enumerate() {
let op = self.trans_operand(&bcx, operand);
let op = self.trans_operand(&bx, operand);
// Do not generate stores and GEPis for zero-sized fields.
if !op.layout.is_zst() {
let field_index = active_field_index.unwrap_or(i);
op.val.store(&bcx, dest.project_field(&bcx, field_index));
op.val.store(&bx, dest.project_field(&bx, field_index));
}
}
bcx
bx
}
_ => {
assert!(self.rvalue_creates_operand(rvalue));
let (bcx, temp) = self.trans_rvalue_operand(bcx, rvalue);
temp.val.store(&bcx, dest);
bcx
let (bx, temp) = self.trans_rvalue_operand(bx, rvalue);
temp.val.store(&bx, dest);
bx
}
}
}
pub fn trans_rvalue_operand(&mut self,
bcx: Builder<'a, 'tcx>,
bx: Builder<'a, 'tcx>,
rvalue: &mir::Rvalue<'tcx>)
-> (Builder<'a, 'tcx>, OperandRef<'tcx>)
{
@ -187,16 +187,16 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
match *rvalue {
mir::Rvalue::Cast(ref kind, ref source, mir_cast_ty) => {
let operand = self.trans_operand(&bcx, source);
let operand = self.trans_operand(&bx, source);
debug!("cast operand is {:?}", operand);
let cast = bcx.ccx.layout_of(self.monomorphize(&mir_cast_ty));
let cast = bx.cx.layout_of(self.monomorphize(&mir_cast_ty));
let val = match *kind {
mir::CastKind::ReifyFnPointer => {
match operand.layout.ty.sty {
ty::TyFnDef(def_id, substs) => {
OperandValue::Immediate(
callee::resolve_and_get_fn(bcx.ccx, def_id, substs))
callee::resolve_and_get_fn(bx.cx, def_id, substs))
}
_ => {
bug!("{} cannot be reified to a fn ptr", operand.layout.ty)
@ -207,8 +207,8 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
match operand.layout.ty.sty {
ty::TyClosure(def_id, substs) => {
let instance = monomorphize::resolve_closure(
bcx.ccx.tcx(), def_id, substs, ty::ClosureKind::FnOnce);
OperandValue::Immediate(callee::get_fn(bcx.ccx, instance))
bx.cx.tcx, def_id, substs, ty::ClosureKind::FnOnce);
OperandValue::Immediate(callee::get_fn(bx.cx, instance))
}
_ => {
bug!("{} cannot be cast to a fn ptr", operand.layout.ty)
@ -230,13 +230,13 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
// HACK(eddyb) have to bitcast pointers
// until LLVM removes pointee types.
let lldata = bcx.pointercast(lldata,
cast.scalar_pair_element_llvm_type(bcx.ccx, 0));
let lldata = bx.pointercast(lldata,
cast.scalar_pair_element_llvm_type(bx.cx, 0));
OperandValue::Pair(lldata, llextra)
}
OperandValue::Immediate(lldata) => {
// "standard" unsize
let (lldata, llextra) = base::unsize_thin_ptr(&bcx, lldata,
let (lldata, llextra) = base::unsize_thin_ptr(&bx, lldata,
operand.layout.ty, cast.ty);
OperandValue::Pair(lldata, llextra)
}
@ -249,14 +249,14 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
mir::CastKind::Misc if operand.layout.is_llvm_scalar_pair() => {
if let OperandValue::Pair(data_ptr, meta) = operand.val {
if cast.is_llvm_scalar_pair() {
let data_cast = bcx.pointercast(data_ptr,
cast.scalar_pair_element_llvm_type(bcx.ccx, 0));
let data_cast = bx.pointercast(data_ptr,
cast.scalar_pair_element_llvm_type(bx.cx, 0));
OperandValue::Pair(data_cast, meta)
} else { // cast to thin-ptr
// Cast of fat-ptr to thin-ptr is an extraction of data-ptr and
// pointer-cast of that pointer to desired pointer type.
let llcast_ty = cast.immediate_llvm_type(bcx.ccx);
let llval = bcx.pointercast(data_ptr, llcast_ty);
let llcast_ty = cast.immediate_llvm_type(bx.cx);
let llval = bx.pointercast(data_ptr, llcast_ty);
OperandValue::Immediate(llval)
}
} else {
@ -268,8 +268,8 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
let r_t_in = CastTy::from_ty(operand.layout.ty)
.expect("bad input type for cast");
let r_t_out = CastTy::from_ty(cast.ty).expect("bad output type for cast");
let ll_t_in = operand.layout.immediate_llvm_type(bcx.ccx);
let ll_t_out = cast.immediate_llvm_type(bcx.ccx);
let ll_t_in = operand.layout.immediate_llvm_type(bx.cx);
let ll_t_out = cast.immediate_llvm_type(bx.cx);
let llval = operand.immediate();
let mut signed = false;
@ -282,7 +282,7 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
// have bound checks, and this is the most
// convenient place to put the `assume`.
base::call_assume(&bcx, bcx.icmp(
base::call_assume(&bx, bx.icmp(
llvm::IntULE,
llval,
C_uint_big(ll_t_in, scalar.valid_range.end)
@ -293,15 +293,15 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
let newval = match (r_t_in, r_t_out) {
(CastTy::Int(_), CastTy::Int(_)) => {
bcx.intcast(llval, ll_t_out, signed)
bx.intcast(llval, ll_t_out, signed)
}
(CastTy::Float, CastTy::Float) => {
let srcsz = ll_t_in.float_width();
let dstsz = ll_t_out.float_width();
if dstsz > srcsz {
bcx.fpext(llval, ll_t_out)
bx.fpext(llval, ll_t_out)
} else if srcsz > dstsz {
bcx.fptrunc(llval, ll_t_out)
bx.fptrunc(llval, ll_t_out)
} else {
llval
}
@ -309,68 +309,68 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
(CastTy::Ptr(_), CastTy::Ptr(_)) |
(CastTy::FnPtr, CastTy::Ptr(_)) |
(CastTy::RPtr(_), CastTy::Ptr(_)) =>
bcx.pointercast(llval, ll_t_out),
bx.pointercast(llval, ll_t_out),
(CastTy::Ptr(_), CastTy::Int(_)) |
(CastTy::FnPtr, CastTy::Int(_)) =>
bcx.ptrtoint(llval, ll_t_out),
bx.ptrtoint(llval, ll_t_out),
(CastTy::Int(_), CastTy::Ptr(_)) => {
let usize_llval = bcx.intcast(llval, bcx.ccx.isize_ty(), signed);
bcx.inttoptr(usize_llval, ll_t_out)
let usize_llval = bx.intcast(llval, bx.cx.isize_ty, signed);
bx.inttoptr(usize_llval, ll_t_out)
}
(CastTy::Int(_), CastTy::Float) =>
cast_int_to_float(&bcx, signed, llval, ll_t_in, ll_t_out),
cast_int_to_float(&bx, signed, llval, ll_t_in, ll_t_out),
(CastTy::Float, CastTy::Int(IntTy::I)) =>
cast_float_to_int(&bcx, true, llval, ll_t_in, ll_t_out),
cast_float_to_int(&bx, true, llval, ll_t_in, ll_t_out),
(CastTy::Float, CastTy::Int(_)) =>
cast_float_to_int(&bcx, false, llval, ll_t_in, ll_t_out),
cast_float_to_int(&bx, false, llval, ll_t_in, ll_t_out),
_ => bug!("unsupported cast: {:?} to {:?}", operand.layout.ty, cast.ty)
};
OperandValue::Immediate(newval)
}
};
(bcx, OperandRef {
(bx, OperandRef {
val,
layout: cast
})
}
mir::Rvalue::Ref(_, bk, ref place) => {
let tr_place = self.trans_place(&bcx, place);
let tr_place = self.trans_place(&bx, place);
let ty = tr_place.layout.ty;
// Note: places are indirect, so storing the `llval` into the
// destination effectively creates a reference.
let val = if !bcx.ccx.shared().type_has_metadata(ty) {
let val = if !bx.cx.type_has_metadata(ty) {
OperandValue::Immediate(tr_place.llval)
} else {
OperandValue::Pair(tr_place.llval, tr_place.llextra)
};
(bcx, OperandRef {
(bx, OperandRef {
val,
layout: self.ccx.layout_of(self.ccx.tcx().mk_ref(
self.ccx.tcx().types.re_erased,
layout: self.cx.layout_of(self.cx.tcx.mk_ref(
self.cx.tcx.types.re_erased,
ty::TypeAndMut { ty, mutbl: bk.to_mutbl_lossy() }
)),
})
}
mir::Rvalue::Len(ref place) => {
let size = self.evaluate_array_len(&bcx, place);
let size = self.evaluate_array_len(&bx, place);
let operand = OperandRef {
val: OperandValue::Immediate(size),
layout: bcx.ccx.layout_of(bcx.tcx().types.usize),
layout: bx.cx.layout_of(bx.tcx().types.usize),
};
(bcx, operand)
(bx, operand)
}
mir::Rvalue::BinaryOp(op, ref lhs, ref rhs) => {
let lhs = self.trans_operand(&bcx, lhs);
let rhs = self.trans_operand(&bcx, rhs);
let lhs = self.trans_operand(&bx, lhs);
let rhs = self.trans_operand(&bx, rhs);
let llresult = match (lhs.val, rhs.val) {
(OperandValue::Pair(lhs_addr, lhs_extra),
OperandValue::Pair(rhs_addr, rhs_extra)) => {
self.trans_fat_ptr_binop(&bcx, op,
self.trans_fat_ptr_binop(&bx, op,
lhs_addr, lhs_extra,
rhs_addr, rhs_extra,
lhs.layout.ty)
@ -378,114 +378,114 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
(OperandValue::Immediate(lhs_val),
OperandValue::Immediate(rhs_val)) => {
self.trans_scalar_binop(&bcx, op, lhs_val, rhs_val, lhs.layout.ty)
self.trans_scalar_binop(&bx, op, lhs_val, rhs_val, lhs.layout.ty)
}
_ => bug!()
};
let operand = OperandRef {
val: OperandValue::Immediate(llresult),
layout: bcx.ccx.layout_of(
op.ty(bcx.tcx(), lhs.layout.ty, rhs.layout.ty)),
layout: bx.cx.layout_of(
op.ty(bx.tcx(), lhs.layout.ty, rhs.layout.ty)),
};
(bcx, operand)
(bx, operand)
}
mir::Rvalue::CheckedBinaryOp(op, ref lhs, ref rhs) => {
let lhs = self.trans_operand(&bcx, lhs);
let rhs = self.trans_operand(&bcx, rhs);
let result = self.trans_scalar_checked_binop(&bcx, op,
let lhs = self.trans_operand(&bx, lhs);
let rhs = self.trans_operand(&bx, rhs);
let result = self.trans_scalar_checked_binop(&bx, op,
lhs.immediate(), rhs.immediate(),
lhs.layout.ty);
let val_ty = op.ty(bcx.tcx(), lhs.layout.ty, rhs.layout.ty);
let operand_ty = bcx.tcx().intern_tup(&[val_ty, bcx.tcx().types.bool], false);
let val_ty = op.ty(bx.tcx(), lhs.layout.ty, rhs.layout.ty);
let operand_ty = bx.tcx().intern_tup(&[val_ty, bx.tcx().types.bool], false);
let operand = OperandRef {
val: result,
layout: bcx.ccx.layout_of(operand_ty)
layout: bx.cx.layout_of(operand_ty)
};
(bcx, operand)
(bx, operand)
}
mir::Rvalue::UnaryOp(op, ref operand) => {
let operand = self.trans_operand(&bcx, operand);
let operand = self.trans_operand(&bx, operand);
let lloperand = operand.immediate();
let is_float = operand.layout.ty.is_fp();
let llval = match op {
mir::UnOp::Not => bcx.not(lloperand),
mir::UnOp::Not => bx.not(lloperand),
mir::UnOp::Neg => if is_float {
bcx.fneg(lloperand)
bx.fneg(lloperand)
} else {
bcx.neg(lloperand)
bx.neg(lloperand)
}
};
(bcx, OperandRef {
(bx, OperandRef {
val: OperandValue::Immediate(llval),
layout: operand.layout,
})
}
mir::Rvalue::Discriminant(ref place) => {
let discr_ty = rvalue.ty(&*self.mir, bcx.tcx());
let discr = self.trans_place(&bcx, place)
.trans_get_discr(&bcx, discr_ty);
(bcx, OperandRef {
let discr_ty = rvalue.ty(&*self.mir, bx.tcx());
let discr = self.trans_place(&bx, place)
.trans_get_discr(&bx, discr_ty);
(bx, OperandRef {
val: OperandValue::Immediate(discr),
layout: self.ccx.layout_of(discr_ty)
layout: self.cx.layout_of(discr_ty)
})
}
mir::Rvalue::NullaryOp(mir::NullOp::SizeOf, ty) => {
assert!(bcx.ccx.shared().type_is_sized(ty));
let val = C_usize(bcx.ccx, bcx.ccx.size_of(ty).bytes());
let tcx = bcx.tcx();
(bcx, OperandRef {
assert!(bx.cx.type_is_sized(ty));
let val = C_usize(bx.cx, bx.cx.size_of(ty).bytes());
let tcx = bx.tcx();
(bx, OperandRef {
val: OperandValue::Immediate(val),
layout: self.ccx.layout_of(tcx.types.usize),
layout: self.cx.layout_of(tcx.types.usize),
})
}
mir::Rvalue::NullaryOp(mir::NullOp::Box, content_ty) => {
let content_ty: Ty<'tcx> = self.monomorphize(&content_ty);
let (size, align) = bcx.ccx.size_and_align_of(content_ty);
let llsize = C_usize(bcx.ccx, size.bytes());
let llalign = C_usize(bcx.ccx, align.abi());
let box_layout = bcx.ccx.layout_of(bcx.tcx().mk_box(content_ty));
let llty_ptr = box_layout.llvm_type(bcx.ccx);
let (size, align) = bx.cx.size_and_align_of(content_ty);
let llsize = C_usize(bx.cx, size.bytes());
let llalign = C_usize(bx.cx, align.abi());
let box_layout = bx.cx.layout_of(bx.tcx().mk_box(content_ty));
let llty_ptr = box_layout.llvm_type(bx.cx);
// Allocate space:
let def_id = match bcx.tcx().lang_items().require(ExchangeMallocFnLangItem) {
let def_id = match bx.tcx().lang_items().require(ExchangeMallocFnLangItem) {
Ok(id) => id,
Err(s) => {
bcx.sess().fatal(&format!("allocation of `{}` {}", box_layout.ty, s));
bx.sess().fatal(&format!("allocation of `{}` {}", box_layout.ty, s));
}
};
let instance = ty::Instance::mono(bcx.tcx(), def_id);
let r = callee::get_fn(bcx.ccx, instance);
let val = bcx.pointercast(bcx.call(r, &[llsize, llalign], None), llty_ptr);
let instance = ty::Instance::mono(bx.tcx(), def_id);
let r = callee::get_fn(bx.cx, instance);
let val = bx.pointercast(bx.call(r, &[llsize, llalign], None), llty_ptr);
let operand = OperandRef {
val: OperandValue::Immediate(val),
layout: box_layout,
};
(bcx, operand)
(bx, operand)
}
mir::Rvalue::Use(ref operand) => {
let operand = self.trans_operand(&bcx, operand);
(bcx, operand)
let operand = self.trans_operand(&bx, operand);
(bx, operand)
}
mir::Rvalue::Repeat(..) |
mir::Rvalue::Aggregate(..) => {
// According to `rvalue_creates_operand`, only ZST
// aggregate rvalues are allowed to be operands.
let ty = rvalue.ty(self.mir, self.ccx.tcx());
(bcx, OperandRef::new_zst(self.ccx,
self.ccx.layout_of(self.monomorphize(&ty))))
let ty = rvalue.ty(self.mir, self.cx.tcx);
(bx, OperandRef::new_zst(self.cx,
self.cx.layout_of(self.monomorphize(&ty))))
}
}
}
fn evaluate_array_len(&mut self,
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
place: &mir::Place<'tcx>) -> ValueRef
{
// ZST are passed as operands and require special handling
@ -494,17 +494,17 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
if let LocalRef::Operand(Some(op)) = self.locals[index] {
if let ty::TyArray(_, n) = op.layout.ty.sty {
let n = n.val.to_const_int().unwrap().to_u64().unwrap();
return common::C_usize(bcx.ccx, n);
return common::C_usize(bx.cx, n);
}
}
}
// use common size calculation for non zero-sized types
let tr_value = self.trans_place(&bcx, place);
return tr_value.len(bcx.ccx);
let tr_value = self.trans_place(&bx, place);
return tr_value.len(bx.cx);
}
pub fn trans_scalar_binop(&mut self,
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
op: mir::BinOp,
lhs: ValueRef,
rhs: ValueRef,
@ -515,49 +515,49 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
let is_bool = input_ty.is_bool();
match op {
mir::BinOp::Add => if is_float {
bcx.fadd(lhs, rhs)
bx.fadd(lhs, rhs)
} else {
bcx.add(lhs, rhs)
bx.add(lhs, rhs)
},
mir::BinOp::Sub => if is_float {
bcx.fsub(lhs, rhs)
bx.fsub(lhs, rhs)
} else {
bcx.sub(lhs, rhs)
bx.sub(lhs, rhs)
},
mir::BinOp::Mul => if is_float {
bcx.fmul(lhs, rhs)
bx.fmul(lhs, rhs)
} else {
bcx.mul(lhs, rhs)
bx.mul(lhs, rhs)
},
mir::BinOp::Div => if is_float {
bcx.fdiv(lhs, rhs)
bx.fdiv(lhs, rhs)
} else if is_signed {
bcx.sdiv(lhs, rhs)
bx.sdiv(lhs, rhs)
} else {
bcx.udiv(lhs, rhs)
bx.udiv(lhs, rhs)
},
mir::BinOp::Rem => if is_float {
bcx.frem(lhs, rhs)
bx.frem(lhs, rhs)
} else if is_signed {
bcx.srem(lhs, rhs)
bx.srem(lhs, rhs)
} else {
bcx.urem(lhs, rhs)
bx.urem(lhs, rhs)
},
mir::BinOp::BitOr => bcx.or(lhs, rhs),
mir::BinOp::BitAnd => bcx.and(lhs, rhs),
mir::BinOp::BitXor => bcx.xor(lhs, rhs),
mir::BinOp::Offset => bcx.inbounds_gep(lhs, &[rhs]),
mir::BinOp::Shl => common::build_unchecked_lshift(bcx, lhs, rhs),
mir::BinOp::Shr => common::build_unchecked_rshift(bcx, input_ty, lhs, rhs),
mir::BinOp::BitOr => bx.or(lhs, rhs),
mir::BinOp::BitAnd => bx.and(lhs, rhs),
mir::BinOp::BitXor => bx.xor(lhs, rhs),
mir::BinOp::Offset => bx.inbounds_gep(lhs, &[rhs]),
mir::BinOp::Shl => common::build_unchecked_lshift(bx, lhs, rhs),
mir::BinOp::Shr => common::build_unchecked_rshift(bx, input_ty, lhs, rhs),
mir::BinOp::Ne | mir::BinOp::Lt | mir::BinOp::Gt |
mir::BinOp::Eq | mir::BinOp::Le | mir::BinOp::Ge => if is_nil {
C_bool(bcx.ccx, match op {
C_bool(bx.cx, match op {
mir::BinOp::Ne | mir::BinOp::Lt | mir::BinOp::Gt => false,
mir::BinOp::Eq | mir::BinOp::Le | mir::BinOp::Ge => true,
_ => unreachable!()
})
} else if is_float {
bcx.fcmp(
bx.fcmp(
base::bin_op_to_fcmp_predicate(op.to_hir_binop()),
lhs, rhs
)
@ -565,13 +565,13 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
let (lhs, rhs) = if is_bool {
// FIXME(#36856) -- extend the bools into `i8` because
// LLVM's i1 comparisons are broken.
(bcx.zext(lhs, Type::i8(bcx.ccx)),
bcx.zext(rhs, Type::i8(bcx.ccx)))
(bx.zext(lhs, Type::i8(bx.cx)),
bx.zext(rhs, Type::i8(bx.cx)))
} else {
(lhs, rhs)
};
bcx.icmp(
bx.icmp(
base::bin_op_to_icmp_predicate(op.to_hir_binop(), is_signed),
lhs, rhs
)
@ -580,7 +580,7 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
}
pub fn trans_fat_ptr_binop(&mut self,
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
op: mir::BinOp,
lhs_addr: ValueRef,
lhs_extra: ValueRef,
@ -590,15 +590,15 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
-> ValueRef {
match op {
mir::BinOp::Eq => {
bcx.and(
bcx.icmp(llvm::IntEQ, lhs_addr, rhs_addr),
bcx.icmp(llvm::IntEQ, lhs_extra, rhs_extra)
bx.and(
bx.icmp(llvm::IntEQ, lhs_addr, rhs_addr),
bx.icmp(llvm::IntEQ, lhs_extra, rhs_extra)
)
}
mir::BinOp::Ne => {
bcx.or(
bcx.icmp(llvm::IntNE, lhs_addr, rhs_addr),
bcx.icmp(llvm::IntNE, lhs_extra, rhs_extra)
bx.or(
bx.icmp(llvm::IntNE, lhs_addr, rhs_addr),
bx.icmp(llvm::IntNE, lhs_extra, rhs_extra)
)
}
mir::BinOp::Le | mir::BinOp::Lt |
@ -612,11 +612,11 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
_ => bug!(),
};
bcx.or(
bcx.icmp(strict_op, lhs_addr, rhs_addr),
bcx.and(
bcx.icmp(llvm::IntEQ, lhs_addr, rhs_addr),
bcx.icmp(op, lhs_extra, rhs_extra)
bx.or(
bx.icmp(strict_op, lhs_addr, rhs_addr),
bx.and(
bx.icmp(llvm::IntEQ, lhs_addr, rhs_addr),
bx.icmp(op, lhs_extra, rhs_extra)
)
)
}
@ -627,7 +627,7 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
}
pub fn trans_scalar_checked_binop(&mut self,
bcx: &Builder<'a, 'tcx>,
bx: &Builder<'a, 'tcx>,
op: mir::BinOp,
lhs: ValueRef,
rhs: ValueRef,
@ -636,17 +636,17 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
// with #[rustc_inherit_overflow_checks] and inlined from
// another crate (mostly core::num generic/#[inline] fns),
// while the current crate doesn't use overflow checks.
if !bcx.ccx.check_overflow() {
let val = self.trans_scalar_binop(bcx, op, lhs, rhs, input_ty);
return OperandValue::Pair(val, C_bool(bcx.ccx, false));
if !bx.cx.check_overflow {
let val = self.trans_scalar_binop(bx, op, lhs, rhs, input_ty);
return OperandValue::Pair(val, C_bool(bx.cx, false));
}
// First try performing the operation on constants, which
// will only succeed if both operands are constant.
// This is necessary to determine when an overflow Assert
// will always panic at runtime, and produce a warning.
if let Some((val, of)) = const_scalar_checked_binop(bcx.tcx(), op, lhs, rhs, input_ty) {
return OperandValue::Pair(val, C_bool(bcx.ccx, of));
if let Some((val, of)) = const_scalar_checked_binop(bx.tcx(), op, lhs, rhs, input_ty) {
return OperandValue::Pair(val, C_bool(bx.cx, of));
}
let (val, of) = match op {
@ -658,20 +658,20 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
mir::BinOp::Mul => OverflowOp::Mul,
_ => unreachable!()
};
let intrinsic = get_overflow_intrinsic(oop, bcx, input_ty);
let res = bcx.call(intrinsic, &[lhs, rhs], None);
let intrinsic = get_overflow_intrinsic(oop, bx, input_ty);
let res = bx.call(intrinsic, &[lhs, rhs], None);
(bcx.extract_value(res, 0),
bcx.extract_value(res, 1))
(bx.extract_value(res, 0),
bx.extract_value(res, 1))
}
mir::BinOp::Shl | mir::BinOp::Shr => {
let lhs_llty = val_ty(lhs);
let rhs_llty = val_ty(rhs);
let invert_mask = common::shift_mask_val(&bcx, lhs_llty, rhs_llty, true);
let outer_bits = bcx.and(rhs, invert_mask);
let invert_mask = common::shift_mask_val(&bx, lhs_llty, rhs_llty, true);
let outer_bits = bx.and(rhs, invert_mask);
let of = bcx.icmp(llvm::IntNE, outer_bits, C_null(rhs_llty));
let val = self.trans_scalar_binop(bcx, op, lhs, rhs, input_ty);
let of = bx.icmp(llvm::IntNE, outer_bits, C_null(rhs_llty));
let val = self.trans_scalar_binop(bx, op, lhs, rhs, input_ty);
(val, of)
}
@ -697,9 +697,9 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
true,
mir::Rvalue::Repeat(..) |
mir::Rvalue::Aggregate(..) => {
let ty = rvalue.ty(self.mir, self.ccx.tcx());
let ty = rvalue.ty(self.mir, self.cx.tcx);
let ty = self.monomorphize(&ty);
self.ccx.layout_of(ty).is_zst()
self.cx.layout_of(ty).is_zst()
}
}
@ -712,12 +712,12 @@ enum OverflowOp {
Add, Sub, Mul
}
fn get_overflow_intrinsic(oop: OverflowOp, bcx: &Builder, ty: Ty) -> ValueRef {
fn get_overflow_intrinsic(oop: OverflowOp, bx: &Builder, ty: Ty) -> ValueRef {
use syntax::ast::IntTy::*;
use syntax::ast::UintTy::*;
use rustc::ty::{TyInt, TyUint};
let tcx = bcx.tcx();
let tcx = bx.tcx();
let new_sty = match ty.sty {
TyInt(Isize) => match &tcx.sess.target.target.target_pointer_width[..] {
@ -784,10 +784,10 @@ fn get_overflow_intrinsic(oop: OverflowOp, bcx: &Builder, ty: Ty) -> ValueRef {
},
};
bcx.ccx.get_intrinsic(&name)
bx.cx.get_intrinsic(&name)
}
fn cast_int_to_float(bcx: &Builder,
fn cast_int_to_float(bx: &Builder,
signed: bool,
x: ValueRef,
int_ty: Type,
@ -800,31 +800,31 @@ fn cast_int_to_float(bcx: &Builder,
// All inputs greater or equal to (f32::MAX + 0.5 ULP) are rounded to infinity,
// and for everything else LLVM's uitofp works just fine.
let max = C_uint_big(int_ty, MAX_F32_PLUS_HALF_ULP);
let overflow = bcx.icmp(llvm::IntUGE, x, max);
let infinity_bits = C_u32(bcx.ccx, ieee::Single::INFINITY.to_bits() as u32);
let overflow = bx.icmp(llvm::IntUGE, x, max);
let infinity_bits = C_u32(bx.cx, ieee::Single::INFINITY.to_bits() as u32);
let infinity = consts::bitcast(infinity_bits, float_ty);
bcx.select(overflow, infinity, bcx.uitofp(x, float_ty))
bx.select(overflow, infinity, bx.uitofp(x, float_ty))
} else {
if signed {
bcx.sitofp(x, float_ty)
bx.sitofp(x, float_ty)
} else {
bcx.uitofp(x, float_ty)
bx.uitofp(x, float_ty)
}
}
}
fn cast_float_to_int(bcx: &Builder,
fn cast_float_to_int(bx: &Builder,
signed: bool,
x: ValueRef,
float_ty: Type,
int_ty: Type) -> ValueRef {
let fptosui_result = if signed {
bcx.fptosi(x, int_ty)
bx.fptosi(x, int_ty)
} else {
bcx.fptoui(x, int_ty)
bx.fptoui(x, int_ty)
};
if !bcx.sess().opts.debugging_opts.saturating_float_casts {
if !bx.sess().opts.debugging_opts.saturating_float_casts {
return fptosui_result;
}
// LLVM's fpto[su]i returns undef when the input x is infinite, NaN, or does not fit into the
@ -870,8 +870,8 @@ fn cast_float_to_int(bcx: &Builder,
}
let float_bits_to_llval = |bits| {
let bits_llval = match float_ty.float_width() {
32 => C_u32(bcx.ccx, bits as u32),
64 => C_u64(bcx.ccx, bits as u64),
32 => C_u32(bx.cx, bits as u32),
64 => C_u64(bx.cx, bits as u64),
n => bug!("unsupported float width {}", n),
};
consts::bitcast(bits_llval, float_ty)
@ -924,19 +924,19 @@ fn cast_float_to_int(bcx: &Builder,
// negation, and the negation can be merged into the select. Therefore, it not necessarily any
// more expensive than a ordered ("normal") comparison. Whether these optimizations will be
// performed is ultimately up to the backend, but at least x86 does perform them.
let less_or_nan = bcx.fcmp(llvm::RealULT, x, f_min);
let greater = bcx.fcmp(llvm::RealOGT, x, f_max);
let less_or_nan = bx.fcmp(llvm::RealULT, x, f_min);
let greater = bx.fcmp(llvm::RealOGT, x, f_max);
let int_max = C_uint_big(int_ty, int_max(signed, int_ty));
let int_min = C_uint_big(int_ty, int_min(signed, int_ty) as u128);
let s0 = bcx.select(less_or_nan, int_min, fptosui_result);
let s1 = bcx.select(greater, int_max, s0);
let s0 = bx.select(less_or_nan, int_min, fptosui_result);
let s1 = bx.select(greater, int_max, s0);
// Step 3: NaN replacement.
// For unsigned types, the above step already yielded int_ty::MIN == 0 if x is NaN.
// Therefore we only need to execute this step for signed integer types.
if signed {
// LLVM has no isNaN predicate, so we use (x == x) instead
bcx.select(bcx.fcmp(llvm::RealOEQ, x, x), s1, C_uint(int_ty, 0))
bx.select(bx.fcmp(llvm::RealOEQ, x, x), s1, C_uint(int_ty, 0))
} else {
s1
}

View file

@ -13,28 +13,28 @@ use rustc::mir;
use asm;
use builder::Builder;
use super::MirContext;
use super::FunctionCx;
use super::LocalRef;
impl<'a, 'tcx> MirContext<'a, 'tcx> {
impl<'a, 'tcx> FunctionCx<'a, 'tcx> {
pub fn trans_statement(&mut self,
bcx: Builder<'a, 'tcx>,
bx: Builder<'a, 'tcx>,
statement: &mir::Statement<'tcx>)
-> Builder<'a, 'tcx> {
debug!("trans_statement(statement={:?})", statement);
self.set_debug_loc(&bcx, statement.source_info);
self.set_debug_loc(&bx, statement.source_info);
match statement.kind {
mir::StatementKind::Assign(ref place, ref rvalue) => {
if let mir::Place::Local(index) = *place {
match self.locals[index] {
LocalRef::Place(tr_dest) => {
self.trans_rvalue(bcx, tr_dest, rvalue)
self.trans_rvalue(bx, tr_dest, rvalue)
}
LocalRef::Operand(None) => {
let (bcx, operand) = self.trans_rvalue_operand(bcx, rvalue);
let (bx, operand) = self.trans_rvalue_operand(bx, rvalue);
self.locals[index] = LocalRef::Operand(Some(operand));
bcx
bx
}
LocalRef::Operand(Some(op)) => {
if !op.layout.is_zst() {
@ -45,46 +45,46 @@ impl<'a, 'tcx> MirContext<'a, 'tcx> {
// If the type is zero-sized, it's already been set here,
// but we still need to make sure we translate the operand
self.trans_rvalue_operand(bcx, rvalue).0
self.trans_rvalue_operand(bx, rvalue).0
}
}
} else {
let tr_dest = self.trans_place(&bcx, place);
self.trans_rvalue(bcx, tr_dest, rvalue)
let tr_dest = self.trans_place(&bx, place);
self.trans_rvalue(bx, tr_dest, rvalue)
}
}
mir::StatementKind::SetDiscriminant{ref place, variant_index} => {
self.trans_place(&bcx, place)
.trans_set_discr(&bcx, variant_index);
bcx
self.trans_place(&bx, place)
.trans_set_discr(&bx, variant_index);
bx
}
mir::StatementKind::StorageLive(local) => {
if let LocalRef::Place(tr_place) = self.locals[local] {
tr_place.storage_live(&bcx);
tr_place.storage_live(&bx);
}
bcx
bx
}
mir::StatementKind::StorageDead(local) => {
if let LocalRef::Place(tr_place) = self.locals[local] {
tr_place.storage_dead(&bcx);
tr_place.storage_dead(&bx);
}
bcx
bx
}
mir::StatementKind::InlineAsm { ref asm, ref outputs, ref inputs } => {
let outputs = outputs.iter().map(|output| {
self.trans_place(&bcx, output)
self.trans_place(&bx, output)
}).collect();
let input_vals = inputs.iter().map(|input| {
self.trans_operand(&bcx, input).immediate()
self.trans_operand(&bx, input).immediate()
}).collect();
asm::trans_inline_asm(&bcx, asm, outputs, input_vals);
bcx
asm::trans_inline_asm(&bx, asm, outputs, input_vals);
bx
}
mir::StatementKind::EndRegion(_) |
mir::StatementKind::Validate(..) |
mir::StatementKind::Nop => bcx,
mir::StatementKind::Nop => bx,
}
}
}

View file

@ -18,7 +18,7 @@ use asm;
use attributes;
use base;
use consts;
use context::CrateContext;
use context::CodegenCx;
use declare;
use llvm;
use monomorphize::Instance;
@ -38,18 +38,18 @@ pub use rustc_mir::monomorphize::item::*;
pub use rustc_mir::monomorphize::item::MonoItemExt as BaseMonoItemExt;
pub trait MonoItemExt<'a, 'tcx>: fmt::Debug + BaseMonoItemExt<'a, 'tcx> {
fn define(&self, ccx: &CrateContext<'a, 'tcx>) {
fn define(&self, cx: &CodegenCx<'a, 'tcx>) {
debug!("BEGIN IMPLEMENTING '{} ({})' in cgu {}",
self.to_string(ccx.tcx()),
self.to_string(cx.tcx),
self.to_raw_string(),
ccx.codegen_unit().name());
cx.codegen_unit.name());
match *self.as_mono_item() {
MonoItem::Static(node_id) => {
let tcx = ccx.tcx();
let tcx = cx.tcx;
let item = tcx.hir.expect_item(node_id);
if let hir::ItemStatic(_, m, _) = item.node {
match consts::trans_static(&ccx, m, item.id, &item.attrs) {
match consts::trans_static(&cx, m, item.id, &item.attrs) {
Ok(_) => { /* Cool, everything's alright. */ },
Err(err) => {
err.report(tcx, item.span, "static");
@ -60,51 +60,51 @@ pub trait MonoItemExt<'a, 'tcx>: fmt::Debug + BaseMonoItemExt<'a, 'tcx> {
}
}
MonoItem::GlobalAsm(node_id) => {
let item = ccx.tcx().hir.expect_item(node_id);
let item = cx.tcx.hir.expect_item(node_id);
if let hir::ItemGlobalAsm(ref ga) = item.node {
asm::trans_global_asm(ccx, ga);
asm::trans_global_asm(cx, ga);
} else {
span_bug!(item.span, "Mismatch between hir::Item type and TransItem type")
}
}
MonoItem::Fn(instance) => {
base::trans_instance(&ccx, instance);
base::trans_instance(&cx, instance);
}
}
debug!("END IMPLEMENTING '{} ({})' in cgu {}",
self.to_string(ccx.tcx()),
self.to_string(cx.tcx),
self.to_raw_string(),
ccx.codegen_unit().name());
cx.codegen_unit.name());
}
fn predefine(&self,
ccx: &CrateContext<'a, 'tcx>,
cx: &CodegenCx<'a, 'tcx>,
linkage: Linkage,
visibility: Visibility) {
debug!("BEGIN PREDEFINING '{} ({})' in cgu {}",
self.to_string(ccx.tcx()),
self.to_string(cx.tcx),
self.to_raw_string(),
ccx.codegen_unit().name());
cx.codegen_unit.name());
let symbol_name = self.symbol_name(ccx.tcx());
let symbol_name = self.symbol_name(cx.tcx);
debug!("symbol {}", &symbol_name);
match *self.as_mono_item() {
MonoItem::Static(node_id) => {
predefine_static(ccx, node_id, linkage, visibility, &symbol_name);
predefine_static(cx, node_id, linkage, visibility, &symbol_name);
}
MonoItem::Fn(instance) => {
predefine_fn(ccx, instance, linkage, visibility, &symbol_name);
predefine_fn(cx, instance, linkage, visibility, &symbol_name);
}
MonoItem::GlobalAsm(..) => {}
}
debug!("END PREDEFINING '{} ({})' in cgu {}",
self.to_string(ccx.tcx()),
self.to_string(cx.tcx),
self.to_raw_string(),
ccx.codegen_unit().name());
cx.codegen_unit.name());
}
fn local_span(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Option<Span> {
@ -138,18 +138,18 @@ pub trait MonoItemExt<'a, 'tcx>: fmt::Debug + BaseMonoItemExt<'a, 'tcx> {
impl<'a, 'tcx> MonoItemExt<'a, 'tcx> for MonoItem<'tcx> {}
fn predefine_static<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn predefine_static<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
node_id: ast::NodeId,
linkage: Linkage,
visibility: Visibility,
symbol_name: &str) {
let def_id = ccx.tcx().hir.local_def_id(node_id);
let instance = Instance::mono(ccx.tcx(), def_id);
let ty = instance.ty(ccx.tcx());
let llty = ccx.layout_of(ty).llvm_type(ccx);
let def_id = cx.tcx.hir.local_def_id(node_id);
let instance = Instance::mono(cx.tcx, def_id);
let ty = instance.ty(cx.tcx);
let llty = cx.layout_of(ty).llvm_type(cx);
let g = declare::define_global(ccx, symbol_name, llty).unwrap_or_else(|| {
ccx.sess().span_fatal(ccx.tcx().hir.span(node_id),
let g = declare::define_global(cx, symbol_name, llty).unwrap_or_else(|| {
cx.sess().span_fatal(cx.tcx.hir.span(node_id),
&format!("symbol `{}` is already defined", symbol_name))
});
@ -158,11 +158,11 @@ fn predefine_static<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
llvm::LLVMRustSetVisibility(g, base::visibility_to_llvm(visibility));
}
ccx.instances().borrow_mut().insert(instance, g);
ccx.statics().borrow_mut().insert(g, def_id);
cx.instances.borrow_mut().insert(instance, g);
cx.statics.borrow_mut().insert(g, def_id);
}
fn predefine_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn predefine_fn<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
instance: Instance<'tcx>,
linkage: Linkage,
visibility: Visibility,
@ -170,14 +170,14 @@ fn predefine_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
assert!(!instance.substs.needs_infer() &&
!instance.substs.has_param_types());
let mono_ty = instance.ty(ccx.tcx());
let attrs = instance.def.attrs(ccx.tcx());
let lldecl = declare::declare_fn(ccx, symbol_name, mono_ty);
let mono_ty = instance.ty(cx.tcx);
let attrs = instance.def.attrs(cx.tcx);
let lldecl = declare::declare_fn(cx, symbol_name, mono_ty);
unsafe { llvm::LLVMRustSetLinkage(lldecl, base::linkage_to_llvm(linkage)) };
base::set_link_section(ccx, lldecl, &attrs);
base::set_link_section(cx, lldecl, &attrs);
if linkage == Linkage::LinkOnceODR ||
linkage == Linkage::WeakODR {
llvm::SetUniqueComdat(ccx.llmod(), lldecl);
llvm::SetUniqueComdat(cx.llmod, lldecl);
}
// If we're compiling the compiler-builtins crate, e.g. the equivalent of
@ -185,7 +185,7 @@ fn predefine_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
// visibility as we're going to link this object all over the place but
// don't want the symbols to get exported.
if linkage != Linkage::Internal && linkage != Linkage::Private &&
attr::contains_name(ccx.tcx().hir.krate_attrs(), "compiler_builtins") {
attr::contains_name(cx.tcx.hir.krate_attrs(), "compiler_builtins") {
unsafe {
llvm::LLVMRustSetVisibility(lldecl, llvm::Visibility::Hidden);
}
@ -196,10 +196,10 @@ fn predefine_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
}
debug!("predefine_fn: mono_ty = {:?} instance = {:?}", mono_ty, instance);
if instance.def.is_inline(ccx.tcx()) {
if instance.def.is_inline(cx.tcx) {
attributes::inline(lldecl, attributes::InlineAttr::Hint);
}
attributes::from_fn_attrs(ccx, lldecl, instance.def.def_id());
attributes::from_fn_attrs(cx, lldecl, instance.def.def_id());
ccx.instances().borrow_mut().insert(instance, lldecl);
cx.instances.borrow_mut().insert(instance, lldecl);
}

View file

@ -14,7 +14,7 @@ use llvm;
use llvm::{ContextRef, TypeRef, Bool, False, True, TypeKind};
use llvm::{Float, Double, X86_FP80, PPC_FP128, FP128};
use context::CrateContext;
use context::CodegenCx;
use syntax::ast;
use rustc::ty::layout::{self, Align, Size};
@ -62,115 +62,115 @@ impl Type {
unsafe { mem::transmute(slice) }
}
pub fn void(ccx: &CrateContext) -> Type {
ty!(llvm::LLVMVoidTypeInContext(ccx.llcx()))
pub fn void(cx: &CodegenCx) -> Type {
ty!(llvm::LLVMVoidTypeInContext(cx.llcx))
}
pub fn metadata(ccx: &CrateContext) -> Type {
ty!(llvm::LLVMRustMetadataTypeInContext(ccx.llcx()))
pub fn metadata(cx: &CodegenCx) -> Type {
ty!(llvm::LLVMRustMetadataTypeInContext(cx.llcx))
}
pub fn i1(ccx: &CrateContext) -> Type {
ty!(llvm::LLVMInt1TypeInContext(ccx.llcx()))
pub fn i1(cx: &CodegenCx) -> Type {
ty!(llvm::LLVMInt1TypeInContext(cx.llcx))
}
pub fn i8(ccx: &CrateContext) -> Type {
ty!(llvm::LLVMInt8TypeInContext(ccx.llcx()))
pub fn i8(cx: &CodegenCx) -> Type {
ty!(llvm::LLVMInt8TypeInContext(cx.llcx))
}
pub fn i8_llcx(llcx: ContextRef) -> Type {
ty!(llvm::LLVMInt8TypeInContext(llcx))
}
pub fn i16(ccx: &CrateContext) -> Type {
ty!(llvm::LLVMInt16TypeInContext(ccx.llcx()))
pub fn i16(cx: &CodegenCx) -> Type {
ty!(llvm::LLVMInt16TypeInContext(cx.llcx))
}
pub fn i32(ccx: &CrateContext) -> Type {
ty!(llvm::LLVMInt32TypeInContext(ccx.llcx()))
pub fn i32(cx: &CodegenCx) -> Type {
ty!(llvm::LLVMInt32TypeInContext(cx.llcx))
}
pub fn i64(ccx: &CrateContext) -> Type {
ty!(llvm::LLVMInt64TypeInContext(ccx.llcx()))
pub fn i64(cx: &CodegenCx) -> Type {
ty!(llvm::LLVMInt64TypeInContext(cx.llcx))
}
pub fn i128(ccx: &CrateContext) -> Type {
ty!(llvm::LLVMIntTypeInContext(ccx.llcx(), 128))
pub fn i128(cx: &CodegenCx) -> Type {
ty!(llvm::LLVMIntTypeInContext(cx.llcx, 128))
}
// Creates an integer type with the given number of bits, e.g. i24
pub fn ix(ccx: &CrateContext, num_bits: u64) -> Type {
ty!(llvm::LLVMIntTypeInContext(ccx.llcx(), num_bits as c_uint))
pub fn ix(cx: &CodegenCx, num_bits: u64) -> Type {
ty!(llvm::LLVMIntTypeInContext(cx.llcx, num_bits as c_uint))
}
pub fn f32(ccx: &CrateContext) -> Type {
ty!(llvm::LLVMFloatTypeInContext(ccx.llcx()))
pub fn f32(cx: &CodegenCx) -> Type {
ty!(llvm::LLVMFloatTypeInContext(cx.llcx))
}
pub fn f64(ccx: &CrateContext) -> Type {
ty!(llvm::LLVMDoubleTypeInContext(ccx.llcx()))
pub fn f64(cx: &CodegenCx) -> Type {
ty!(llvm::LLVMDoubleTypeInContext(cx.llcx))
}
pub fn bool(ccx: &CrateContext) -> Type {
Type::i8(ccx)
pub fn bool(cx: &CodegenCx) -> Type {
Type::i8(cx)
}
pub fn char(ccx: &CrateContext) -> Type {
Type::i32(ccx)
pub fn char(cx: &CodegenCx) -> Type {
Type::i32(cx)
}
pub fn i8p(ccx: &CrateContext) -> Type {
Type::i8(ccx).ptr_to()
pub fn i8p(cx: &CodegenCx) -> Type {
Type::i8(cx).ptr_to()
}
pub fn i8p_llcx(llcx: ContextRef) -> Type {
Type::i8_llcx(llcx).ptr_to()
}
pub fn isize(ccx: &CrateContext) -> Type {
match &ccx.tcx().sess.target.target.target_pointer_width[..] {
"16" => Type::i16(ccx),
"32" => Type::i32(ccx),
"64" => Type::i64(ccx),
pub fn isize(cx: &CodegenCx) -> Type {
match &cx.tcx.sess.target.target.target_pointer_width[..] {
"16" => Type::i16(cx),
"32" => Type::i32(cx),
"64" => Type::i64(cx),
tws => bug!("Unsupported target word size for int: {}", tws),
}
}
pub fn c_int(ccx: &CrateContext) -> Type {
match &ccx.tcx().sess.target.target.target_c_int_width[..] {
"16" => Type::i16(ccx),
"32" => Type::i32(ccx),
"64" => Type::i64(ccx),
pub fn c_int(cx: &CodegenCx) -> Type {
match &cx.tcx.sess.target.target.target_c_int_width[..] {
"16" => Type::i16(cx),
"32" => Type::i32(cx),
"64" => Type::i64(cx),
width => bug!("Unsupported target_c_int_width: {}", width),
}
}
pub fn int_from_ty(ccx: &CrateContext, t: ast::IntTy) -> Type {
pub fn int_from_ty(cx: &CodegenCx, t: ast::IntTy) -> Type {
match t {
ast::IntTy::Isize => ccx.isize_ty(),
ast::IntTy::I8 => Type::i8(ccx),
ast::IntTy::I16 => Type::i16(ccx),
ast::IntTy::I32 => Type::i32(ccx),
ast::IntTy::I64 => Type::i64(ccx),
ast::IntTy::I128 => Type::i128(ccx),
ast::IntTy::Isize => cx.isize_ty,
ast::IntTy::I8 => Type::i8(cx),
ast::IntTy::I16 => Type::i16(cx),
ast::IntTy::I32 => Type::i32(cx),
ast::IntTy::I64 => Type::i64(cx),
ast::IntTy::I128 => Type::i128(cx),
}
}
pub fn uint_from_ty(ccx: &CrateContext, t: ast::UintTy) -> Type {
pub fn uint_from_ty(cx: &CodegenCx, t: ast::UintTy) -> Type {
match t {
ast::UintTy::Usize => ccx.isize_ty(),
ast::UintTy::U8 => Type::i8(ccx),
ast::UintTy::U16 => Type::i16(ccx),
ast::UintTy::U32 => Type::i32(ccx),
ast::UintTy::U64 => Type::i64(ccx),
ast::UintTy::U128 => Type::i128(ccx),
ast::UintTy::Usize => cx.isize_ty,
ast::UintTy::U8 => Type::i8(cx),
ast::UintTy::U16 => Type::i16(cx),
ast::UintTy::U32 => Type::i32(cx),
ast::UintTy::U64 => Type::i64(cx),
ast::UintTy::U128 => Type::i128(cx),
}
}
pub fn float_from_ty(ccx: &CrateContext, t: ast::FloatTy) -> Type {
pub fn float_from_ty(cx: &CodegenCx, t: ast::FloatTy) -> Type {
match t {
ast::FloatTy::F32 => Type::f32(ccx),
ast::FloatTy::F64 => Type::f64(ccx),
ast::FloatTy::F32 => Type::f32(cx),
ast::FloatTy::F64 => Type::f64(cx),
}
}
@ -186,16 +186,16 @@ impl Type {
args.len() as c_uint, True))
}
pub fn struct_(ccx: &CrateContext, els: &[Type], packed: bool) -> Type {
pub fn struct_(cx: &CodegenCx, els: &[Type], packed: bool) -> Type {
let els: &[TypeRef] = Type::to_ref_slice(els);
ty!(llvm::LLVMStructTypeInContext(ccx.llcx(), els.as_ptr(),
ty!(llvm::LLVMStructTypeInContext(cx.llcx, els.as_ptr(),
els.len() as c_uint,
packed as Bool))
}
pub fn named_struct(ccx: &CrateContext, name: &str) -> Type {
pub fn named_struct(cx: &CodegenCx, name: &str) -> Type {
let name = CString::new(name).unwrap();
ty!(llvm::LLVMStructCreateNamed(ccx.llcx(), name.as_ptr()))
ty!(llvm::LLVMStructCreateNamed(cx.llcx, name.as_ptr()))
}
@ -265,7 +265,7 @@ impl Type {
}
}
pub fn from_integer(cx: &CrateContext, i: layout::Integer) -> Type {
pub fn from_integer(cx: &CodegenCx, i: layout::Integer) -> Type {
use rustc::ty::layout::Integer::*;
match i {
I8 => Type::i8(cx),
@ -278,23 +278,23 @@ impl Type {
/// Return a LLVM type that has at most the required alignment,
/// as a conservative approximation for unknown pointee types.
pub fn pointee_for_abi_align(ccx: &CrateContext, align: Align) -> Type {
pub fn pointee_for_abi_align(cx: &CodegenCx, align: Align) -> Type {
// FIXME(eddyb) We could find a better approximation if ity.align < align.
let ity = layout::Integer::approximate_abi_align(ccx, align);
Type::from_integer(ccx, ity)
let ity = layout::Integer::approximate_abi_align(cx, align);
Type::from_integer(cx, ity)
}
/// Return a LLVM type that has at most the required alignment,
/// and exactly the required size, as a best-effort padding array.
pub fn padding_filler(ccx: &CrateContext, size: Size, align: Align) -> Type {
let unit = layout::Integer::approximate_abi_align(ccx, align);
pub fn padding_filler(cx: &CodegenCx, size: Size, align: Align) -> Type {
let unit = layout::Integer::approximate_abi_align(cx, align);
let size = size.bytes();
let unit_size = unit.size().bytes();
assert_eq!(size % unit_size, 0);
Type::array(&Type::from_integer(ccx, unit), size / unit_size)
Type::array(&Type::from_integer(cx, unit), size / unit_size)
}
pub fn x86_mmx(ccx: &CrateContext) -> Type {
ty!(llvm::LLVMX86MMXTypeInContext(ccx.llcx()))
pub fn x86_mmx(cx: &CodegenCx) -> Type {
ty!(llvm::LLVMX86MMXTypeInContext(cx.llcx))
}
}

View file

@ -19,7 +19,7 @@ use type_::Type;
use std::fmt::Write;
fn uncached_llvm_type<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn uncached_llvm_type<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
layout: TyLayout<'tcx>,
defer: &mut Option<(Type, TyLayout<'tcx>)>)
-> Type {
@ -34,19 +34,19 @@ fn uncached_llvm_type<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
// one-element SIMD vectors, so it's assumed this won't clash with
// much else.
let use_x86_mmx = count == 1 && layout.size.bits() == 64 &&
(ccx.sess().target.target.arch == "x86" ||
ccx.sess().target.target.arch == "x86_64");
(cx.sess().target.target.arch == "x86" ||
cx.sess().target.target.arch == "x86_64");
if use_x86_mmx {
return Type::x86_mmx(ccx)
return Type::x86_mmx(cx)
} else {
let element = layout.scalar_llvm_type_at(ccx, element, Size::from_bytes(0));
let element = layout.scalar_llvm_type_at(cx, element, Size::from_bytes(0));
return Type::vector(&element, count);
}
}
layout::Abi::ScalarPair(..) => {
return Type::struct_(ccx, &[
layout.scalar_pair_element_llvm_type(ccx, 0),
layout.scalar_pair_element_llvm_type(ccx, 1),
return Type::struct_(cx, &[
layout.scalar_pair_element_llvm_type(cx, 0),
layout.scalar_pair_element_llvm_type(cx, 1),
], false);
}
layout::Abi::Uninhabited |
@ -61,7 +61,7 @@ fn uncached_llvm_type<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
ty::TyForeign(..) |
ty::TyStr => {
let mut name = String::with_capacity(32);
let printer = DefPathBasedNames::new(ccx.tcx(), true, true);
let printer = DefPathBasedNames::new(cx.tcx, true, true);
printer.push_type_name(layout.ty, &mut name);
match (&layout.ty.sty, &layout.variants) {
(&ty::TyAdt(def, _), &layout::Variants::Single { index }) => {
@ -78,30 +78,30 @@ fn uncached_llvm_type<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
match layout.fields {
layout::FieldPlacement::Union(_) => {
let fill = Type::padding_filler(ccx, layout.size, layout.align);
let fill = Type::padding_filler(cx, layout.size, layout.align);
let packed = false;
match name {
None => {
Type::struct_(ccx, &[fill], packed)
Type::struct_(cx, &[fill], packed)
}
Some(ref name) => {
let mut llty = Type::named_struct(ccx, name);
let mut llty = Type::named_struct(cx, name);
llty.set_struct_body(&[fill], packed);
llty
}
}
}
layout::FieldPlacement::Array { count, .. } => {
Type::array(&layout.field(ccx, 0).llvm_type(ccx), count)
Type::array(&layout.field(cx, 0).llvm_type(cx), count)
}
layout::FieldPlacement::Arbitrary { .. } => {
match name {
None => {
let (llfields, packed) = struct_llfields(ccx, layout);
Type::struct_(ccx, &llfields, packed)
let (llfields, packed) = struct_llfields(cx, layout);
Type::struct_(cx, &llfields, packed)
}
Some(ref name) => {
let llty = Type::named_struct(ccx, name);
let llty = Type::named_struct(cx, name);
*defer = Some((llty, layout));
llty
}
@ -110,7 +110,7 @@ fn uncached_llvm_type<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
}
}
fn struct_llfields<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
fn struct_llfields<'a, 'tcx>(cx: &CodegenCx<'a, 'tcx>,
layout: TyLayout<'tcx>)
-> (Vec<Type>, bool) {
debug!("struct_llfields: {:#?}", layout);
@ -121,7 +121,7 @@ fn struct_llfields<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
let mut prev_align = layout.align;
let mut result: Vec<Type> = Vec::with_capacity(1 + field_count * 2);
for i in layout.fields.index_by_increasing_offset() {
let field = layout.field(ccx, i);
let field = layout.field(cx, i);
packed |= layout.align.abi() < field.align.abi();
let target_offset = layout.fields.offset(i as usize);
@ -131,10 +131,10 @@ fn struct_llfields<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
let padding = target_offset - offset;
let padding_align = layout.align.min(prev_align).min(field.align);
assert_eq!(offset.abi_align(padding_align) + padding, target_offset);
result.push(Type::padding_filler(ccx, padding, padding_align));
result.push(Type::padding_filler(cx, padding, padding_align));
debug!(" padding before: {:?}", padding);
result.push(field.llvm_type(ccx));
result.push(field.llvm_type(cx));
offset = target_offset + field.size;
prev_align = field.align;
}
@ -148,7 +148,7 @@ fn struct_llfields<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
assert_eq!(offset.abi_align(padding_align) + padding, layout.size);
debug!("struct_llfields: pad_bytes: {:?} offset: {:?} stride: {:?}",
padding, offset, layout.size);
result.push(Type::padding_filler(ccx, padding, padding_align));
result.push(Type::padding_filler(cx, padding, padding_align));
assert!(result.len() == 1 + field_count * 2);
} else {
debug!("struct_llfields: offset: {:?} stride: {:?}",
@ -158,7 +158,7 @@ fn struct_llfields<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
(result, packed)
}
impl<'a, 'tcx> CrateContext<'a, 'tcx> {
impl<'a, 'tcx> CodegenCx<'a, 'tcx> {
pub fn align_of(&self, ty: Ty<'tcx>) -> Align {
self.layout_of(ty).align
}
@ -197,14 +197,14 @@ pub struct PointeeInfo {
pub trait LayoutLlvmExt<'tcx> {
fn is_llvm_immediate(&self) -> bool;
fn is_llvm_scalar_pair<'a>(&self) -> bool;
fn llvm_type<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> Type;
fn immediate_llvm_type<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> Type;
fn scalar_llvm_type_at<'a>(&self, ccx: &CrateContext<'a, 'tcx>,
fn llvm_type<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> Type;
fn immediate_llvm_type<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> Type;
fn scalar_llvm_type_at<'a>(&self, cx: &CodegenCx<'a, 'tcx>,
scalar: &layout::Scalar, offset: Size) -> Type;
fn scalar_pair_element_llvm_type<'a>(&self, ccx: &CrateContext<'a, 'tcx>,
fn scalar_pair_element_llvm_type<'a>(&self, cx: &CodegenCx<'a, 'tcx>,
index: usize) -> Type;
fn llvm_field_index(&self, index: usize) -> u64;
fn pointee_info_at<'a>(&self, ccx: &CrateContext<'a, 'tcx>, offset: Size)
fn pointee_info_at<'a>(&self, cx: &CodegenCx<'a, 'tcx>, offset: Size)
-> Option<PointeeInfo>;
}
@ -240,28 +240,28 @@ impl<'tcx> LayoutLlvmExt<'tcx> for TyLayout<'tcx> {
/// with the inner-most trailing unsized field using the "minimal unit"
/// of that field's type - this is useful for taking the address of
/// that field and ensuring the struct has the right alignment.
fn llvm_type<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> Type {
fn llvm_type<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> Type {
if let layout::Abi::Scalar(ref scalar) = self.abi {
// Use a different cache for scalars because pointers to DSTs
// can be either fat or thin (data pointers of fat pointers).
if let Some(&llty) = ccx.scalar_lltypes().borrow().get(&self.ty) {
if let Some(&llty) = cx.scalar_lltypes.borrow().get(&self.ty) {
return llty;
}
let llty = match self.ty.sty {
ty::TyRef(_, ty::TypeAndMut { ty, .. }) |
ty::TyRawPtr(ty::TypeAndMut { ty, .. }) => {
ccx.layout_of(ty).llvm_type(ccx).ptr_to()
cx.layout_of(ty).llvm_type(cx).ptr_to()
}
ty::TyAdt(def, _) if def.is_box() => {
ccx.layout_of(self.ty.boxed_ty()).llvm_type(ccx).ptr_to()
cx.layout_of(self.ty.boxed_ty()).llvm_type(cx).ptr_to()
}
ty::TyFnPtr(sig) => {
let sig = ccx.tcx().erase_late_bound_regions_and_normalize(&sig);
FnType::new(ccx, sig, &[]).llvm_type(ccx).ptr_to()
let sig = cx.tcx.erase_late_bound_regions_and_normalize(&sig);
FnType::new(cx, sig, &[]).llvm_type(cx).ptr_to()
}
_ => self.scalar_llvm_type_at(ccx, scalar, Size::from_bytes(0))
_ => self.scalar_llvm_type_at(cx, scalar, Size::from_bytes(0))
};
ccx.scalar_lltypes().borrow_mut().insert(self.ty, llty);
cx.scalar_lltypes.borrow_mut().insert(self.ty, llty);
return llty;
}
@ -271,7 +271,7 @@ impl<'tcx> LayoutLlvmExt<'tcx> for TyLayout<'tcx> {
layout::Variants::Single { index } => Some(index),
_ => None
};
if let Some(&llty) = ccx.lltypes().borrow().get(&(self.ty, variant_index)) {
if let Some(&llty) = cx.lltypes.borrow().get(&(self.ty, variant_index)) {
return llty;
}
@ -281,69 +281,69 @@ impl<'tcx> LayoutLlvmExt<'tcx> for TyLayout<'tcx> {
// Make sure lifetimes are erased, to avoid generating distinct LLVM
// types for Rust types that only differ in the choice of lifetimes.
let normal_ty = ccx.tcx().erase_regions(&self.ty);
let normal_ty = cx.tcx.erase_regions(&self.ty);
let mut defer = None;
let llty = if self.ty != normal_ty {
let mut layout = ccx.layout_of(normal_ty);
let mut layout = cx.layout_of(normal_ty);
if let Some(v) = variant_index {
layout = layout.for_variant(ccx, v);
layout = layout.for_variant(cx, v);
}
layout.llvm_type(ccx)
layout.llvm_type(cx)
} else {
uncached_llvm_type(ccx, *self, &mut defer)
uncached_llvm_type(cx, *self, &mut defer)
};
debug!("--> mapped {:#?} to llty={:?}", self, llty);
ccx.lltypes().borrow_mut().insert((self.ty, variant_index), llty);
cx.lltypes.borrow_mut().insert((self.ty, variant_index), llty);
if let Some((mut llty, layout)) = defer {
let (llfields, packed) = struct_llfields(ccx, layout);
let (llfields, packed) = struct_llfields(cx, layout);
llty.set_struct_body(&llfields, packed)
}
llty
}
fn immediate_llvm_type<'a>(&self, ccx: &CrateContext<'a, 'tcx>) -> Type {
fn immediate_llvm_type<'a>(&self, cx: &CodegenCx<'a, 'tcx>) -> Type {
if let layout::Abi::Scalar(ref scalar) = self.abi {
if scalar.is_bool() {
return Type::i1(ccx);
return Type::i1(cx);
}
}
self.llvm_type(ccx)
self.llvm_type(cx)
}
fn scalar_llvm_type_at<'a>(&self, ccx: &CrateContext<'a, 'tcx>,
fn scalar_llvm_type_at<'a>(&self, cx: &CodegenCx<'a, 'tcx>,
scalar: &layout::Scalar, offset: Size) -> Type {
match scalar.value {
layout::Int(i, _) => Type::from_integer(ccx, i),
layout::F32 => Type::f32(ccx),
layout::F64 => Type::f64(ccx),
layout::Int(i, _) => Type::from_integer(cx, i),
layout::F32 => Type::f32(cx),
layout::F64 => Type::f64(cx),
layout::Pointer => {
// If we know the alignment, pick something better than i8.
let pointee = if let Some(pointee) = self.pointee_info_at(ccx, offset) {
Type::pointee_for_abi_align(ccx, pointee.align)
let pointee = if let Some(pointee) = self.pointee_info_at(cx, offset) {
Type::pointee_for_abi_align(cx, pointee.align)
} else {
Type::i8(ccx)
Type::i8(cx)
};
pointee.ptr_to()
}
}
}
fn scalar_pair_element_llvm_type<'a>(&self, ccx: &CrateContext<'a, 'tcx>,
fn scalar_pair_element_llvm_type<'a>(&self, cx: &CodegenCx<'a, 'tcx>,
index: usize) -> Type {
// HACK(eddyb) special-case fat pointers until LLVM removes
// pointee types, to avoid bitcasting every `OperandRef::deref`.
match self.ty.sty {
ty::TyRef(..) |
ty::TyRawPtr(_) => {
return self.field(ccx, index).llvm_type(ccx);
return self.field(cx, index).llvm_type(cx);
}
ty::TyAdt(def, _) if def.is_box() => {
let ptr_ty = ccx.tcx().mk_mut_ptr(self.ty.boxed_ty());
return ccx.layout_of(ptr_ty).scalar_pair_element_llvm_type(ccx, index);
let ptr_ty = cx.tcx.mk_mut_ptr(self.ty.boxed_ty());
return cx.layout_of(ptr_ty).scalar_pair_element_llvm_type(cx, index);
}
_ => {}
}
@ -362,15 +362,15 @@ impl<'tcx> LayoutLlvmExt<'tcx> for TyLayout<'tcx> {
// load/store `bool` as `i8` to avoid crippling LLVM optimizations,
// `i1` in a LLVM aggregate is valid and mostly equivalent to `i8`.
if scalar.is_bool() {
return Type::i1(ccx);
return Type::i1(cx);
}
let offset = if index == 0 {
Size::from_bytes(0)
} else {
a.value.size(ccx).abi_align(b.value.align(ccx))
a.value.size(cx).abi_align(b.value.align(cx))
};
self.scalar_llvm_type_at(ccx, scalar, offset)
self.scalar_llvm_type_at(cx, scalar, offset)
}
fn llvm_field_index(&self, index: usize) -> u64 {
@ -396,16 +396,16 @@ impl<'tcx> LayoutLlvmExt<'tcx> for TyLayout<'tcx> {
}
}
fn pointee_info_at<'a>(&self, ccx: &CrateContext<'a, 'tcx>, offset: Size)
fn pointee_info_at<'a>(&self, cx: &CodegenCx<'a, 'tcx>, offset: Size)
-> Option<PointeeInfo> {
if let Some(&pointee) = ccx.pointee_infos().borrow().get(&(self.ty, offset)) {
if let Some(&pointee) = cx.pointee_infos.borrow().get(&(self.ty, offset)) {
return pointee;
}
let mut result = None;
match self.ty.sty {
ty::TyRawPtr(mt) if offset.bytes() == 0 => {
let (size, align) = ccx.size_and_align_of(mt.ty);
let (size, align) = cx.size_and_align_of(mt.ty);
result = Some(PointeeInfo {
size,
align,
@ -414,17 +414,17 @@ impl<'tcx> LayoutLlvmExt<'tcx> for TyLayout<'tcx> {
}
ty::TyRef(_, mt) if offset.bytes() == 0 => {
let (size, align) = ccx.size_and_align_of(mt.ty);
let (size, align) = cx.size_and_align_of(mt.ty);
let kind = match mt.mutbl {
hir::MutImmutable => if ccx.shared().type_is_freeze(mt.ty) {
hir::MutImmutable => if cx.type_is_freeze(mt.ty) {
PointerKind::Frozen
} else {
PointerKind::Shared
},
hir::MutMutable => {
if ccx.shared().tcx().sess.opts.debugging_opts.mutable_noalias ||
ccx.shared().tcx().sess.panic_strategy() == PanicStrategy::Abort {
if cx.tcx.sess.opts.debugging_opts.mutable_noalias ||
cx.tcx.sess.panic_strategy() == PanicStrategy::Abort {
PointerKind::UniqueBorrowed
} else {
PointerKind::Shared
@ -454,7 +454,7 @@ impl<'tcx> LayoutLlvmExt<'tcx> for TyLayout<'tcx> {
// niches than just null (e.g. the first page
// of the address space, or unaligned pointers).
if self.fields.offset(0) == offset {
Some(self.for_variant(ccx, dataful_variant))
Some(self.for_variant(cx, dataful_variant))
} else {
None
}
@ -470,14 +470,14 @@ impl<'tcx> LayoutLlvmExt<'tcx> for TyLayout<'tcx> {
}
if let Some(variant) = data_variant {
let ptr_end = offset + layout::Pointer.size(ccx);
let ptr_end = offset + layout::Pointer.size(cx);
for i in 0..variant.fields.count() {
let field_start = variant.fields.offset(i);
if field_start <= offset {
let field = variant.field(ccx, i);
let field = variant.field(cx, i);
if ptr_end <= field_start + field.size {
// We found the right field, look inside it.
result = field.pointee_info_at(ccx, offset - field_start);
result = field.pointee_info_at(cx, offset - field_start);
break;
}
}
@ -495,7 +495,7 @@ impl<'tcx> LayoutLlvmExt<'tcx> for TyLayout<'tcx> {
}
}
ccx.pointee_infos().borrow_mut().insert((self.ty, offset), result);
cx.pointee_infos.borrow_mut().insert((self.ty, offset), result);
result
}
}

View file

@ -746,10 +746,6 @@ LLVMRustSetDataLayoutFromTargetMachine(LLVMModuleRef Module,
unwrap(Module)->setDataLayout(Target->createDataLayout());
}
extern "C" LLVMTargetDataRef LLVMRustGetModuleDataLayout(LLVMModuleRef M) {
return wrap(&unwrap(M)->getDataLayout());
}
extern "C" void LLVMRustSetModulePIELevel(LLVMModuleRef M) {
unwrap(M)->setPIELevel(PIELevel::Level::Large);
}