Make `note_obligation_cause_code` take a `impl ToPredicate` for predicate
The only usecase that wasn't `impl ToPredicate` was noting overflow errors while revealing opaque types, which passed in an `Obligation<'tcx, Ty<'tcx>>`... Since this only happens in a `RevealAll` environment, which is after typeck (and probably primarily within `normalize_erasing_regions`) we're unlikely to display anything useful while noting this code, evidenced by the lack of UI test changes.
support `ConstKind::Expr` in `is_const_evaluatable` and `WfPredicates::compute`
Fixes#105205
Currently we haven't implemented a way to evaluate `ConstKind::Expr(Expr::Binop(Add, 1, 2))` so I just left that with a `FIXME` and a `delay_span_bug` since I have no idea how to do that and it would make this a much larger (and more complicated) PR :P
Synthesize substitutions for bad auto traits in dyn types
Auto traits are stored as just `DefId`s inside a `dyn Trait`'s existential predicates list. This is usually fine, since auto traits are forbidden to have generics -- but this becomes a problem for an ill-formed auto trait.
But since this will always result in an error, just synthesize some dummy (error) substitutions which are used at least to keep trait selection code happy about the number of substs in a trait ref.
Fixes#104808
propagate the error from parsing enum variant to the parser and emit out
While parsing enum variant, the error message always disappear
Because the error message that emit out is from main error of parser
The information of enum variant disappears while parsing enum variant with error
We only check the syntax of expecting token, i.e, in case https://github.com/rust-lang/rust/issues/103869
It will error it without telling the message that this error is from pasring enum variant.
Propagate the sub-error from parsing enum variant to the main error of parser by chaining it with map_err
Check the sub-error before emitting the main error of parser and attach it.
Fix https://github.com/rust-lang/rust/issues/103869
Add StableOrd trait as proposed in MCP 533.
The `StableOrd` trait can be used to mark types as having a stable sort order across compilation sessions. Collections that sort their items in a stable way can safely implement HashStable by hashing items in sort order.
See https://github.com/rust-lang/compiler-team/issues/533 for more information.
Tweak "the following other types implement trait"
When *any* of the suggested impls is an exact match, *only* show the exact matches. This is particularly relevant for integer types.
r? `@compiler-errors`
interpret: clobber return place when calling function
Makes sure the callee cannot observe the previous contents of the return place, and the caller cannot read any of the old return place contents even if the function unwinds.
I don't think we can test for this though, that would require some strange hand-written MIR.
r? `````@oli-obk`````
feed resolver_for_lowering instead of storing it in a field
r? `@cjgillot`
opening this as
* a discussion for `no_hash` + `feedable` queries. I think we'll want those, but I don't quite understand why they are rejected beyond a double check of the stable hashes for situations where the query is fed but also read from incremental caches.
* and a discussion on removing all untracked fields from TyCtxt and setting it up so that they are fed queries instead
Disable top down MIR inlining
The current MIR inliner has exponential behavior in some cases: <https://godbolt.org/z/7jnWah4fE>. The cause of this is top-down inlining, where we repeatedly do inlining like `call_a() => { call_b(); call_b(); }`. Each decision on its own seems to make sense, but the result is exponential.
Disabling top-down inlining fundamentally prevents this. Each call site in the original, unoptimized source code is now considered for inlining exactly one time, which means that the total growth in MIR size is limited to number of call sites * inlining threshold.
Top down inlining may be worth re-introducing at some point, but it needs to be accompanied with a principled way to prevent this kind of behavior.
Avoid some `InferCtxt::build` calls
Either because we're inside of an `InferCtxt` already, or because we're not in a place where we'd ever see inference vars.
r? types
Make sure async constructs do not `impl Generator`
Async lowering turns async functions and blocks into generators internally.
Though these special kinds of generators should not `impl Generator` themselves.
The other way around, normal generators should not `impl Future`.
This was discovered in https://github.com/rust-lang/rust/pull/105082#issuecomment-1332210907 and is a regression from https://github.com/rust-lang/rust/pull/104321.
r? `@compiler-errors`
rustc_codegen_ssa: Fix for codegen_get_discr
When doing the optimized implementation of getting the discriminant, the arithmetic needs to be done in the tag type so wrapping behavior works correctly.
Fixes#104519
Rollup of 6 pull requests
Successful merges:
- #101975 (Suggest to use . instead of :: when accessing a method of an object)
- #105141 (Fix ICE on invalid variable declarations in macro calls)
- #105224 (Properly substitute inherent associated types.)
- #105236 (Add regression test for #47814)
- #105247 (Use parent function WfCheckingContext to check RPITIT.)
- #105253 (Update a couple of rustbuild deps)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Fix ICE on invalid variable declarations in macro calls
This fixes ICE that happens with invalid variable declarations in macro calls like:
```rust
macro_rules! m { ($s:stmt) => {} }
m! { var x }
m! { auto x }
m! { mut x }
```
Found this is because of not collecting tokens on recovery, so I changed to force collect them.
Fixes https://github.com/rust-lang/rust/issues/103529.
Remove drop order twist of && and || and make them associative
Previously a short circuiting binop chain (chain of && or ||s) would drop the temporaries created by the first element after all the other elements, and otherwise follow evaluation order. So `f(1).g() && f(2).g() && f(3).g() && f(4).g()` would drop the temporaries in the order `2,3,4,1`. This made `&&` and `||` non-associative regarding drop order. In other words, adding ()'s to the expression would change drop order: `f(1).g() && (f(2).g() && f(3).g()) && f(4).g()` for example would drop in the order `3,2,4,1`.
As, except for the bool result, there is no data returned by the sub-expressions of the short circuiting binops, we can safely discard of any temporaries created by the sub-expr. Previously, code was already putting the rhs's into terminating scopes, but missed it for the lhs's.
This commit addresses this "twist". We now also put the lhs into a terminating scope. The drop order of the above expressions becomes `1,2,3,4`.
There might be code relying on the current order, and therefore I'd recommend doing a crater run to gauge the impact. I'd argue that such code is already quite wonky as it is one `foo() &&` addition away from breaking. ~~For the impact, I don't expect any *build* failures, as the compiler gets strictly more tolerant: shortening the lifetime of temporaries only expands the list of programs the compiler accepts as valid. There might be *runtime* failures caused by this change however.~~ Edit: both build and runtime failures are possible, e.g. see the example provided by dtolnay [below](https://github.com/rust-lang/rust/pull/103293#issuecomment-1285341113). Edit2: the crater run has finished and [results](https://github.com/rust-lang/rust/pull/103293#issuecomment-1292275203) are that there is only one build failure which is easy to fix with a +/- 1 line diff.
I've included a testcase that now compiles thanks to this patch.
The breakage is also limited to drop order relative to conditionals in the && chain: that is, in code like this:
```Rust
let hello = foo().hi() && bar().world();
println!("hi");
```
we already drop the temporaries of `foo().hi()` before we reach "hi".
I'd ideally have this PR merged before let chains are stabilized. If this PR is taking too long, I'd love to have a more restricted version of this change limited to `&&`'s in let chains: the `&&`'s of such chains are quite special anyways as they accept `let` bindings, in there the `&&` is therefore more a part of the "if let chain" construct than a construct of its own.
Fixes#103107
Status: waiting on [this accepted FCP](https://github.com/rust-lang/rust/pull/103293#issuecomment-1293411354) finishing.