Update `rand` crate to `0.3.19`.
Update `log` crate to `0.3.9` and `0.4.1`.
Update `parking_lot_core` crate to `0.2.9`.
Upgrade all flate2 dependencies to `1.0.1`.
- Update `rust-installer` submodule.
It's inefficient, and the substitution there doesn't account for the
extra regions used by NLL inference, so it's a bad thing to encourage.
As it happens all callers already know if they have a closure or not,
from what I can tell.
move closure kind, signature into `ClosureSubsts`
Instead of using side-tables, store the closure-kind and signature in the substitutions themselves. This has two key effects:
- It means that the closure's type changes as inference finds out more things, which is very nice.
- As a result, it avoids the need for the `freshen_closure_like` code (though we still use it for generators).
- It avoids cyclic closures calls.
- These were never meant to be supported, precisely because they make a lot of the fancy inference that we do much more complicated. However, due to an oversight, it was previously possible -- if challenging -- to create a setup where a closure *directly* called itself (see e.g. #21410).
We have to see what the effect of this change is, though. Needs a crater run. Marking as [WIP] until that has been assessed.
r? @arielb1
std: Add a new wasm32-unknown-unknown target
This commit adds a new target to the compiler: wasm32-unknown-unknown. This target is a reimagining of what it looks like to generate WebAssembly code from Rust. Instead of using Emscripten which can bring with it a weighty runtime this instead is a target which uses only the LLVM backend for WebAssembly and a "custom linker" for now which will hopefully one day be direct calls to lld.
Notable features of this target include:
* There is zero runtime footprint. The target assumes nothing exists other than the wasm32 instruction set.
* There is zero toolchain footprint beyond adding the target. No custom linker is needed, rustc contains everything.
* Very small wasm modules can be generated directly from Rust code using this target.
* Most of the standard library is stubbed out to return an error, but anything related to allocation works (aka `HashMap`, `Vec`, etc).
* Naturally, any `#[no_std]` crate should be 100% compatible with this new target.
This target is currently somewhat janky due to how linking works. The "linking" is currently unconditional whole program LTO (aka LLVM is being used as a linker). Naturally that means compiling programs is pretty slow! Eventually though this target should have a linker.
This target is also intended to be quite experimental. I'm hoping that this can act as a catalyst for further experimentation in Rust with WebAssembly. Breaking changes are very likely to land to this target, so it's not recommended to rely on it in any critical capacity yet. We'll let you know when it's "production ready".
### Building yourself
First you'll need to configure the build of LLVM and enable this target
```
$ ./configure --target=wasm32-unknown-unknown --set llvm.experimental-targets=WebAssembly
```
Next you'll want to remove any previously compiled LLVM as it needs to be rebuilt with WebAssembly support. You can do that with:
```
$ rm -rf build
```
And then you're good to go! A `./x.py build` should give you a rustc with the appropriate libstd target.
### Test support
Currently testing-wise this target is looking pretty good but isn't complete. I've got almost the entire `run-pass` test suite working with this target (lots of tests ignored, but many passing as well). The `core` test suite is [still getting LLVM bugs fixed](https://reviews.llvm.org/D39866) to get that working and will take some time. Relatively simple programs all seem to work though!
In general I've only tested this with a local fork that makes use of LLVM 5 rather than our current LLVM 4 on master. The LLVM 4 WebAssembly backend AFAIK isn't broken per se but is likely missing bug fixes available on LLVM 5. I'm hoping though that we can decouple the LLVM 5 upgrade and adding this wasm target!
### But the modules generated are huge!
It's worth nothing that you may not immediately see the "smallest possible wasm module" for the input you feed to rustc. For various reasons it's very difficult to get rid of the final "bloat" in vanilla rustc (again, a real linker should fix all this). For now what you'll have to do is:
cargo install --git https://github.com/alexcrichton/wasm-gc
wasm-gc foo.wasm bar.wasm
And then `bar.wasm` should be the smallest we can get it!
---
In any case for now I'd love feedback on this, particularly on the various integration points if you've got better ideas of how to approach them!
This commit adds a new target to the compiler: wasm32-unknown-unknown. This
target is a reimagining of what it looks like to generate WebAssembly code from
Rust. Instead of using Emscripten which can bring with it a weighty runtime this
instead is a target which uses only the LLVM backend for WebAssembly and a
"custom linker" for now which will hopefully one day be direct calls to lld.
Notable features of this target include:
* There is zero runtime footprint. The target assumes nothing exists other than
the wasm32 instruction set.
* There is zero toolchain footprint beyond adding the target. No custom linker
is needed, rustc contains everything.
* Very small wasm modules can be generated directly from Rust code using this
target.
* Most of the standard library is stubbed out to return an error, but anything
related to allocation works (aka `HashMap`, `Vec`, etc).
* Naturally, any `#[no_std]` crate should be 100% compatible with this new
target.
This target is currently somewhat janky due to how linking works. The "linking"
is currently unconditional whole program LTO (aka LLVM is being used as a
linker). Naturally that means compiling programs is pretty slow! Eventually
though this target should have a linker.
This target is also intended to be quite experimental. I'm hoping that this can
act as a catalyst for further experimentation in Rust with WebAssembly. Breaking
changes are very likely to land to this target, so it's not recommended to rely
on it in any critical capacity yet. We'll let you know when it's "production
ready".
---
Currently testing-wise this target is looking pretty good but isn't complete.
I've got almost the entire `run-pass` test suite working with this target (lots
of tests ignored, but many passing as well). The `core` test suite is still
getting LLVM bugs fixed to get that working and will take some time. Relatively
simple programs all seem to work though!
---
It's worth nothing that you may not immediately see the "smallest possible wasm
module" for the input you feed to rustc. For various reasons it's very difficult
to get rid of the final "bloat" in vanilla rustc (again, a real linker should
fix all this). For now what you'll have to do is:
cargo install --git https://github.com/alexcrichton/wasm-gc
wasm-gc foo.wasm bar.wasm
And then `bar.wasm` should be the smallest we can get it!
---
In any case for now I'd love feedback on this, particularly on the various
integration points if you've got better ideas of how to approach them!
add TerminatorKind::FalseEdges and use it in matches
impl #45184 and fixes#45043 right way.
False edges unexpectedly affects uninitialized variables analysis in MIR borrowck.
DefaultImpl is a highly confusing name for what we now call auto impls,
as in `impl Send for ..`. The name auto impl is not formally decided
but for sanity anything is better than `DefaultImpl` which refers
neither to `default impl` nor to `impl Default`.
Implement RFC 1861: Extern types
A few notes :
- Type parameters are not supported. This was an unresolved question from the RFC. It is not clear how useful this feature is, and how variance should be treated. This can be added in a future PR.
- `size_of_val` / `align_of_val` can be called with extern types, and respectively return 0 and 1. This differs from the RFC, which specified that they should panic, but after discussion with @eddyb on IRC this seems like a better solution.
If/when a `DynSized` trait is added, this will be disallowed statically.
- Auto traits are not implemented by default, since the contents of extern types is unknown. This means extern types are `!Sync`, `!Send` and `!Freeze`. This seems like the correct behaviour to me.
Manual `unsafe impl Sync for Foo` is still possible.
- This PR allows extern type to be used as the tail of a struct, as described by the RFC :
```rust
extern {
type OpaqueTail;
}
#[repr(C)]
struct FfiStruct {
data: u8,
more_data: u32,
tail: OpaqueTail,
}
```
However this is undesirable, as the alignment of `tail` is unknown (the current PR assumes an alignment of 1). Unfortunately we can't prevent it in the general case as the tail could be a type parameter :
```rust
#[repr(C)]
struct FfiStruct<T: ?Sized> {
data: u8,
more_data: u32,
tail: T,
}
```
Adding a `DynSized` trait would solve this as well, by requiring tail fields to be bound by it.
- Despite being unsized, pointers to extern types are thin and can be casted from/to integers. However it is not possible to write a `null<T>() -> *const T` function which works with extern types, as I've explained here : https://github.com/rust-lang/rust/issues/43467#issuecomment-321678621
- Trait objects cannot be built from extern types. I intend to support it eventually, although how this interacts with `DynSized`/`size_of_val` is still unclear.
- The definition of `c_void` is unmodified
Most UNIX-like platforms do not allow shared libraries to statically
link their own libc, as libc expects to have consistent process-global
state. On those platforms, when we do not have a shared libc available,
we must not attempt to link dylibs or cdylibs. On Windows, however, it
is expected to statically link the CRT into dynamic libraries.
This feature is only relevant for targets that support both fully-static
and fully-dynamic linkage, such as musl on Linux.