Implement syntax for `impl Trait` to specify its captures explicitly (`feature(precise_capturing)`)
Implements `impl use<'a, 'b, T, U> Sized` syntax that allows users to explicitly list the captured parameters for an opaque, rather than inferring it from the opaque's bounds (or capturing *all* lifetimes under 2024-edition capture rules). This allows us to exclude some implicit captures, so this syntax may be used as a migration strategy for changes due to #117587.
We represent this list of captured params as `PreciseCapturingArg` in AST and HIR, resolving them between `rustc_resolve` and `resolve_bound_vars`. Later on, we validate that the opaques only capture the parameters in this list.
We artificially limit the feature to *require* mentioning all type and const parameters, since we don't currently have support for non-lifetime bivariant generics. This can be relaxed in the future.
We also may need to limit this to require naming *all* lifetime parameters for RPITIT, since GATs have no variance. I have to investigate this. This can also be relaxed in the future.
r? `@oli-obk`
Tracking issue:
- https://github.com/rust-lang/rust/issues/123432
Fix pretty HIR for anon consts in diagnostics
This removes the `NoAnn` printer which skips over nested bodies altogether, which is confusing, and requires users of `{ty|qpath|pat}_to_string` to pass in `&tcx` which now impleemnts `hir_pretty::PpAnn`.
There's one case where this "regresses" by actually printing out the body of the anon const -- we could suppress that, but I don't expect people to actually get anon consts like that unless they're fuzzing, tbh.
r? estebank
Don't even parse an intrinsic unless the feature gate is enabled
Don't return true in `tcx.is_intrinsic` if the function is defined locally and `#![feature(intrinsics)]` is not enabled. This is a slightly more general fix than #123526, since #123587 shows that we have simplifying assumptions about intrinsics elsewhere in the compiler.
This will make the code ICE again if the user **enables** `#[feature(intrinsics)]`, but I kind of feel like if we want to fix that, we should make the `INTERNAL_FEATURES` lint `Deny` again. Perhaps we could do that on non-nightly compilers. Or we should just stop compilation altogether if they have `#![feature]` enabled on a non-nightly compiler.
As for the UX of *real* cases of hitting these ICEs, I believe pretty strongly that if a compiler/stdlib dev is modifying internal intrinsics (intentionally, like when making a change to rustc) we have no guarantee to make the ICE better looking for them. Honestly, *not* spitting out a stack trace is probably a disservice to the people who hit those ICEs in that case.
r? `@Nilstrieb` `@estebank`
Cleanup: Rename `ModSep` to `PathSep`
`::` is usually referred to as the *path separator* (citation needed).
The existing name `ModSep` for *module separator* is a bit misleading since it in fact separates the segments of arbitrary path segments, not only ones resolving to modules. Let me just give a shout-out to associated items (`T::Assoc`, `<Ty as Trait>::function`) and enum variants (`Option::None`).
Motivation: Reduce friction for new contributors, prevent potential confusion.
cc `@petrochenkov`
r? nnethercote or compiler
Remove `TypeVariableOriginKind` and `ConstVariableOriginKind`
It's annoying to have to import `TypeVariableOriginKind` just to fill it with `MiscVariable` for almost every use. Every other usage other than `TypeParameterDefinition` wasn't even used -- I can see how it may have been useful once for debugging, but I do quite a lot of typeck debugging and I've never really needed it.
So let's just remove it, and keep around the only useful thing which is the `DefId` of the param for `var_for_def`.
This is based on #123006, which removed the special use of `TypeVariableOriginKind::OpaqueInference`, which I'm pretty sure I was the one that added.
r? lcnr or re-roll to types
Fix various bugs in `ty_kind_suggestion`
Consolidates two implementations of `ty_kind_suggestion`
Fixes some misuse of the empty param-env
Fixes a problem where we suggested `(42)` instead of `(42,)` for tuple suggestions
Suggest a value when `return;`, making it consistent with `break;`
Fixes#123906
Fix UB in LLVM FFI when passing zero or >1 bundle
Rust passes a `*const &OperandBundleDef` to these APIs, usually from a `Vec<&OperandBundleDef>` or so. Previously we were dereferencing that pointer and passing it to the ArrayRef constructor with some length (N).
This meant that if the length was 0, we were dereferencing a pointer to nowhere (if the vector on the Rust side didn't actually get allocated or so), and if the length was >1 then loading the *second* element somewhere in LLVM would've been reading past the end.
Since Rust can't hold OperandBundleDef by-value we're forced to indirect through a vector that copies out the OperandBundleDefs from the by-reference list on the Rust side in order to match the LLVM expected API.
move the LargeAssignments lint logic into its own file
The collector is a file full of very subtle logic, so let's try to keep that separate from the logic that only serves to implement this lint.
Remove magic constants when using `base_n`.
Some use cases of `base_n` use number literals instead of the predefined constants. The latter are more descriptive so it might be better to use those instead.
builtin-derive: tag → discriminant
As far as I can tell, all of this operates on the discriminant, not the tag. After all, with something like `Option<&T>`, the "tag" of the `Some` variant is basically just the reference value, which is never what you want to compare when figuring out which variant the enum is in.
See [here](https://rustc-dev-guide.rust-lang.org/appendix/glossary.html) for an explanation of the difference between tag and discriminant.
Migrate some diagnostics in `rustc_resolve` to session diagnostic
Hello, I migrated some diagnostics in `rustc_resolve` to session diagnostic.
r? ``@davidtwco``
Remove a HACK by instead inferring opaque types during expected/formal type checking
I was wondering why I couldn't come up with a test that hits the code path of the argument check checking the types we inferred from the return type... Turns out we reject those attempts early during fudging.
I have absolutely no information for you as to what kind of type inference changes this may incur, but I think we should just land this out of two reasons:
* had I found the other place to use opaque type inference on before I added the hack, we'd be using that today and this PR would never have happened
* if it is possible to hit this path, it requires some god awful recursive RPIT logic that I doubt anyone would have written without actively trying to write obscure code
r? ``@ghost``
Add the missing inttoptr when we ptrtoint in ptr atomics
Ralf noticed this here: https://github.com/rust-lang/rust/pull/122220#discussion_r1535172094
Our previous codegen forgot to add the cast back to integer type. The code compiles anyway, because of course all locals are in-memory to start with, so previous codegen would do the integer atomic, store the integer to a local, then load a pointer from that local. Which is definitely _not_ what we wanted: That's an integer-to-pointer transmute, so all pointers returned by these `AtomicPtr` methods didn't have provenance. Yikes.
Here's the IR for `AtomicPtr::fetch_byte_add` on 1.76: https://godbolt.org/z/8qTEjeraY
```llvm
define noundef ptr `@atomicptr_fetch_byte_add(ptr` noundef nonnull align 8 %a, i64 noundef %v) unnamed_addr #0 !dbg !7 {
start:
%0 = alloca ptr, align 8, !dbg !12
%val = inttoptr i64 %v to ptr, !dbg !12
call void `@llvm.lifetime.start.p0(i64` 8, ptr %0), !dbg !28
%1 = ptrtoint ptr %val to i64, !dbg !28
%2 = atomicrmw add ptr %a, i64 %1 monotonic, align 8, !dbg !28
store i64 %2, ptr %0, align 8, !dbg !28
%self = load ptr, ptr %0, align 8, !dbg !28
call void `@llvm.lifetime.end.p0(i64` 8, ptr %0), !dbg !28
ret ptr %self, !dbg !33
}
```
r? `@RalfJung`
cc `@nikic`
Rust passes a *const &OperandBundleDef to these APIs, usually from a
Vec<&OperandBundleDef> or so. Previously we were dereferencing that
pointer and passing it to the ArrayRef constructor with some length (N).
This meant that if the length was 0, we were dereferencing a pointer to
nowhere, and if the length was >1 then loading the *second* element
somewhere in LLVM would've been reading past the end.
Since Rust can't hold OperandBundleDef by-value we're forced to indirect
through a vector that copies out the OperandBundleDefs from the
by-reference list on the Rust side in order to match the LLVM expected
API.
Discard overflow obligations in `impl_may_apply`
Hacky fix for #123493. Throws away obligations that are overflowing in `impl_may_apply` when we recompute if an impl applies, since those will lead to fatal overflow if processed during fulfillment.
Something about #114811 (I think it's the predicate reordering) caused us to evaluate predicates differently in error reporting leading to fatal overflow, though I believe the underlying overflow is possible to hit since this code was rewritten to use fulfillment.
Fixes#123493
Does not necessarily change much, but we never overwrite it, so I see no reason
for it to be in the `Successors` trait. (+we already have a similar `is_cyclic`)