Implement nth_back for slice::{Iter, IterMut}
Part of #54054.
I implemented `nth_back` as straightforwardly as I could, and then slightly changed `nth` to match `nth_back`. I believe I did so correctly, but please double-check 🙂
I also added the helper methods `zst_shrink`, `next_unchecked`, and `next_back_unchecked` to get rid of some duplicated code. These changes hopefully make this code easier to understand for new contributors like me.
I noticed the `is_empty!` and `len!` macros which sole purpose seems to be inlining, according to the comment right above them, but the `is_empty` and `len` methods are already marked with `#[inline(always)]`. Does that mean we could replace these macros with method calls, without affecting anything? I'd love to get rid of them.
Implement specialized nth_back() for Box and Windows.
Hi there, this is my first pull request to rust :-)
I started implementing some specializations for DoubleEndedIterator::nth_back() and these are the first two. The problem has been discussed in #54054 and nth_back() is tracked in #56995.
I'm stuck with the next implementation so I though I do a PR for the ones I'm confident with to get some feedback.
Add some more notes to the documentation:
- Mention that the median can be found if we used `len() / 2`.
- Mention that this function is usually called "kth element" in other libraries.
Address some comments in PR:
- Change wording on some of the documentation
- Change recursive function into a loop
Update name to `partition_at_index` and add convenience return values.
Address reviewer comments:
- Don't swap on each iteration when searching for min/max element.
- Add some docs about when we panic.
- Test that the sum of the lengths of the output matches the length of the input.
- Style fix for for-loop.
Address more reviewer comments
Fix Rng stuff for test
Fix doc test build
Don't run the partition_at_index test on wasm targets
Miri does not support entropy for test partition_at_index
Ever since we added a Cargo-based build system for the compiler the
standard library has always been a little special, it's never been able
to depend on crates.io crates for runtime dependencies. This has been a
result of various limitations, namely that Cargo doesn't understand that
crates from crates.io depend on libcore, so Cargo tries to build crates
before libcore is finished.
I had an idea this afternoon, however, which lifts the strategy
from #52919 to directly depend on crates.io crates from the standard
library. After all is said and done this removes a whopping three
submodules that we need to manage!
The basic idea here is that for any crate `std` depends on it adds an
*optional* dependency on an empty crate on crates.io, in this case named
`rustc-std-workspace-core`. This crate is overridden via `[patch]` in
this repository to point to a local crate we write, and *that* has a
`path` dependency on libcore.
Note that all `no_std` crates also depend on `compiler_builtins`, but if
we're not using submodules we can publish `compiler_builtins` to
crates.io and all crates can depend on it anyway! The basic strategy
then looks like:
* The standard library (or some transitive dep) decides to depend on a
crate `foo`.
* The standard library adds
```toml
[dependencies]
foo = { version = "0.1", features = ['rustc-dep-of-std'] }
```
* The crate `foo` has an optional dependency on `rustc-std-workspace-core`
* The crate `foo` has an optional dependency on `compiler_builtins`
* The crate `foo` has a feature `rustc-dep-of-std` which activates these
crates and any other necessary infrastructure in the crate.
A sample commit for `dlmalloc` [turns out to be quite simple][commit].
After that all `no_std` crates should largely build "as is" and still be
publishable on crates.io! Notably they should be able to continue to use
stable Rust if necessary, since the `rename-dependency` feature of Cargo
is soon stabilizing.
As a proof of concept, this commit removes the `dlmalloc`,
`libcompiler_builtins`, and `libc` submodules from this repository. Long
thorns in our side these are now gone for good and we can directly
depend on crates.io! It's hoped that in the long term we can bring in
other crates as necessary, but for now this is largely intended to
simply make it easier to manage these crates and remove submodules.
This should be a transparent non-breaking change for all users, but one
possible stickler is that this almost for sure breaks out-of-tree
`std`-building tools like `xargo` and `cargo-xbuild`. I think it should
be relatively easy to get them working, however, as all that's needed is
an entry in the `[patch]` section used to build the standard library.
Hopefully we can work with these tools to solve this problem!
[commit]: 28ee12db81
Add ExactChunks::remainder and ExactChunks::into_remainder
These allow to get the leftover items of the slice that are not being
iterated as part of the iterator due to not filling a complete chunk.
The mutable version consumes the slice because otherwise we would either
a) have to borrow the iterator instead of taking the lifetime of
the underlying slice, which is not what *any* of the other iterator
functions is doing, or
b) would allow returning multiple mutable references to the same data
The current behaviour of consuming the iterator is consistent with
IterMut::into_slice for the normal iterator.
----
This is related to https://github.com/rust-lang/rust/issues/47115#issuecomment-392685177 and the following comments.
While there the discussion was first about a way to get the "tail" of the iterator (everything from the slice that is still not iterated yet), this gives kind of unintuitive behaviour and is inconsistent with how the other slice iterators work.
Unintuitive because the `next_back` would have no effect on the tail (or otherwise the tail could not include the remainder items), inconsistent because a) generally the idea of the slice iterators seems to be to only ever return items that were not iterated yet (and don't provide a way to access the same item twice) and b) we would return a "flat" `&[T]` slice but the iterator's shape is `&[[T]]` instead, c) the mutable variant would have to borrow from the iterator instead of the underlying slice (all other iterator functions borrow from the underlying slice!)
As such, I've only implemented functions to get the remainder. This also allows the implementation to be completely safe still (and around slices instead of raw pointers), while getting the tail would either be inefficient or would have to be implemented around raw pointers.
CC @kerollmops
These allow to get the leftover items of the slice that are not being
iterated as part of the iterator due to not filling a complete chunk.
The mutable version consumes the slice because otherwise we would either
a) have to borrow the iterator instead of taking the lifetime of
the underlying slice, which is not what *any* of the other iterator
functions is doing, or
b) would allow returning multiple mutable references to the same data
The current behaviour of consuming the iterator is consistent with
IterMut::into_slice for the normal iterator.
Give SliceIndex impls a test suite of girth befitting the implementation (and fix a UTF8 boundary check)
So one day I was writing something in my codebase that basically amounted to `impl SliceIndex for (Bound<usize>, Bound<usize>)`, and I said to myself:
*Boy, gee, golly! I never realized bounds checking was so tricky!*
At some point when I had around 60 lines of tests for it, I decided to go see how the standard library does it to see if I missed any edge cases. ...That's when I discovered that libcore only had about 40 lines of tests for slicing altogether, and none of them even used `..=`.
---
This PR includes:
* **Literally the first appearance of the word `get_unchecked_mut` in any directory named `test` or `tests`.**
* Likewise the first appearance of `get_mut` used with _any type of range argument_ in these directories.
* Tests for the panics on overflow with `..=`.
* I wanted to test on `[(); usize::MAX]` as well but that takes linear time in debug mode </3
* A horrible and ugly test-generating macro for the `should_panic` tests that increases the DRYness by a single order of magnitude (which IMO wasn't enough, but I didn't want to go any further and risk making the tests inaccessible to next guy).
* Same stuff for str!
* Actually, the existing `str` tests were pretty good. I just helped filled in the holes.
* [A fix for the bug it caught](https://github.com/rust-lang/rust/issues/50002). (only one ~~sadly~~)
Required moving all fulldeps tests depending on `rand` to different locations as
now there's multiple `rand` crates that can't be implicitly linked against.
Add slice::ExactChunks and ::ExactChunksMut iterators
These guarantee that always the requested slice size will be returned
and any leftoever elements at the end will be ignored. It allows llvm to
get rid of bounds checks in the code using the iterator.
This is inspired by the same iterators provided by ndarray.
Fixes https://github.com/rust-lang/rust/issues/47115
I'll add unit tests for all this if the general idea and behaviour makes sense for everybody.
Also see https://github.com/rust-lang/rust/issues/47115#issuecomment-354715511 for an example what this improves.
Deprecate [T]::rotate in favor of [T]::rotate_{left,right}.
Background
==========
Slices currently have an **unstable** [`rotate`] method which rotates
elements in the slice to the _left_ N positions. [Here][tracking] is the
tracking issue for this unstable feature.
```rust
let mut a = ['a', 'b' ,'c', 'd', 'e', 'f'];
a.rotate(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
```
Proposal
========
Deprecate the [`rotate`] method and introduce `rotate_left` and
`rotate_right` methods.
```rust
let mut a = ['a', 'b' ,'c', 'd', 'e', 'f'];
a.rotate_left(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
```
```rust
let mut a = ['a', 'b' ,'c', 'd', 'e', 'f'];
a.rotate_right(2);
assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
```
Justification
=============
I used this method today for my first time and (probably because I’m a
naive westerner who reads LTR) was surprised when the docs mentioned that
elements get rotated in a left-ward direction. I was in a situation
where I needed to shift elements in a right-ward direction and had to
context switch from the main problem I was working on and think how much
to rotate left in order to accomplish the right-ward rotation I needed.
Ruby’s `Array.rotate` shifts left-ward, Python’s `deque.rotate` shifts
right-ward. Both of their implementations allow passing negative numbers
to shift in the opposite direction respectively. The current `rotate`
implementation takes an unsigned integer argument which doesn't allow
the negative number behavior.
Introducing `rotate_left` and `rotate_right` would:
- remove ambiguity about direction (alleviating need to read docs 😉)
- make it easier for people who need to rotate right
[`rotate`]: https://doc.rust-lang.org/std/primitive.slice.html#method.rotate
[tracking]: https://github.com/rust-lang/rust/issues/41891