detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
Resolve associated item bindings by namespace
This is the 3rd commit split off from #118360 with tests reblessed (they no longer contain duplicated diags which were caused by 4c0addc80af4666f26d7ad51fe34a0e2dd0b8b74) & slightly adapted (removed supertraits from a UI test, cc #118040).
> * Resolve all assoc item bindings (type, const, fn (feature `return_type_notation`)) by namespace instead of trying to resolve a type first (in the non-RTN case) and falling back to consts afterwards. This is consistent with RTN. E.g., for `Tr<K = {…}>` we now always try to look up assoc consts (this extends to supertrait bounds). This gets rid of assoc tys shadowing assoc consts in assoc item bindings which is undesirable & inconsistent (types and consts live in different namespaces after all)
> * Consolidate the resolution of assoc {ty, const} bindings and RTN (dedup, better diags for RTN)
> * Fix assoc consts being labeled as assoc *types* in several diagnostics
> * Make a bunch of diagnostics translatable
Fixes#112560 (error → pass).
As discussed
r? `@compiler-errors`
---
**Addendum**: What I call “associated item bindings” are commonly referred to as “type bindings” for historical reasons. Nowadays, “type bindings” include assoc type bindings, assoc const bindings and RTN (return type notation) which is why I prefer not to use this outdated term.
Remove `#[rustc_host]`, use internal desugaring
Also removed a way for users to explicitly specify the host param since that isn't particularly useful. This should eliminate any pain with encoding attributes across crates and etc.
r? `@compiler-errors`
Added shadowed hint for overlapping associated types
Previously, when you tried to set an associated type that is shadowed by an associated type in a subtrait, like this:
```rust
trait A {
type X;
}
trait B: A {
type X; // note: this is legal
}
impl<Y> Clone for Box<dyn B<X=Y, X=Y>> {
fn clone(&self) -> Self {
todo!()
}
}
you got a confusing error message, that says nothing about the shadowing:
error[E0719]: the value of the associated type `X` (from trait `B`) is already specified
--> test.rs:9:34
|
9 | impl<Y> Clone for Box<dyn B<X=Y, X=Y>> {
| --- ^^^ re-bound here
| |
| `X` bound here first
error[E0191]: the value of the associated type `X` (from trait `A`) must be specified
--> test.rs:9:27
|
2 | type X;
| ------ `X` defined here
...
9 | impl<Y> Clone for Box<dyn B<X=Y, X=Y>> {
| ^^^^^^^^^^^ help: specify the associated type: `B<X=Y, X=Y, X = Type>`
error: aborting due to 2 previous errors
Some errors have detailed explanations: E0191, E0719.
For more information about an error, try `rustc --explain E0191`.
```
Now instead, the error shows that the associated type is shadowed, and suggests renaming as a potential fix.
```rust
error[E0719]: the value of the associated type `X` in trait `B` is already specified
--> test.rs:9:34
|
9 | impl<Y> Clone for Box<dyn B<X=Y, X=Y>> {
| --- ^^^ re-bound here
| |
| `X` bound here first
error[E0191]: the value of the associated type `X` in `A` must be specified
--> test.rs:9:27
|
2 | type X;
| ------ `A::X` defined here
...
6 | type X; // note: this is legal
| ------ `A::X` shadowed here
...
9 | impl<Y> Clone for Box<dyn B<X=Y, X=Y>> {
| ^^^^^^^^^^^ associated type `X` must be specified
|
help: consider renaming this associated type
--> test.rs:2:5
|
2 | type X;
| ^^^^^^
help: consider renaming this associated type
--> test.rs:6:5
|
6 | type X; // note: this is legal
| ^^^^^^
```
error: aborting due to 2 previous errors
Some errors have detailed explanations: E0191, E0719.
For more information about an error, try `rustc --explain E0191`.
The rename help message is only emitted when the trait is local. This is true both for the supertrait as for the subtrait.
There might be cases where you can use the fully qualified path (for instance, in a where clause), but this PR currently does not deal with that.
fixes#100109
(continues from #117642, because I didn't know renaming the branch would close the PR)
Shadowing the associated type of a supertrait is allowed.
This however makes it impossible to set the associated type
of the supertrait in a dyn object.
This PR makes the error message for that case clearer, like
adding a note that shadowing is happening, as well as suggesting
renaming of one of the associated types.
r=petrochenckov
Pretty print `Fn<(..., ...)>` trait refs with parentheses (almost) always
It's almost always better, at least in diagnostics, to print `Fn(i32, u32)` instead of `Fn<(i32, u32)>`.
Related to but doesn't fix#118225. That needs a separate fix.
Add `never_patterns` feature gate
This PR adds the feature gate and most basic parsing for the experimental `never_patterns` feature. See the tracking issue (https://github.com/rust-lang/rust/issues/118155) for details on the experiment.
`@scottmcm` has agreed to be my lang-team liaison for this experiment.
Do not erase late bound regions when selecting inherent associated types
In the fix for #97156 we would want the following code:
```rust
#![feature(inherent_associated_types)]
#![allow(incomplete_features)]
struct Foo<T>(T);
impl Foo<fn(&'static ())> {
type Assoc = u32;
}
trait Other {}
impl Other for u32 {}
// FIXME(inherent_associated_types): Avoid emitting two diagnostics (they only differ in span).
// FIXME(inherent_associated_types): Enhancement: Spruce up the diagnostic by saying something like
// "implementation is not general enough" as is done for traits via
// `try_report_trait_placeholder_mismatch`.
fn bar(_: Foo<for<'a> fn(&'a ())>::Assoc) {}
//~^ ERROR mismatched types
//~| ERROR mismatched types
fn main() {}
```
to fail with ...
```
error[E0220]: associated type `Assoc` not found for `Foo<for<'a> fn(&'a ())>` in the current scope
--> tests/ui/associated-inherent-types/issue-109789.rs:18:36
|
4 | struct Foo<T>(T);
| ------------- associated item `Assoc` not found for this struct
...
18 | fn bar(_: Foo<for<'a> fn(&'a ())>::Assoc) {}
| ^^^^^ associated item not found in `Foo<for<'a> fn(&'a ())>`
|
= note: the associated type was found for
- `Foo<fn(&'static ())>`
error: aborting due to previous error
For more information about this error, try `rustc --explain E0220`.
```
This PR fixes the ICE we are currently getting "was a subtype of Foo<Binder(fn(&ReStatic ()), [])> during selection but now it is not"
Also fixes#112631
r? `@lcnr`
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.
Allow defining opaques in `check_coroutine_obligations`
In the new trait solver, when an obligation stalls on an unresolved coroutine witness, we will stash away the *root* obligation, even if the stalled obligation is only a distant descendent of the root obligation, since the new solver is purely recursive.
This means that we may need to reprocess alias-relate obligations (and others) which may define opaque types in the new solver. Currently, we use the coroutine's def id as the defining anchor in `check_coroutine_obligations`, which will allow defining no opaque types, resulting in errors like:
```
error[E0271]: type mismatch resolving `{coroutine@<source>:6:5: 6:17} <: impl Clone`
--> <source>:6:5
|
6 | / move |_: ()| {
7 | | let () = yield ();
8 | | }
| |_____^ types differ
```
So this PR fixes the defining anchor and does the same trick as `check_opaque_well_formed`, where we manually compare opaques that were defined against their hidden types to make sure they weren't defined differently when processing these stalled coroutine obligations.
r? `@lcnr` cc `@cjgillot`
By default, `newtype_index!` types get a default `Encodable`/`Decodable`
impl. You can opt out of this with `custom_encodable`. Opting out is the
opposite to how Rust normally works with autogenerated (derived) impls.
This commit inverts the behaviour, replacing `custom_encodable` with
`encodable` which opts into the default `Encodable`/`Decodable` impl.
Only 23 of the 59 `newtype_index!` occurrences need `encodable`.
Even better, there were eight crates with a dependency on
`rustc_serialize` just from unused default `Encodable`/`Decodable`
impls. This commit removes that dependency from those eight crates.
Make regionck care about placeholders in outlives components
Currently, we don't consider a placeholder type `!T` to be a type component when it comes to processing type-outlives obligations. This means that they are essentially treated like unit values with no sub-components, and always outlive any region. This is problematic for `non_lifetime_binders`, and even more problematic for `with_negative_coherence`, since negative coherence uses placeholders as universals.
This PR adds `Component::Placeholder` which acts much like `Component::Param`. This currently causes a regression in some non-lifetime-binders tests because `for<T> T: 'static` doesn't imply itself when processing outlives obligations, so code like this will fail:
```
fn foo() where for<T> T: 'static {
foo() //~ fails
}
```
Since the where clause doesn't imply itself. This requires making the `MatchAgainstHigherRankedOutlives` relation smarter when it comes to binders.
r? types
Remove option_payload_ptr; redundant to offset_of
The `option_payload_ptr` intrinsic is no longer required as `offset_of` supports traversing enums (#114208). This PR removes it in order to dogfood offset_of (as suggested at https://github.com/rust-lang/rust/issues/106655#issuecomment-1790907626). However, it will not build until those changes reach beta (which I think is within the next 8 days?) so I've opened it as a draft.
`ReLateBound` -> `ReBound`
first step of https://github.com/rust-lang/types-team/issues/95
already fairly large xx
there's some future work here I intentionally did not contribute as part of this PR, from my notes:
- `DescriptionCtx` to `DescriptionCtxt`
- what is `CheckRegions::Bound`?
- `collect_late_bound_regions` et al
- `erase_late_bound_regions` -> `instantiate_bound_regions_with_erased`?
- `EraseEarlyRegions` should be removed, feels duplicate
r? `@BoxyUwU`