// ignore-tidy-filelength //! This crate is responsible for the part of name resolution that doesn't require type checker. //! //! Module structure of the crate is built here. //! Paths in macros, imports, expressions, types, patterns are resolved here. //! Label and lifetime names are resolved here as well. //! //! Type-relative name resolution (methods, fields, associated items) happens in `rustc_typeck`. #![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")] #![feature(box_patterns)] #![feature(drain_filter)] #![feature(bool_to_option)] #![feature(crate_visibility_modifier)] #![cfg_attr(bootstrap, feature(format_args_capture))] #![feature(iter_zip)] #![feature(let_else)] #![feature(never_type)] #![feature(nll)] #![recursion_limit = "256"] #![allow(rustdoc::private_intra_doc_links)] #[macro_use] extern crate tracing; pub use rustc_hir::def::{Namespace, PerNS}; use Determinacy::*; use rustc_arena::{DroplessArena, TypedArena}; use rustc_ast::node_id::NodeMap; use rustc_ast::ptr::P; use rustc_ast::visit::{self, Visitor}; use rustc_ast::{self as ast, NodeId}; use rustc_ast::{Crate, CRATE_NODE_ID}; use rustc_ast::{Expr, ExprKind, LitKind}; use rustc_ast::{ItemKind, ModKind, Path}; use rustc_ast_lowering::ResolverAstLowering; use rustc_ast_pretty::pprust; use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap}; use rustc_data_structures::ptr_key::PtrKey; use rustc_data_structures::sync::Lrc; use rustc_errors::{struct_span_err, Applicability, DiagnosticBuilder}; use rustc_expand::base::{DeriveResolutions, SyntaxExtension, SyntaxExtensionKind}; use rustc_hir::def::Namespace::*; use rustc_hir::def::{self, CtorOf, DefKind, NonMacroAttrKind, PartialRes}; use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, DefPathHash, LocalDefId}; use rustc_hir::def_id::{CRATE_DEF_ID, CRATE_DEF_INDEX, LOCAL_CRATE}; use rustc_hir::definitions::{DefKey, DefPathData, Definitions}; use rustc_hir::TraitCandidate; use rustc_index::vec::IndexVec; use rustc_metadata::creader::{CStore, CrateLoader}; use rustc_middle::hir::exports::ExportMap; use rustc_middle::span_bug; use rustc_middle::ty::query::Providers; use rustc_middle::ty::{self, DefIdTree, MainDefinition, ResolverOutputs}; use rustc_query_system::ich::StableHashingContext; use rustc_session::cstore::{CrateStore, MetadataLoaderDyn}; use rustc_session::lint; use rustc_session::lint::{BuiltinLintDiagnostics, LintBuffer}; use rustc_session::Session; use rustc_span::edition::Edition; use rustc_span::hygiene::{ExpnId, ExpnKind, LocalExpnId, MacroKind, SyntaxContext, Transparency}; use rustc_span::source_map::Spanned; use rustc_span::symbol::{kw, sym, Ident, Symbol}; use rustc_span::{Span, DUMMY_SP}; use smallvec::{smallvec, SmallVec}; use std::cell::{Cell, RefCell}; use std::collections::{BTreeMap, BTreeSet}; use std::ops::ControlFlow; use std::{cmp, fmt, iter, ptr}; use tracing::debug; use diagnostics::{extend_span_to_previous_binding, find_span_of_binding_until_next_binding}; use diagnostics::{ImportSuggestion, LabelSuggestion, Suggestion}; use imports::{Import, ImportKind, ImportResolver, NameResolution}; use late::{ConstantItemKind, HasGenericParams, PathSource, Rib, RibKind::*}; use macros::{MacroRulesBinding, MacroRulesScope, MacroRulesScopeRef}; type Res = def::Res; mod build_reduced_graph; mod check_unused; mod def_collector; mod diagnostics; mod imports; mod late; mod macros; enum Weak { Yes, No, } #[derive(Copy, Clone, PartialEq, Debug)] pub enum Determinacy { Determined, Undetermined, } impl Determinacy { fn determined(determined: bool) -> Determinacy { if determined { Determinacy::Determined } else { Determinacy::Undetermined } } } /// A specific scope in which a name can be looked up. /// This enum is currently used only for early resolution (imports and macros), /// but not for late resolution yet. #[derive(Clone, Copy)] enum Scope<'a> { DeriveHelpers(LocalExpnId), DeriveHelpersCompat, MacroRules(MacroRulesScopeRef<'a>), CrateRoot, // The node ID is for reporting the `PROC_MACRO_DERIVE_RESOLUTION_FALLBACK` // lint if it should be reported. Module(Module<'a>, Option), RegisteredAttrs, MacroUsePrelude, BuiltinAttrs, ExternPrelude, ToolPrelude, StdLibPrelude, BuiltinTypes, } /// Names from different contexts may want to visit different subsets of all specific scopes /// with different restrictions when looking up the resolution. /// This enum is currently used only for early resolution (imports and macros), /// but not for late resolution yet. #[derive(Clone, Copy)] enum ScopeSet<'a> { /// All scopes with the given namespace. All(Namespace, /*is_import*/ bool), /// Crate root, then extern prelude (used for mixed 2015-2018 mode in macros). AbsolutePath(Namespace), /// All scopes with macro namespace and the given macro kind restriction. Macro(MacroKind), /// All scopes with the given namespace, used for partially performing late resolution. /// The node id enables lints and is used for reporting them. Late(Namespace, Module<'a>, Option), } /// Everything you need to know about a name's location to resolve it. /// Serves as a starting point for the scope visitor. /// This struct is currently used only for early resolution (imports and macros), /// but not for late resolution yet. #[derive(Clone, Copy, Debug)] pub struct ParentScope<'a> { module: Module<'a>, expansion: LocalExpnId, macro_rules: MacroRulesScopeRef<'a>, derives: &'a [ast::Path], } impl<'a> ParentScope<'a> { /// Creates a parent scope with the passed argument used as the module scope component, /// and other scope components set to default empty values. pub fn module(module: Module<'a>, resolver: &Resolver<'a>) -> ParentScope<'a> { ParentScope { module, expansion: LocalExpnId::ROOT, macro_rules: resolver.arenas.alloc_macro_rules_scope(MacroRulesScope::Empty), derives: &[], } } } #[derive(Copy, Debug, Clone)] enum ImplTraitContext { Existential, Universal(LocalDefId), } #[derive(Eq)] struct BindingError { name: Symbol, origin: BTreeSet, target: BTreeSet, could_be_path: bool, } impl PartialOrd for BindingError { fn partial_cmp(&self, other: &BindingError) -> Option { Some(self.cmp(other)) } } impl PartialEq for BindingError { fn eq(&self, other: &BindingError) -> bool { self.name == other.name } } impl Ord for BindingError { fn cmp(&self, other: &BindingError) -> cmp::Ordering { self.name.cmp(&other.name) } } enum ResolutionError<'a> { /// Error E0401: can't use type or const parameters from outer function. GenericParamsFromOuterFunction(Res, HasGenericParams), /// Error E0403: the name is already used for a type or const parameter in this generic /// parameter list. NameAlreadyUsedInParameterList(Symbol, Span), /// Error E0407: method is not a member of trait. MethodNotMemberOfTrait(Ident, &'a str, Option), /// Error E0437: type is not a member of trait. TypeNotMemberOfTrait(Ident, &'a str, Option), /// Error E0438: const is not a member of trait. ConstNotMemberOfTrait(Ident, &'a str, Option), /// Error E0408: variable `{}` is not bound in all patterns. VariableNotBoundInPattern(&'a BindingError), /// Error E0409: variable `{}` is bound in inconsistent ways within the same match arm. VariableBoundWithDifferentMode(Symbol, Span), /// Error E0415: identifier is bound more than once in this parameter list. IdentifierBoundMoreThanOnceInParameterList(Symbol), /// Error E0416: identifier is bound more than once in the same pattern. IdentifierBoundMoreThanOnceInSamePattern(Symbol), /// Error E0426: use of undeclared label. UndeclaredLabel { name: Symbol, suggestion: Option }, /// Error E0429: `self` imports are only allowed within a `{ }` list. SelfImportsOnlyAllowedWithin { root: bool, span_with_rename: Span }, /// Error E0430: `self` import can only appear once in the list. SelfImportCanOnlyAppearOnceInTheList, /// Error E0431: `self` import can only appear in an import list with a non-empty prefix. SelfImportOnlyInImportListWithNonEmptyPrefix, /// Error E0433: failed to resolve. FailedToResolve { label: String, suggestion: Option }, /// Error E0434: can't capture dynamic environment in a fn item. CannotCaptureDynamicEnvironmentInFnItem, /// Error E0435: attempt to use a non-constant value in a constant. AttemptToUseNonConstantValueInConstant( Ident, /* suggestion */ &'static str, /* current */ &'static str, ), /// Error E0530: `X` bindings cannot shadow `Y`s. BindingShadowsSomethingUnacceptable { shadowing_binding_descr: &'static str, name: Symbol, participle: &'static str, article: &'static str, shadowed_binding_descr: &'static str, shadowed_binding_span: Span, }, /// Error E0128: generic parameters with a default cannot use forward-declared identifiers. ForwardDeclaredGenericParam, /// ERROR E0770: the type of const parameters must not depend on other generic parameters. ParamInTyOfConstParam(Symbol), /// generic parameters must not be used inside const evaluations. /// /// This error is only emitted when using `min_const_generics`. ParamInNonTrivialAnonConst { name: Symbol, is_type: bool }, /// Error E0735: generic parameters with a default cannot use `Self` SelfInGenericParamDefault, /// Error E0767: use of unreachable label UnreachableLabel { name: Symbol, definition_span: Span, suggestion: Option }, } enum VisResolutionError<'a> { Relative2018(Span, &'a ast::Path), AncestorOnly(Span), FailedToResolve(Span, String, Option), ExpectedFound(Span, String, Res), Indeterminate(Span), ModuleOnly(Span), } /// A minimal representation of a path segment. We use this in resolve because we synthesize 'path /// segments' which don't have the rest of an AST or HIR `PathSegment`. #[derive(Clone, Copy, Debug)] pub struct Segment { ident: Ident, id: Option, /// Signals whether this `PathSegment` has generic arguments. Used to avoid providing /// nonsensical suggestions. has_generic_args: bool, } impl Segment { fn from_path(path: &Path) -> Vec { path.segments.iter().map(|s| s.into()).collect() } fn from_ident(ident: Ident) -> Segment { Segment { ident, id: None, has_generic_args: false } } fn names_to_string(segments: &[Segment]) -> String { names_to_string(&segments.iter().map(|seg| seg.ident.name).collect::>()) } } impl<'a> From<&'a ast::PathSegment> for Segment { fn from(seg: &'a ast::PathSegment) -> Segment { Segment { ident: seg.ident, id: Some(seg.id), has_generic_args: seg.args.is_some() } } } struct UsePlacementFinder { target_module: NodeId, span: Option, found_use: bool, } impl UsePlacementFinder { fn check(krate: &Crate, target_module: NodeId) -> (Option, bool) { let mut finder = UsePlacementFinder { target_module, span: None, found_use: false }; if let ControlFlow::Continue(..) = finder.check_mod(&krate.items, CRATE_NODE_ID) { visit::walk_crate(&mut finder, krate); } (finder.span, finder.found_use) } fn check_mod(&mut self, items: &[P], node_id: NodeId) -> ControlFlow<()> { if self.span.is_some() { return ControlFlow::Break(()); } if node_id != self.target_module { return ControlFlow::Continue(()); } // find a use statement for item in items { match item.kind { ItemKind::Use(..) => { // don't suggest placing a use before the prelude // import or other generated ones if !item.span.from_expansion() { self.span = Some(item.span.shrink_to_lo()); self.found_use = true; return ControlFlow::Break(()); } } // don't place use before extern crate ItemKind::ExternCrate(_) => {} // but place them before the first other item _ => { if self.span.map_or(true, |span| item.span < span) && !item.span.from_expansion() { self.span = Some(item.span.shrink_to_lo()); // don't insert between attributes and an item // find the first attribute on the item // FIXME: This is broken for active attributes. for attr in &item.attrs { if !attr.span.is_dummy() && self.span.map_or(true, |span| attr.span < span) { self.span = Some(attr.span.shrink_to_lo()); } } } } } } ControlFlow::Continue(()) } } impl<'tcx> Visitor<'tcx> for UsePlacementFinder { fn visit_item(&mut self, item: &'tcx ast::Item) { if let ItemKind::Mod(_, ModKind::Loaded(items, ..)) = &item.kind { if let ControlFlow::Break(..) = self.check_mod(items, item.id) { return; } } visit::walk_item(self, item); } } /// An intermediate resolution result. /// /// This refers to the thing referred by a name. The difference between `Res` and `Item` is that /// items are visible in their whole block, while `Res`es only from the place they are defined /// forward. #[derive(Debug)] enum LexicalScopeBinding<'a> { Item(&'a NameBinding<'a>), Res(Res), } impl<'a> LexicalScopeBinding<'a> { fn res(self) -> Res { match self { LexicalScopeBinding::Item(binding) => binding.res(), LexicalScopeBinding::Res(res) => res, } } } #[derive(Copy, Clone, Debug)] enum ModuleOrUniformRoot<'a> { /// Regular module. Module(Module<'a>), /// Virtual module that denotes resolution in crate root with fallback to extern prelude. CrateRootAndExternPrelude, /// Virtual module that denotes resolution in extern prelude. /// Used for paths starting with `::` on 2018 edition. ExternPrelude, /// Virtual module that denotes resolution in current scope. /// Used only for resolving single-segment imports. The reason it exists is that import paths /// are always split into two parts, the first of which should be some kind of module. CurrentScope, } impl ModuleOrUniformRoot<'_> { fn same_def(lhs: Self, rhs: Self) -> bool { match (lhs, rhs) { (ModuleOrUniformRoot::Module(lhs), ModuleOrUniformRoot::Module(rhs)) => { ptr::eq(lhs, rhs) } ( ModuleOrUniformRoot::CrateRootAndExternPrelude, ModuleOrUniformRoot::CrateRootAndExternPrelude, ) | (ModuleOrUniformRoot::ExternPrelude, ModuleOrUniformRoot::ExternPrelude) | (ModuleOrUniformRoot::CurrentScope, ModuleOrUniformRoot::CurrentScope) => true, _ => false, } } } #[derive(Clone, Debug)] enum PathResult<'a> { Module(ModuleOrUniformRoot<'a>), NonModule(PartialRes), Indeterminate, Failed { span: Span, label: String, suggestion: Option, is_error_from_last_segment: bool, }, } #[derive(Debug)] enum ModuleKind { /// An anonymous module; e.g., just a block. /// /// ``` /// fn main() { /// fn f() {} // (1) /// { // This is an anonymous module /// f(); // This resolves to (2) as we are inside the block. /// fn f() {} // (2) /// } /// f(); // Resolves to (1) /// } /// ``` Block(NodeId), /// Any module with a name. /// /// This could be: /// /// * A normal module – either `mod from_file;` or `mod from_block { }` – /// or the crate root (which is conceptually a top-level module). /// Note that the crate root's [name][Self::name] will be [`kw::Empty`]. /// * A trait or an enum (it implicitly contains associated types, methods and variant /// constructors). Def(DefKind, DefId, Symbol), } impl ModuleKind { /// Get name of the module. pub fn name(&self) -> Option { match self { ModuleKind::Block(..) => None, ModuleKind::Def(.., name) => Some(*name), } } } /// A key that identifies a binding in a given `Module`. /// /// Multiple bindings in the same module can have the same key (in a valid /// program) if all but one of them come from glob imports. #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)] struct BindingKey { /// The identifier for the binding, aways the `normalize_to_macros_2_0` version of the /// identifier. ident: Ident, ns: Namespace, /// 0 if ident is not `_`, otherwise a value that's unique to the specific /// `_` in the expanded AST that introduced this binding. disambiguator: u32, } type Resolutions<'a> = RefCell>>>; /// One node in the tree of modules. /// /// Note that a "module" in resolve is broader than a `mod` that you declare in Rust code. It may be one of these: /// /// * `mod` /// * crate root (aka, top-level anonymous module) /// * `enum` /// * `trait` /// * curly-braced block with statements /// /// You can use [`ModuleData::kind`] to determine the kind of module this is. pub struct ModuleData<'a> { /// The direct parent module (it may not be a `mod`, however). parent: Option>, /// What kind of module this is, because this may not be a `mod`. kind: ModuleKind, /// Mapping between names and their (possibly in-progress) resolutions in this module. /// Resolutions in modules from other crates are not populated until accessed. lazy_resolutions: Resolutions<'a>, /// True if this is a module from other crate that needs to be populated on access. populate_on_access: Cell, /// Macro invocations that can expand into items in this module. unexpanded_invocations: RefCell>, /// Whether `#[no_implicit_prelude]` is active. no_implicit_prelude: bool, glob_importers: RefCell>>, globs: RefCell>>, /// Used to memoize the traits in this module for faster searches through all traits in scope. traits: RefCell)]>>>, /// Span of the module itself. Used for error reporting. span: Span, expansion: ExpnId, } type Module<'a> = &'a ModuleData<'a>; impl<'a> ModuleData<'a> { fn new( parent: Option>, kind: ModuleKind, expansion: ExpnId, span: Span, no_implicit_prelude: bool, ) -> Self { let is_foreign = match kind { ModuleKind::Def(_, def_id, _) => !def_id.is_local(), ModuleKind::Block(_) => false, }; ModuleData { parent, kind, lazy_resolutions: Default::default(), populate_on_access: Cell::new(is_foreign), unexpanded_invocations: Default::default(), no_implicit_prelude, glob_importers: RefCell::new(Vec::new()), globs: RefCell::new(Vec::new()), traits: RefCell::new(None), span, expansion, } } fn for_each_child(&'a self, resolver: &mut R, mut f: F) where R: AsMut>, F: FnMut(&mut R, Ident, Namespace, &'a NameBinding<'a>), { for (key, name_resolution) in resolver.as_mut().resolutions(self).borrow().iter() { if let Some(binding) = name_resolution.borrow().binding { f(resolver, key.ident, key.ns, binding); } } } /// This modifies `self` in place. The traits will be stored in `self.traits`. fn ensure_traits(&'a self, resolver: &mut R) where R: AsMut>, { let mut traits = self.traits.borrow_mut(); if traits.is_none() { let mut collected_traits = Vec::new(); self.for_each_child(resolver, |_, name, ns, binding| { if ns != TypeNS { return; } if let Res::Def(DefKind::Trait | DefKind::TraitAlias, _) = binding.res() { collected_traits.push((name, binding)) } }); *traits = Some(collected_traits.into_boxed_slice()); } } fn res(&self) -> Option { match self.kind { ModuleKind::Def(kind, def_id, _) => Some(Res::Def(kind, def_id)), _ => None, } } fn def_id(&self) -> DefId { self.opt_def_id().expect("`ModuleData::def_id` is called on a block module") } fn opt_def_id(&self) -> Option { match self.kind { ModuleKind::Def(_, def_id, _) => Some(def_id), _ => None, } } // `self` resolves to the first module ancestor that `is_normal`. fn is_normal(&self) -> bool { matches!(self.kind, ModuleKind::Def(DefKind::Mod, _, _)) } fn is_trait(&self) -> bool { matches!(self.kind, ModuleKind::Def(DefKind::Trait, _, _)) } fn nearest_item_scope(&'a self) -> Module<'a> { match self.kind { ModuleKind::Def(DefKind::Enum | DefKind::Trait, ..) => { self.parent.expect("enum or trait module without a parent") } _ => self, } } /// The [`DefId`] of the nearest `mod` item ancestor (which may be this module). /// This may be the crate root. fn nearest_parent_mod(&self) -> DefId { match self.kind { ModuleKind::Def(DefKind::Mod, def_id, _) => def_id, _ => self.parent.expect("non-root module without parent").nearest_parent_mod(), } } fn is_ancestor_of(&self, mut other: &Self) -> bool { while !ptr::eq(self, other) { if let Some(parent) = other.parent { other = parent; } else { return false; } } true } } impl<'a> fmt::Debug for ModuleData<'a> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:?}", self.res()) } } /// Records a possibly-private value, type, or module definition. #[derive(Clone, Debug)] pub struct NameBinding<'a> { kind: NameBindingKind<'a>, ambiguity: Option<(&'a NameBinding<'a>, AmbiguityKind)>, expansion: LocalExpnId, span: Span, vis: ty::Visibility, } pub trait ToNameBinding<'a> { fn to_name_binding(self, arenas: &'a ResolverArenas<'a>) -> &'a NameBinding<'a>; } impl<'a> ToNameBinding<'a> for &'a NameBinding<'a> { fn to_name_binding(self, _: &'a ResolverArenas<'a>) -> &'a NameBinding<'a> { self } } #[derive(Clone, Debug)] enum NameBindingKind<'a> { Res(Res, /* is_macro_export */ bool), Module(Module<'a>), Import { binding: &'a NameBinding<'a>, import: &'a Import<'a>, used: Cell }, } impl<'a> NameBindingKind<'a> { /// Is this a name binding of an import? fn is_import(&self) -> bool { matches!(*self, NameBindingKind::Import { .. }) } } struct PrivacyError<'a> { ident: Ident, binding: &'a NameBinding<'a>, dedup_span: Span, } struct UseError<'a> { err: DiagnosticBuilder<'a>, /// Candidates which user could `use` to access the missing type. candidates: Vec, /// The `DefId` of the module to place the use-statements in. def_id: DefId, /// Whether the diagnostic should say "instead" (as in `consider importing ... instead`). instead: bool, /// Extra free-form suggestion. suggestion: Option<(Span, &'static str, String, Applicability)>, } #[derive(Clone, Copy, PartialEq, Debug)] enum AmbiguityKind { Import, BuiltinAttr, DeriveHelper, MacroRulesVsModularized, GlobVsOuter, GlobVsGlob, GlobVsExpanded, MoreExpandedVsOuter, } impl AmbiguityKind { fn descr(self) -> &'static str { match self { AmbiguityKind::Import => "multiple potential import sources", AmbiguityKind::BuiltinAttr => "a name conflict with a builtin attribute", AmbiguityKind::DeriveHelper => "a name conflict with a derive helper attribute", AmbiguityKind::MacroRulesVsModularized => { "a conflict between a `macro_rules` name and a non-`macro_rules` name from another module" } AmbiguityKind::GlobVsOuter => { "a conflict between a name from a glob import and an outer scope during import or macro resolution" } AmbiguityKind::GlobVsGlob => "multiple glob imports of a name in the same module", AmbiguityKind::GlobVsExpanded => { "a conflict between a name from a glob import and a macro-expanded name in the same module during import or macro resolution" } AmbiguityKind::MoreExpandedVsOuter => { "a conflict between a macro-expanded name and a less macro-expanded name from outer scope during import or macro resolution" } } } } /// Miscellaneous bits of metadata for better ambiguity error reporting. #[derive(Clone, Copy, PartialEq)] enum AmbiguityErrorMisc { SuggestCrate, SuggestSelf, FromPrelude, None, } struct AmbiguityError<'a> { kind: AmbiguityKind, ident: Ident, b1: &'a NameBinding<'a>, b2: &'a NameBinding<'a>, misc1: AmbiguityErrorMisc, misc2: AmbiguityErrorMisc, } impl<'a> NameBinding<'a> { fn module(&self) -> Option> { match self.kind { NameBindingKind::Module(module) => Some(module), NameBindingKind::Import { binding, .. } => binding.module(), _ => None, } } fn res(&self) -> Res { match self.kind { NameBindingKind::Res(res, _) => res, NameBindingKind::Module(module) => module.res().unwrap(), NameBindingKind::Import { binding, .. } => binding.res(), } } fn is_ambiguity(&self) -> bool { self.ambiguity.is_some() || match self.kind { NameBindingKind::Import { binding, .. } => binding.is_ambiguity(), _ => false, } } fn is_possibly_imported_variant(&self) -> bool { match self.kind { NameBindingKind::Import { binding, .. } => binding.is_possibly_imported_variant(), NameBindingKind::Res( Res::Def(DefKind::Variant | DefKind::Ctor(CtorOf::Variant, ..), _), _, ) => true, NameBindingKind::Res(..) | NameBindingKind::Module(..) => false, } } fn is_extern_crate(&self) -> bool { match self.kind { NameBindingKind::Import { import: &Import { kind: ImportKind::ExternCrate { .. }, .. }, .. } => true, NameBindingKind::Module(&ModuleData { kind: ModuleKind::Def(DefKind::Mod, def_id, _), .. }) => def_id.index == CRATE_DEF_INDEX, _ => false, } } fn is_import(&self) -> bool { matches!(self.kind, NameBindingKind::Import { .. }) } fn is_glob_import(&self) -> bool { match self.kind { NameBindingKind::Import { import, .. } => import.is_glob(), _ => false, } } fn is_importable(&self) -> bool { !matches!( self.res(), Res::Def(DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy, _) ) } fn is_macro_def(&self) -> bool { matches!(self.kind, NameBindingKind::Res(Res::Def(DefKind::Macro(..), _), _)) } fn macro_kind(&self) -> Option { self.res().macro_kind() } // Suppose that we resolved macro invocation with `invoc_parent_expansion` to binding `binding` // at some expansion round `max(invoc, binding)` when they both emerged from macros. // Then this function returns `true` if `self` may emerge from a macro *after* that // in some later round and screw up our previously found resolution. // See more detailed explanation in // https://github.com/rust-lang/rust/pull/53778#issuecomment-419224049 fn may_appear_after( &self, invoc_parent_expansion: LocalExpnId, binding: &NameBinding<'_>, ) -> bool { // self > max(invoc, binding) => !(self <= invoc || self <= binding) // Expansions are partially ordered, so "may appear after" is an inversion of // "certainly appears before or simultaneously" and includes unordered cases. let self_parent_expansion = self.expansion; let other_parent_expansion = binding.expansion; let certainly_before_other_or_simultaneously = other_parent_expansion.is_descendant_of(self_parent_expansion); let certainly_before_invoc_or_simultaneously = invoc_parent_expansion.is_descendant_of(self_parent_expansion); !(certainly_before_other_or_simultaneously || certainly_before_invoc_or_simultaneously) } } #[derive(Debug, Default, Clone)] pub struct ExternPreludeEntry<'a> { extern_crate_item: Option<&'a NameBinding<'a>>, pub introduced_by_item: bool, } /// Used for better errors for E0773 enum BuiltinMacroState { NotYetSeen(SyntaxExtensionKind), AlreadySeen(Span), } struct DeriveData { resolutions: DeriveResolutions, helper_attrs: Vec<(usize, Ident)>, has_derive_copy: bool, } /// The main resolver class. /// /// This is the visitor that walks the whole crate. pub struct Resolver<'a> { session: &'a Session, definitions: Definitions, graph_root: Module<'a>, prelude: Option>, extern_prelude: FxHashMap>, /// N.B., this is used only for better diagnostics, not name resolution itself. has_self: FxHashSet, /// Names of fields of an item `DefId` accessible with dot syntax. /// Used for hints during error reporting. field_names: FxHashMap>>, /// All imports known to succeed or fail. determined_imports: Vec<&'a Import<'a>>, /// All non-determined imports. indeterminate_imports: Vec<&'a Import<'a>>, /// FIXME: Refactor things so that these fields are passed through arguments and not resolver. /// We are resolving a last import segment during import validation. last_import_segment: bool, /// This binding should be ignored during in-module resolution, so that we don't get /// "self-confirming" import resolutions during import validation. unusable_binding: Option<&'a NameBinding<'a>>, // Spans for local variables found during pattern resolution. // Used for suggestions during error reporting. pat_span_map: NodeMap, /// Resolutions for nodes that have a single resolution. partial_res_map: NodeMap, /// Resolutions for import nodes, which have multiple resolutions in different namespaces. import_res_map: NodeMap>>, /// Resolutions for labels (node IDs of their corresponding blocks or loops). label_res_map: NodeMap, /// `CrateNum` resolutions of `extern crate` items. extern_crate_map: FxHashMap, export_map: ExportMap, trait_map: NodeMap>, /// A map from nodes to anonymous modules. /// Anonymous modules are pseudo-modules that are implicitly created around items /// contained within blocks. /// /// For example, if we have this: /// /// fn f() { /// fn g() { /// ... /// } /// } /// /// There will be an anonymous module created around `g` with the ID of the /// entry block for `f`. block_map: NodeMap>, /// A fake module that contains no definition and no prelude. Used so that /// some AST passes can generate identifiers that only resolve to local or /// language items. empty_module: Module<'a>, module_map: FxHashMap>, binding_parent_modules: FxHashMap>, Module<'a>>, underscore_disambiguator: u32, /// Maps glob imports to the names of items actually imported. glob_map: FxHashMap>, /// Visibilities in "lowered" form, for all entities that have them. visibilities: FxHashMap, used_imports: FxHashSet, maybe_unused_trait_imports: FxHashSet, maybe_unused_extern_crates: Vec<(LocalDefId, Span)>, /// Privacy errors are delayed until the end in order to deduplicate them. privacy_errors: Vec>, /// Ambiguity errors are delayed for deduplication. ambiguity_errors: Vec>, /// `use` injections are delayed for better placement and deduplication. use_injections: Vec>, /// Crate-local macro expanded `macro_export` referred to by a module-relative path. macro_expanded_macro_export_errors: BTreeSet<(Span, Span)>, arenas: &'a ResolverArenas<'a>, dummy_binding: &'a NameBinding<'a>, crate_loader: CrateLoader<'a>, macro_names: FxHashSet, builtin_macros: FxHashMap, registered_attrs: FxHashSet, registered_tools: FxHashSet, macro_use_prelude: FxHashMap>, all_macros: FxHashMap, macro_map: FxHashMap>, dummy_ext_bang: Lrc, dummy_ext_derive: Lrc, non_macro_attr: Lrc, local_macro_def_scopes: FxHashMap>, ast_transform_scopes: FxHashMap>, unused_macros: FxHashMap, proc_macro_stubs: FxHashSet, /// Traces collected during macro resolution and validated when it's complete. single_segment_macro_resolutions: Vec<(Ident, MacroKind, ParentScope<'a>, Option<&'a NameBinding<'a>>)>, multi_segment_macro_resolutions: Vec<(Vec, Span, MacroKind, ParentScope<'a>, Option)>, builtin_attrs: Vec<(Ident, ParentScope<'a>)>, /// `derive(Copy)` marks items they are applied to so they are treated specially later. /// Derive macros cannot modify the item themselves and have to store the markers in the global /// context, so they attach the markers to derive container IDs using this resolver table. containers_deriving_copy: FxHashSet, /// Parent scopes in which the macros were invoked. /// FIXME: `derives` are missing in these parent scopes and need to be taken from elsewhere. invocation_parent_scopes: FxHashMap>, /// `macro_rules` scopes *produced* by expanding the macro invocations, /// include all the `macro_rules` items and other invocations generated by them. output_macro_rules_scopes: FxHashMap>, /// Helper attributes that are in scope for the given expansion. helper_attrs: FxHashMap>, /// Ready or in-progress results of resolving paths inside the `#[derive(...)]` attribute /// with the given `ExpnId`. derive_data: FxHashMap, /// Avoid duplicated errors for "name already defined". name_already_seen: FxHashMap, potentially_unused_imports: Vec<&'a Import<'a>>, /// Table for mapping struct IDs into struct constructor IDs, /// it's not used during normal resolution, only for better error reporting. /// Also includes of list of each fields visibility struct_constructors: DefIdMap<(Res, ty::Visibility, Vec)>, /// Features enabled for this crate. active_features: FxHashSet, lint_buffer: LintBuffer, next_node_id: NodeId, node_id_to_def_id: FxHashMap, def_id_to_node_id: IndexVec, /// Indices of unnamed struct or variant fields with unresolved attributes. placeholder_field_indices: FxHashMap, /// When collecting definitions from an AST fragment produced by a macro invocation `ExpnId` /// we know what parent node that fragment should be attached to thanks to this table, /// and how the `impl Trait` fragments were introduced. invocation_parents: FxHashMap, next_disambiguator: FxHashMap<(LocalDefId, DefPathData), u32>, /// Some way to know that we are in a *trait* impl in `visit_assoc_item`. /// FIXME: Replace with a more general AST map (together with some other fields). trait_impl_items: FxHashSet, legacy_const_generic_args: FxHashMap>>, /// Amount of lifetime parameters for each item in the crate. item_generics_num_lifetimes: FxHashMap, main_def: Option, trait_impls: BTreeMap>, /// A list of proc macro LocalDefIds, written out in the order in which /// they are declared in the static array generated by proc_macro_harness. proc_macros: Vec, confused_type_with_std_module: FxHashMap, } /// Nothing really interesting here; it just provides memory for the rest of the crate. #[derive(Default)] pub struct ResolverArenas<'a> { modules: TypedArena>, local_modules: RefCell>>, imports: TypedArena>, name_resolutions: TypedArena>>, ast_paths: TypedArena, dropless: DroplessArena, } impl<'a> ResolverArenas<'a> { fn new_module( &'a self, parent: Option>, kind: ModuleKind, expn_id: ExpnId, span: Span, no_implicit_prelude: bool, module_map: &mut FxHashMap>, ) -> Module<'a> { let module = self.modules.alloc(ModuleData::new(parent, kind, expn_id, span, no_implicit_prelude)); let def_id = module.opt_def_id(); if def_id.map_or(true, |def_id| def_id.is_local()) { self.local_modules.borrow_mut().push(module); } if let Some(def_id) = def_id { module_map.insert(def_id, module); } module } fn local_modules(&'a self) -> std::cell::Ref<'a, Vec>> { self.local_modules.borrow() } fn alloc_name_binding(&'a self, name_binding: NameBinding<'a>) -> &'a NameBinding<'a> { self.dropless.alloc(name_binding) } fn alloc_import(&'a self, import: Import<'a>) -> &'a Import<'_> { self.imports.alloc(import) } fn alloc_name_resolution(&'a self) -> &'a RefCell> { self.name_resolutions.alloc(Default::default()) } fn alloc_macro_rules_scope(&'a self, scope: MacroRulesScope<'a>) -> MacroRulesScopeRef<'a> { PtrKey(self.dropless.alloc(Cell::new(scope))) } fn alloc_macro_rules_binding( &'a self, binding: MacroRulesBinding<'a>, ) -> &'a MacroRulesBinding<'a> { self.dropless.alloc(binding) } fn alloc_ast_paths(&'a self, paths: &[ast::Path]) -> &'a [ast::Path] { self.ast_paths.alloc_from_iter(paths.iter().cloned()) } fn alloc_pattern_spans(&'a self, spans: impl Iterator) -> &'a [Span] { self.dropless.alloc_from_iter(spans) } } impl<'a> AsMut> for Resolver<'a> { fn as_mut(&mut self) -> &mut Resolver<'a> { self } } impl<'a, 'b> DefIdTree for &'a Resolver<'b> { fn parent(self, id: DefId) -> Option { match id.as_local() { Some(id) => self.definitions.def_key(id).parent, None => self.cstore().def_key(id).parent, } .map(|index| DefId { index, ..id }) } } /// This interface is used through the AST→HIR step, to embed full paths into the HIR. After that /// the resolver is no longer needed as all the relevant information is inline. impl ResolverAstLowering for Resolver<'_> { fn def_key(&mut self, id: DefId) -> DefKey { if let Some(id) = id.as_local() { self.definitions().def_key(id) } else { self.cstore().def_key(id) } } #[inline] fn def_span(&self, id: LocalDefId) -> Span { self.definitions.def_span(id) } fn item_generics_num_lifetimes(&self, def_id: DefId) -> usize { if let Some(def_id) = def_id.as_local() { self.item_generics_num_lifetimes[&def_id] } else { self.cstore().item_generics_num_lifetimes(def_id, self.session) } } fn legacy_const_generic_args(&mut self, expr: &Expr) -> Option> { self.legacy_const_generic_args(expr) } fn get_partial_res(&self, id: NodeId) -> Option { self.partial_res_map.get(&id).cloned() } fn get_import_res(&mut self, id: NodeId) -> PerNS> { self.import_res_map.get(&id).cloned().unwrap_or_default() } fn get_label_res(&mut self, id: NodeId) -> Option { self.label_res_map.get(&id).cloned() } fn definitions(&mut self) -> &mut Definitions { &mut self.definitions } fn create_stable_hashing_context(&self) -> StableHashingContext<'_> { StableHashingContext::new(self.session, &self.definitions, self.crate_loader.cstore()) } fn lint_buffer(&mut self) -> &mut LintBuffer { &mut self.lint_buffer } fn next_node_id(&mut self) -> NodeId { self.next_node_id() } fn take_trait_map(&mut self, node: NodeId) -> Option> { self.trait_map.remove(&node) } fn opt_local_def_id(&self, node: NodeId) -> Option { self.node_id_to_def_id.get(&node).copied() } fn local_def_id(&self, node: NodeId) -> LocalDefId { self.opt_local_def_id(node).unwrap_or_else(|| panic!("no entry for node id: `{:?}`", node)) } fn def_path_hash(&self, def_id: DefId) -> DefPathHash { match def_id.as_local() { Some(def_id) => self.definitions.def_path_hash(def_id), None => self.cstore().def_path_hash(def_id), } } /// Adds a definition with a parent definition. fn create_def( &mut self, parent: LocalDefId, node_id: ast::NodeId, data: DefPathData, expn_id: ExpnId, span: Span, ) -> LocalDefId { assert!( !self.node_id_to_def_id.contains_key(&node_id), "adding a def'n for node-id {:?} and data {:?} but a previous def'n exists: {:?}", node_id, data, self.definitions.def_key(self.node_id_to_def_id[&node_id]), ); // Find the next free disambiguator for this key. let next_disambiguator = &mut self.next_disambiguator; let next_disambiguator = |parent, data| { let next_disamb = next_disambiguator.entry((parent, data)).or_insert(0); let disambiguator = *next_disamb; *next_disamb = next_disamb.checked_add(1).expect("disambiguator overflow"); disambiguator }; let def_id = self.definitions.create_def(parent, data, expn_id, next_disambiguator, span); // Some things for which we allocate `LocalDefId`s don't correspond to // anything in the AST, so they don't have a `NodeId`. For these cases // we don't need a mapping from `NodeId` to `LocalDefId`. if node_id != ast::DUMMY_NODE_ID { debug!("create_def: def_id_to_node_id[{:?}] <-> {:?}", def_id, node_id); self.node_id_to_def_id.insert(node_id, def_id); } assert_eq!(self.def_id_to_node_id.push(node_id), def_id); def_id } } impl<'a> Resolver<'a> { pub fn new( session: &'a Session, krate: &Crate, crate_name: &str, metadata_loader: Box, arenas: &'a ResolverArenas<'a>, ) -> Resolver<'a> { let root_def_id = CRATE_DEF_ID.to_def_id(); let mut module_map = FxHashMap::default(); let graph_root = arenas.new_module( None, ModuleKind::Def(DefKind::Mod, root_def_id, kw::Empty), ExpnId::root(), krate.span, session.contains_name(&krate.attrs, sym::no_implicit_prelude), &mut module_map, ); let empty_module = arenas.new_module( None, ModuleKind::Def(DefKind::Mod, root_def_id, kw::Empty), ExpnId::root(), DUMMY_SP, true, &mut FxHashMap::default(), ); let definitions = Definitions::new(session.local_stable_crate_id(), krate.span); let root = definitions.get_root_def(); let mut visibilities = FxHashMap::default(); visibilities.insert(CRATE_DEF_ID, ty::Visibility::Public); let mut def_id_to_node_id = IndexVec::default(); assert_eq!(def_id_to_node_id.push(CRATE_NODE_ID), root); let mut node_id_to_def_id = FxHashMap::default(); node_id_to_def_id.insert(CRATE_NODE_ID, root); let mut invocation_parents = FxHashMap::default(); invocation_parents.insert(LocalExpnId::ROOT, (root, ImplTraitContext::Existential)); let mut extern_prelude: FxHashMap> = session .opts .externs .iter() .filter(|(_, entry)| entry.add_prelude) .map(|(name, _)| (Ident::from_str(name), Default::default())) .collect(); if !session.contains_name(&krate.attrs, sym::no_core) { extern_prelude.insert(Ident::with_dummy_span(sym::core), Default::default()); if !session.contains_name(&krate.attrs, sym::no_std) { extern_prelude.insert(Ident::with_dummy_span(sym::std), Default::default()); } } let (registered_attrs, registered_tools) = macros::registered_attrs_and_tools(session, &krate.attrs); let features = session.features_untracked(); let mut resolver = Resolver { session, definitions, // The outermost module has def ID 0; this is not reflected in the // AST. graph_root, prelude: None, extern_prelude, has_self: FxHashSet::default(), field_names: FxHashMap::default(), determined_imports: Vec::new(), indeterminate_imports: Vec::new(), last_import_segment: false, unusable_binding: None, pat_span_map: Default::default(), partial_res_map: Default::default(), import_res_map: Default::default(), label_res_map: Default::default(), extern_crate_map: Default::default(), export_map: FxHashMap::default(), trait_map: NodeMap::default(), underscore_disambiguator: 0, empty_module, module_map, block_map: Default::default(), binding_parent_modules: FxHashMap::default(), ast_transform_scopes: FxHashMap::default(), glob_map: Default::default(), visibilities, used_imports: FxHashSet::default(), maybe_unused_trait_imports: Default::default(), maybe_unused_extern_crates: Vec::new(), privacy_errors: Vec::new(), ambiguity_errors: Vec::new(), use_injections: Vec::new(), macro_expanded_macro_export_errors: BTreeSet::new(), arenas, dummy_binding: arenas.alloc_name_binding(NameBinding { kind: NameBindingKind::Res(Res::Err, false), ambiguity: None, expansion: LocalExpnId::ROOT, span: DUMMY_SP, vis: ty::Visibility::Public, }), crate_loader: CrateLoader::new(session, metadata_loader, crate_name), macro_names: FxHashSet::default(), builtin_macros: Default::default(), registered_attrs, registered_tools, macro_use_prelude: FxHashMap::default(), all_macros: FxHashMap::default(), macro_map: FxHashMap::default(), dummy_ext_bang: Lrc::new(SyntaxExtension::dummy_bang(session.edition())), dummy_ext_derive: Lrc::new(SyntaxExtension::dummy_derive(session.edition())), non_macro_attr: Lrc::new(SyntaxExtension::non_macro_attr(session.edition())), invocation_parent_scopes: Default::default(), output_macro_rules_scopes: Default::default(), helper_attrs: Default::default(), derive_data: Default::default(), local_macro_def_scopes: FxHashMap::default(), name_already_seen: FxHashMap::default(), potentially_unused_imports: Vec::new(), struct_constructors: Default::default(), unused_macros: Default::default(), proc_macro_stubs: Default::default(), single_segment_macro_resolutions: Default::default(), multi_segment_macro_resolutions: Default::default(), builtin_attrs: Default::default(), containers_deriving_copy: Default::default(), active_features: features .declared_lib_features .iter() .map(|(feat, ..)| *feat) .chain(features.declared_lang_features.iter().map(|(feat, ..)| *feat)) .collect(), lint_buffer: LintBuffer::default(), next_node_id: NodeId::from_u32(1), node_id_to_def_id, def_id_to_node_id, placeholder_field_indices: Default::default(), invocation_parents, next_disambiguator: Default::default(), trait_impl_items: Default::default(), legacy_const_generic_args: Default::default(), item_generics_num_lifetimes: Default::default(), main_def: Default::default(), trait_impls: Default::default(), proc_macros: Default::default(), confused_type_with_std_module: Default::default(), }; let root_parent_scope = ParentScope::module(graph_root, &resolver); resolver.invocation_parent_scopes.insert(LocalExpnId::ROOT, root_parent_scope); resolver } fn new_module( &mut self, parent: Option>, kind: ModuleKind, expn_id: ExpnId, span: Span, no_implicit_prelude: bool, ) -> Module<'a> { let module_map = &mut self.module_map; self.arenas.new_module(parent, kind, expn_id, span, no_implicit_prelude, module_map) } pub fn next_node_id(&mut self) -> NodeId { let next = self.next_node_id.as_u32().checked_add(1).expect("input too large; ran out of NodeIds"); self.next_node_id = ast::NodeId::from_u32(next); self.next_node_id } pub fn lint_buffer(&mut self) -> &mut LintBuffer { &mut self.lint_buffer } pub fn arenas() -> ResolverArenas<'a> { Default::default() } pub fn into_outputs(self) -> ResolverOutputs { let proc_macros = self.proc_macros.iter().map(|id| self.local_def_id(*id)).collect(); let definitions = self.definitions; let visibilities = self.visibilities; let extern_crate_map = self.extern_crate_map; let export_map = self.export_map; let maybe_unused_trait_imports = self.maybe_unused_trait_imports; let maybe_unused_extern_crates = self.maybe_unused_extern_crates; let glob_map = self.glob_map; let main_def = self.main_def; let confused_type_with_std_module = self.confused_type_with_std_module; ResolverOutputs { definitions, cstore: Box::new(self.crate_loader.into_cstore()), visibilities, extern_crate_map, export_map, glob_map, maybe_unused_trait_imports, maybe_unused_extern_crates, extern_prelude: self .extern_prelude .iter() .map(|(ident, entry)| (ident.name, entry.introduced_by_item)) .collect(), main_def, trait_impls: self.trait_impls, proc_macros, confused_type_with_std_module, } } pub fn clone_outputs(&self) -> ResolverOutputs { let proc_macros = self.proc_macros.iter().map(|id| self.local_def_id(*id)).collect(); ResolverOutputs { definitions: self.definitions.clone(), cstore: Box::new(self.cstore().clone()), visibilities: self.visibilities.clone(), extern_crate_map: self.extern_crate_map.clone(), export_map: self.export_map.clone(), glob_map: self.glob_map.clone(), maybe_unused_trait_imports: self.maybe_unused_trait_imports.clone(), maybe_unused_extern_crates: self.maybe_unused_extern_crates.clone(), extern_prelude: self .extern_prelude .iter() .map(|(ident, entry)| (ident.name, entry.introduced_by_item)) .collect(), main_def: self.main_def, trait_impls: self.trait_impls.clone(), proc_macros, confused_type_with_std_module: self.confused_type_with_std_module.clone(), } } pub fn cstore(&self) -> &CStore { self.crate_loader.cstore() } fn dummy_ext(&self, macro_kind: MacroKind) -> Lrc { match macro_kind { MacroKind::Bang => self.dummy_ext_bang.clone(), MacroKind::Derive => self.dummy_ext_derive.clone(), MacroKind::Attr => self.non_macro_attr.clone(), } } /// Runs the function on each namespace. fn per_ns(&mut self, mut f: F) { f(self, TypeNS); f(self, ValueNS); f(self, MacroNS); } fn is_builtin_macro(&mut self, res: Res) -> bool { self.get_macro(res).map_or(false, |ext| ext.builtin_name.is_some()) } fn macro_def(&self, mut ctxt: SyntaxContext) -> DefId { loop { match ctxt.outer_expn_data().macro_def_id { Some(def_id) => return def_id, None => ctxt.remove_mark(), }; } } /// Entry point to crate resolution. pub fn resolve_crate(&mut self, krate: &Crate) { self.session.time("resolve_crate", || { self.session.time("finalize_imports", || ImportResolver { r: self }.finalize_imports()); self.session.time("finalize_macro_resolutions", || self.finalize_macro_resolutions()); self.session.time("late_resolve_crate", || self.late_resolve_crate(krate)); self.session.time("resolve_main", || self.resolve_main()); self.session.time("resolve_check_unused", || self.check_unused(krate)); self.session.time("resolve_report_errors", || self.report_errors(krate)); self.session.time("resolve_postprocess", || self.crate_loader.postprocess(krate)); }); } pub fn traits_in_scope( &mut self, current_trait: Option>, parent_scope: &ParentScope<'a>, ctxt: SyntaxContext, assoc_item: Option<(Symbol, Namespace)>, ) -> Vec { let mut found_traits = Vec::new(); if let Some(module) = current_trait { if self.trait_may_have_item(Some(module), assoc_item) { let def_id = module.def_id(); found_traits.push(TraitCandidate { def_id, import_ids: smallvec![] }); } } self.visit_scopes(ScopeSet::All(TypeNS, false), parent_scope, ctxt, |this, scope, _, _| { match scope { Scope::Module(module, _) => { this.traits_in_module(module, assoc_item, &mut found_traits); } Scope::StdLibPrelude => { if let Some(module) = this.prelude { this.traits_in_module(module, assoc_item, &mut found_traits); } } Scope::ExternPrelude | Scope::ToolPrelude | Scope::BuiltinTypes => {} _ => unreachable!(), } None::<()> }); found_traits } fn traits_in_module( &mut self, module: Module<'a>, assoc_item: Option<(Symbol, Namespace)>, found_traits: &mut Vec, ) { module.ensure_traits(self); let traits = module.traits.borrow(); for (trait_name, trait_binding) in traits.as_ref().unwrap().iter() { if self.trait_may_have_item(trait_binding.module(), assoc_item) { let def_id = trait_binding.res().def_id(); let import_ids = self.find_transitive_imports(&trait_binding.kind, *trait_name); found_traits.push(TraitCandidate { def_id, import_ids }); } } } // List of traits in scope is pruned on best effort basis. We reject traits not having an // associated item with the given name and namespace (if specified). This is a conservative // optimization, proper hygienic type-based resolution of associated items is done in typeck. // We don't reject trait aliases (`trait_module == None`) because we don't have access to their // associated items. fn trait_may_have_item( &mut self, trait_module: Option>, assoc_item: Option<(Symbol, Namespace)>, ) -> bool { match (trait_module, assoc_item) { (Some(trait_module), Some((name, ns))) => { self.resolutions(trait_module).borrow().iter().any(|resolution| { let (&BindingKey { ident: assoc_ident, ns: assoc_ns, .. }, _) = resolution; assoc_ns == ns && assoc_ident.name == name }) } _ => true, } } fn find_transitive_imports( &mut self, mut kind: &NameBindingKind<'_>, trait_name: Ident, ) -> SmallVec<[LocalDefId; 1]> { let mut import_ids = smallvec![]; while let NameBindingKind::Import { import, binding, .. } = kind { let id = self.local_def_id(import.id); self.maybe_unused_trait_imports.insert(id); self.add_to_glob_map(&import, trait_name); import_ids.push(id); kind = &binding.kind; } import_ids } fn new_key(&mut self, ident: Ident, ns: Namespace) -> BindingKey { let ident = ident.normalize_to_macros_2_0(); let disambiguator = if ident.name == kw::Underscore { self.underscore_disambiguator += 1; self.underscore_disambiguator } else { 0 }; BindingKey { ident, ns, disambiguator } } fn resolutions(&mut self, module: Module<'a>) -> &'a Resolutions<'a> { if module.populate_on_access.get() { module.populate_on_access.set(false); self.build_reduced_graph_external(module); } &module.lazy_resolutions } fn resolution( &mut self, module: Module<'a>, key: BindingKey, ) -> &'a RefCell> { *self .resolutions(module) .borrow_mut() .entry(key) .or_insert_with(|| self.arenas.alloc_name_resolution()) } fn record_use( &mut self, ident: Ident, used_binding: &'a NameBinding<'a>, is_lexical_scope: bool, ) { if let Some((b2, kind)) = used_binding.ambiguity { self.ambiguity_errors.push(AmbiguityError { kind, ident, b1: used_binding, b2, misc1: AmbiguityErrorMisc::None, misc2: AmbiguityErrorMisc::None, }); } if let NameBindingKind::Import { import, binding, ref used } = used_binding.kind { // Avoid marking `extern crate` items that refer to a name from extern prelude, // but not introduce it, as used if they are accessed from lexical scope. if is_lexical_scope { if let Some(entry) = self.extern_prelude.get(&ident.normalize_to_macros_2_0()) { if let Some(crate_item) = entry.extern_crate_item { if ptr::eq(used_binding, crate_item) && !entry.introduced_by_item { return; } } } } used.set(true); import.used.set(true); self.used_imports.insert(import.id); self.add_to_glob_map(&import, ident); self.record_use(ident, binding, false); } } #[inline] fn add_to_glob_map(&mut self, import: &Import<'_>, ident: Ident) { if import.is_glob() { let def_id = self.local_def_id(import.id); self.glob_map.entry(def_id).or_default().insert(ident.name); } } /// A generic scope visitor. /// Visits scopes in order to resolve some identifier in them or perform other actions. /// If the callback returns `Some` result, we stop visiting scopes and return it. fn visit_scopes( &mut self, scope_set: ScopeSet<'a>, parent_scope: &ParentScope<'a>, ctxt: SyntaxContext, mut visitor: impl FnMut( &mut Self, Scope<'a>, /*use_prelude*/ bool, SyntaxContext, ) -> Option, ) -> Option { // General principles: // 1. Not controlled (user-defined) names should have higher priority than controlled names // built into the language or standard library. This way we can add new names into the // language or standard library without breaking user code. // 2. "Closed set" below means new names cannot appear after the current resolution attempt. // Places to search (in order of decreasing priority): // (Type NS) // 1. FIXME: Ribs (type parameters), there's no necessary infrastructure yet // (open set, not controlled). // 2. Names in modules (both normal `mod`ules and blocks), loop through hygienic parents // (open, not controlled). // 3. Extern prelude (open, the open part is from macro expansions, not controlled). // 4. Tool modules (closed, controlled right now, but not in the future). // 5. Standard library prelude (de-facto closed, controlled). // 6. Language prelude (closed, controlled). // (Value NS) // 1. FIXME: Ribs (local variables), there's no necessary infrastructure yet // (open set, not controlled). // 2. Names in modules (both normal `mod`ules and blocks), loop through hygienic parents // (open, not controlled). // 3. Standard library prelude (de-facto closed, controlled). // (Macro NS) // 1-3. Derive helpers (open, not controlled). All ambiguities with other names // are currently reported as errors. They should be higher in priority than preludes // and probably even names in modules according to the "general principles" above. They // also should be subject to restricted shadowing because are effectively produced by // derives (you need to resolve the derive first to add helpers into scope), but they // should be available before the derive is expanded for compatibility. // It's mess in general, so we are being conservative for now. // 1-3. `macro_rules` (open, not controlled), loop through `macro_rules` scopes. Have higher // priority than prelude macros, but create ambiguities with macros in modules. // 1-3. Names in modules (both normal `mod`ules and blocks), loop through hygienic parents // (open, not controlled). Have higher priority than prelude macros, but create // ambiguities with `macro_rules`. // 4. `macro_use` prelude (open, the open part is from macro expansions, not controlled). // 4a. User-defined prelude from macro-use // (open, the open part is from macro expansions, not controlled). // 4b. "Standard library prelude" part implemented through `macro-use` (closed, controlled). // 4c. Standard library prelude (de-facto closed, controlled). // 6. Language prelude: builtin attributes (closed, controlled). let rust_2015 = ctxt.edition() == Edition::Edition2015; let (ns, macro_kind, is_absolute_path) = match scope_set { ScopeSet::All(ns, _) => (ns, None, false), ScopeSet::AbsolutePath(ns) => (ns, None, true), ScopeSet::Macro(macro_kind) => (MacroNS, Some(macro_kind), false), ScopeSet::Late(ns, ..) => (ns, None, false), }; let module = match scope_set { // Start with the specified module. ScopeSet::Late(_, module, _) => module, // Jump out of trait or enum modules, they do not act as scopes. _ => parent_scope.module.nearest_item_scope(), }; let mut scope = match ns { _ if is_absolute_path => Scope::CrateRoot, TypeNS | ValueNS => Scope::Module(module, None), MacroNS => Scope::DeriveHelpers(parent_scope.expansion), }; let mut ctxt = ctxt.normalize_to_macros_2_0(); let mut use_prelude = !module.no_implicit_prelude; loop { let visit = match scope { // Derive helpers are not in scope when resolving derives in the same container. Scope::DeriveHelpers(expn_id) => { !(expn_id == parent_scope.expansion && macro_kind == Some(MacroKind::Derive)) } Scope::DeriveHelpersCompat => true, Scope::MacroRules(macro_rules_scope) => { // Use "path compression" on `macro_rules` scope chains. This is an optimization // used to avoid long scope chains, see the comments on `MacroRulesScopeRef`. // As another consequence of this optimization visitors never observe invocation // scopes for macros that were already expanded. while let MacroRulesScope::Invocation(invoc_id) = macro_rules_scope.get() { if let Some(next_scope) = self.output_macro_rules_scopes.get(&invoc_id) { macro_rules_scope.set(next_scope.get()); } else { break; } } true } Scope::CrateRoot => true, Scope::Module(..) => true, Scope::RegisteredAttrs => use_prelude, Scope::MacroUsePrelude => use_prelude || rust_2015, Scope::BuiltinAttrs => true, Scope::ExternPrelude => use_prelude || is_absolute_path, Scope::ToolPrelude => use_prelude, Scope::StdLibPrelude => use_prelude || ns == MacroNS, Scope::BuiltinTypes => true, }; if visit { if let break_result @ Some(..) = visitor(self, scope, use_prelude, ctxt) { return break_result; } } scope = match scope { Scope::DeriveHelpers(LocalExpnId::ROOT) => Scope::DeriveHelpersCompat, Scope::DeriveHelpers(expn_id) => { // Derive helpers are not visible to code generated by bang or derive macros. let expn_data = expn_id.expn_data(); match expn_data.kind { ExpnKind::Root | ExpnKind::Macro(MacroKind::Bang | MacroKind::Derive, _) => { Scope::DeriveHelpersCompat } _ => Scope::DeriveHelpers(expn_data.parent.expect_local()), } } Scope::DeriveHelpersCompat => Scope::MacroRules(parent_scope.macro_rules), Scope::MacroRules(macro_rules_scope) => match macro_rules_scope.get() { MacroRulesScope::Binding(binding) => { Scope::MacroRules(binding.parent_macro_rules_scope) } MacroRulesScope::Invocation(invoc_id) => { Scope::MacroRules(self.invocation_parent_scopes[&invoc_id].macro_rules) } MacroRulesScope::Empty => Scope::Module(module, None), }, Scope::CrateRoot => match ns { TypeNS => { ctxt.adjust(ExpnId::root()); Scope::ExternPrelude } ValueNS | MacroNS => break, }, Scope::Module(module, prev_lint_id) => { use_prelude = !module.no_implicit_prelude; let derive_fallback_lint_id = match scope_set { ScopeSet::Late(.., lint_id) => lint_id, _ => None, }; match self.hygienic_lexical_parent(module, &mut ctxt, derive_fallback_lint_id) { Some((parent_module, lint_id)) => { Scope::Module(parent_module, lint_id.or(prev_lint_id)) } None => { ctxt.adjust(ExpnId::root()); match ns { TypeNS => Scope::ExternPrelude, ValueNS => Scope::StdLibPrelude, MacroNS => Scope::RegisteredAttrs, } } } } Scope::RegisteredAttrs => Scope::MacroUsePrelude, Scope::MacroUsePrelude => Scope::StdLibPrelude, Scope::BuiltinAttrs => break, // nowhere else to search Scope::ExternPrelude if is_absolute_path => break, Scope::ExternPrelude => Scope::ToolPrelude, Scope::ToolPrelude => Scope::StdLibPrelude, Scope::StdLibPrelude => match ns { TypeNS => Scope::BuiltinTypes, ValueNS => break, // nowhere else to search MacroNS => Scope::BuiltinAttrs, }, Scope::BuiltinTypes => break, // nowhere else to search }; } None } /// This resolves the identifier `ident` in the namespace `ns` in the current lexical scope. /// More specifically, we proceed up the hierarchy of scopes and return the binding for /// `ident` in the first scope that defines it (or None if no scopes define it). /// /// A block's items are above its local variables in the scope hierarchy, regardless of where /// the items are defined in the block. For example, /// ```rust /// fn f() { /// g(); // Since there are no local variables in scope yet, this resolves to the item. /// let g = || {}; /// fn g() {} /// g(); // This resolves to the local variable `g` since it shadows the item. /// } /// ``` /// /// Invariant: This must only be called during main resolution, not during /// import resolution. fn resolve_ident_in_lexical_scope( &mut self, mut ident: Ident, ns: Namespace, parent_scope: &ParentScope<'a>, record_used_id: Option, path_span: Span, ribs: &[Rib<'a>], ) -> Option> { assert!(ns == TypeNS || ns == ValueNS); let orig_ident = ident; if ident.name == kw::Empty { return Some(LexicalScopeBinding::Res(Res::Err)); } let (general_span, normalized_span) = if ident.name == kw::SelfUpper { // FIXME(jseyfried) improve `Self` hygiene let empty_span = ident.span.with_ctxt(SyntaxContext::root()); (empty_span, empty_span) } else if ns == TypeNS { let normalized_span = ident.span.normalize_to_macros_2_0(); (normalized_span, normalized_span) } else { (ident.span.normalize_to_macro_rules(), ident.span.normalize_to_macros_2_0()) }; ident.span = general_span; let normalized_ident = Ident { span: normalized_span, ..ident }; // Walk backwards up the ribs in scope. let record_used = record_used_id.is_some(); let mut module = self.graph_root; for i in (0..ribs.len()).rev() { debug!("walk rib\n{:?}", ribs[i].bindings); // Use the rib kind to determine whether we are resolving parameters // (macro 2.0 hygiene) or local variables (`macro_rules` hygiene). let rib_ident = if ribs[i].kind.contains_params() { normalized_ident } else { ident }; if let Some((original_rib_ident_def, res)) = ribs[i].bindings.get_key_value(&rib_ident) { // The ident resolves to a type parameter or local variable. return Some(LexicalScopeBinding::Res(self.validate_res_from_ribs( i, rib_ident, *res, record_used, path_span, *original_rib_ident_def, ribs, ))); } module = match ribs[i].kind { ModuleRibKind(module) => module, MacroDefinition(def) if def == self.macro_def(ident.span.ctxt()) => { // If an invocation of this macro created `ident`, give up on `ident` // and switch to `ident`'s source from the macro definition. ident.span.remove_mark(); continue; } _ => continue, }; match module.kind { ModuleKind::Block(..) => {} // We can see through blocks _ => break, } let item = self.resolve_ident_in_module_unadjusted( ModuleOrUniformRoot::Module(module), ident, ns, parent_scope, record_used, path_span, ); if let Ok(binding) = item { // The ident resolves to an item. return Some(LexicalScopeBinding::Item(binding)); } } self.early_resolve_ident_in_lexical_scope( orig_ident, ScopeSet::Late(ns, module, record_used_id), parent_scope, record_used, record_used, path_span, ) .ok() .map(LexicalScopeBinding::Item) } fn hygienic_lexical_parent( &mut self, module: Module<'a>, ctxt: &mut SyntaxContext, derive_fallback_lint_id: Option, ) -> Option<(Module<'a>, Option)> { if !module.expansion.outer_expn_is_descendant_of(*ctxt) { return Some((self.expn_def_scope(ctxt.remove_mark()), None)); } if let ModuleKind::Block(..) = module.kind { return Some((module.parent.unwrap().nearest_item_scope(), None)); } // We need to support the next case under a deprecation warning // ``` // struct MyStruct; // ---- begin: this comes from a proc macro derive // mod implementation_details { // // Note that `MyStruct` is not in scope here. // impl SomeTrait for MyStruct { ... } // } // ---- end // ``` // So we have to fall back to the module's parent during lexical resolution in this case. if derive_fallback_lint_id.is_some() { if let Some(parent) = module.parent { // Inner module is inside the macro, parent module is outside of the macro. if module.expansion != parent.expansion && module.expansion.is_descendant_of(parent.expansion) { // The macro is a proc macro derive if let Some(def_id) = module.expansion.expn_data().macro_def_id { let ext = self.get_macro_by_def_id(def_id); if ext.builtin_name.is_none() && ext.macro_kind() == MacroKind::Derive && parent.expansion.outer_expn_is_descendant_of(*ctxt) { return Some((parent, derive_fallback_lint_id)); } } } } } None } fn resolve_ident_in_module( &mut self, module: ModuleOrUniformRoot<'a>, ident: Ident, ns: Namespace, parent_scope: &ParentScope<'a>, record_used: bool, path_span: Span, ) -> Result<&'a NameBinding<'a>, Determinacy> { self.resolve_ident_in_module_ext(module, ident, ns, parent_scope, record_used, path_span) .map_err(|(determinacy, _)| determinacy) } fn resolve_ident_in_module_ext( &mut self, module: ModuleOrUniformRoot<'a>, mut ident: Ident, ns: Namespace, parent_scope: &ParentScope<'a>, record_used: bool, path_span: Span, ) -> Result<&'a NameBinding<'a>, (Determinacy, Weak)> { let tmp_parent_scope; let mut adjusted_parent_scope = parent_scope; match module { ModuleOrUniformRoot::Module(m) => { if let Some(def) = ident.span.normalize_to_macros_2_0_and_adjust(m.expansion) { tmp_parent_scope = ParentScope { module: self.expn_def_scope(def), ..*parent_scope }; adjusted_parent_scope = &tmp_parent_scope; } } ModuleOrUniformRoot::ExternPrelude => { ident.span.normalize_to_macros_2_0_and_adjust(ExpnId::root()); } ModuleOrUniformRoot::CrateRootAndExternPrelude | ModuleOrUniformRoot::CurrentScope => { // No adjustments } } self.resolve_ident_in_module_unadjusted_ext( module, ident, ns, adjusted_parent_scope, false, record_used, path_span, ) } fn resolve_crate_root(&mut self, ident: Ident) -> Module<'a> { debug!("resolve_crate_root({:?})", ident); let mut ctxt = ident.span.ctxt(); let mark = if ident.name == kw::DollarCrate { // When resolving `$crate` from a `macro_rules!` invoked in a `macro`, // we don't want to pretend that the `macro_rules!` definition is in the `macro` // as described in `SyntaxContext::apply_mark`, so we ignore prepended opaque marks. // FIXME: This is only a guess and it doesn't work correctly for `macro_rules!` // definitions actually produced by `macro` and `macro` definitions produced by // `macro_rules!`, but at least such configurations are not stable yet. ctxt = ctxt.normalize_to_macro_rules(); debug!( "resolve_crate_root: marks={:?}", ctxt.marks().into_iter().map(|(i, t)| (i.expn_data(), t)).collect::>() ); let mut iter = ctxt.marks().into_iter().rev().peekable(); let mut result = None; // Find the last opaque mark from the end if it exists. while let Some(&(mark, transparency)) = iter.peek() { if transparency == Transparency::Opaque { result = Some(mark); iter.next(); } else { break; } } debug!( "resolve_crate_root: found opaque mark {:?} {:?}", result, result.map(|r| r.expn_data()) ); // Then find the last semi-transparent mark from the end if it exists. for (mark, transparency) in iter { if transparency == Transparency::SemiTransparent { result = Some(mark); } else { break; } } debug!( "resolve_crate_root: found semi-transparent mark {:?} {:?}", result, result.map(|r| r.expn_data()) ); result } else { debug!("resolve_crate_root: not DollarCrate"); ctxt = ctxt.normalize_to_macros_2_0(); ctxt.adjust(ExpnId::root()) }; let module = match mark { Some(def) => self.expn_def_scope(def), None => { debug!( "resolve_crate_root({:?}): found no mark (ident.span = {:?})", ident, ident.span ); return self.graph_root; } }; let module = self.expect_module( module.opt_def_id().map_or(LOCAL_CRATE, |def_id| def_id.krate).as_def_id(), ); debug!( "resolve_crate_root({:?}): got module {:?} ({:?}) (ident.span = {:?})", ident, module, module.kind.name(), ident.span ); module } fn resolve_self(&mut self, ctxt: &mut SyntaxContext, module: Module<'a>) -> Module<'a> { let mut module = self.expect_module(module.nearest_parent_mod()); while module.span.ctxt().normalize_to_macros_2_0() != *ctxt { let parent = module.parent.unwrap_or_else(|| self.expn_def_scope(ctxt.remove_mark())); module = self.expect_module(parent.nearest_parent_mod()); } module } fn resolve_path( &mut self, path: &[Segment], opt_ns: Option, // `None` indicates a module path in import parent_scope: &ParentScope<'a>, record_used: bool, path_span: Span, crate_lint: CrateLint, ) -> PathResult<'a> { self.resolve_path_with_ribs( path, opt_ns, parent_scope, record_used, path_span, crate_lint, None, ) } fn resolve_path_with_ribs( &mut self, path: &[Segment], opt_ns: Option, // `None` indicates a module path in import parent_scope: &ParentScope<'a>, record_used: bool, path_span: Span, crate_lint: CrateLint, ribs: Option<&PerNS>>>, ) -> PathResult<'a> { let mut module = None; let mut allow_super = true; let mut second_binding = None; debug!( "resolve_path(path={:?}, opt_ns={:?}, record_used={:?}, \ path_span={:?}, crate_lint={:?})", path, opt_ns, record_used, path_span, crate_lint, ); for (i, &Segment { ident, id, has_generic_args: _ }) in path.iter().enumerate() { debug!("resolve_path ident {} {:?} {:?}", i, ident, id); let record_segment_res = |this: &mut Self, res| { if record_used { if let Some(id) = id { if !this.partial_res_map.contains_key(&id) { assert!(id != ast::DUMMY_NODE_ID, "Trying to resolve dummy id"); this.record_partial_res(id, PartialRes::new(res)); } } } }; let is_last = i == path.len() - 1; let ns = if is_last { opt_ns.unwrap_or(TypeNS) } else { TypeNS }; let name = ident.name; allow_super &= ns == TypeNS && (name == kw::SelfLower || name == kw::Super); if ns == TypeNS { if allow_super && name == kw::Super { let mut ctxt = ident.span.ctxt().normalize_to_macros_2_0(); let self_module = match i { 0 => Some(self.resolve_self(&mut ctxt, parent_scope.module)), _ => match module { Some(ModuleOrUniformRoot::Module(module)) => Some(module), _ => None, }, }; if let Some(self_module) = self_module { if let Some(parent) = self_module.parent { module = Some(ModuleOrUniformRoot::Module( self.resolve_self(&mut ctxt, parent), )); continue; } } let msg = "there are too many leading `super` keywords".to_string(); return PathResult::Failed { span: ident.span, label: msg, suggestion: None, is_error_from_last_segment: false, }; } if i == 0 { if name == kw::SelfLower { let mut ctxt = ident.span.ctxt().normalize_to_macros_2_0(); module = Some(ModuleOrUniformRoot::Module( self.resolve_self(&mut ctxt, parent_scope.module), )); continue; } if name == kw::PathRoot && ident.span.rust_2018() { module = Some(ModuleOrUniformRoot::ExternPrelude); continue; } if name == kw::PathRoot && ident.span.rust_2015() && self.session.rust_2018() { // `::a::b` from 2015 macro on 2018 global edition module = Some(ModuleOrUniformRoot::CrateRootAndExternPrelude); continue; } if name == kw::PathRoot || name == kw::Crate || name == kw::DollarCrate { // `::a::b`, `crate::a::b` or `$crate::a::b` module = Some(ModuleOrUniformRoot::Module(self.resolve_crate_root(ident))); continue; } } } // Report special messages for path segment keywords in wrong positions. if ident.is_path_segment_keyword() && i != 0 { let name_str = if name == kw::PathRoot { "crate root".to_string() } else { format!("`{}`", name) }; let label = if i == 1 && path[0].ident.name == kw::PathRoot { format!("global paths cannot start with {}", name_str) } else { format!("{} in paths can only be used in start position", name_str) }; return PathResult::Failed { span: ident.span, label, suggestion: None, is_error_from_last_segment: false, }; } enum FindBindingResult<'a> { Binding(Result<&'a NameBinding<'a>, Determinacy>), PathResult(PathResult<'a>), } let find_binding_in_ns = |this: &mut Self, ns| { let binding = if let Some(module) = module { this.resolve_ident_in_module( module, ident, ns, parent_scope, record_used, path_span, ) } else if ribs.is_none() || opt_ns.is_none() || opt_ns == Some(MacroNS) { let scopes = ScopeSet::All(ns, opt_ns.is_none()); this.early_resolve_ident_in_lexical_scope( ident, scopes, parent_scope, record_used, record_used, path_span, ) } else { let record_used_id = if record_used { crate_lint.node_id().or(Some(CRATE_NODE_ID)) } else { None }; match this.resolve_ident_in_lexical_scope( ident, ns, parent_scope, record_used_id, path_span, &ribs.unwrap()[ns], ) { // we found a locally-imported or available item/module Some(LexicalScopeBinding::Item(binding)) => Ok(binding), // we found a local variable or type param Some(LexicalScopeBinding::Res(res)) if opt_ns == Some(TypeNS) || opt_ns == Some(ValueNS) => { record_segment_res(this, res); return FindBindingResult::PathResult(PathResult::NonModule( PartialRes::with_unresolved_segments(res, path.len() - 1), )); } _ => Err(Determinacy::determined(record_used)), } }; FindBindingResult::Binding(binding) }; let binding = match find_binding_in_ns(self, ns) { FindBindingResult::PathResult(x) => return x, FindBindingResult::Binding(binding) => binding, }; match binding { Ok(binding) => { if i == 1 { second_binding = Some(binding); } let res = binding.res(); let maybe_assoc = opt_ns != Some(MacroNS) && PathSource::Type.is_expected(res); if let Some(next_module) = binding.module() { module = Some(ModuleOrUniformRoot::Module(next_module)); record_segment_res(self, res); } else if res == Res::ToolMod && i + 1 != path.len() { if binding.is_import() { self.session .struct_span_err( ident.span, "cannot use a tool module through an import", ) .span_note(binding.span, "the tool module imported here") .emit(); } let res = Res::NonMacroAttr(NonMacroAttrKind::Tool); return PathResult::NonModule(PartialRes::new(res)); } else if res == Res::Err { return PathResult::NonModule(PartialRes::new(Res::Err)); } else if opt_ns.is_some() && (is_last || maybe_assoc) { self.lint_if_path_starts_with_module( crate_lint, path, path_span, second_binding, ); return PathResult::NonModule(PartialRes::with_unresolved_segments( res, path.len() - i - 1, )); } else { let label = format!( "`{}` is {} {}, not a module", ident, res.article(), res.descr(), ); return PathResult::Failed { span: ident.span, label, suggestion: None, is_error_from_last_segment: is_last, }; } } Err(Undetermined) => return PathResult::Indeterminate, Err(Determined) => { if let Some(ModuleOrUniformRoot::Module(module)) = module { if opt_ns.is_some() && !module.is_normal() { return PathResult::NonModule(PartialRes::with_unresolved_segments( module.res().unwrap(), path.len() - i, )); } } let module_res = match module { Some(ModuleOrUniformRoot::Module(module)) => module.res(), _ => None, }; let (label, suggestion) = if module_res == self.graph_root.res() { let is_mod = |res| matches!(res, Res::Def(DefKind::Mod, _)); // Don't look up import candidates if this is a speculative resolve let mut candidates = if record_used { self.lookup_import_candidates(ident, TypeNS, parent_scope, is_mod) } else { Vec::new() }; candidates.sort_by_cached_key(|c| { (c.path.segments.len(), pprust::path_to_string(&c.path)) }); if let Some(candidate) = candidates.get(0) { ( String::from("unresolved import"), Some(( vec![(ident.span, pprust::path_to_string(&candidate.path))], String::from("a similar path exists"), Applicability::MaybeIncorrect, )), ) } else if self.session.edition() == Edition::Edition2015 { (format!("maybe a missing crate `{}`?", ident), None) } else { (format!("could not find `{}` in the crate root", ident), None) } } else if i == 0 { if ident .name .as_str() .chars() .next() .map_or(false, |c| c.is_ascii_uppercase()) { // Check whether the name refers to an item in the value namespace. let suggestion = if ribs.is_some() { let match_span = match self.resolve_ident_in_lexical_scope( ident, ValueNS, parent_scope, None, path_span, &ribs.unwrap()[ValueNS], ) { // Name matches a local variable. For example: // ``` // fn f() { // let Foo: &str = ""; // println!("{}", Foo::Bar); // Name refers to local // // variable `Foo`. // } // ``` Some(LexicalScopeBinding::Res(Res::Local(id))) => { Some(*self.pat_span_map.get(&id).unwrap()) } // Name matches item from a local name binding // created by `use` declaration. For example: // ``` // pub Foo: &str = ""; // // mod submod { // use super::Foo; // println!("{}", Foo::Bar); // Name refers to local // // binding `Foo`. // } // ``` Some(LexicalScopeBinding::Item(name_binding)) => { Some(name_binding.span) } _ => None, }; if let Some(span) = match_span { Some(( vec![(span, String::from(""))], format!("`{}` is defined here, but is not a type", ident), Applicability::MaybeIncorrect, )) } else { None } } else { None }; (format!("use of undeclared type `{}`", ident), suggestion) } else { ( format!("use of undeclared crate or module `{}`", ident), if ident.name == sym::alloc { Some(( vec![], String::from( "add `extern crate alloc` to use the `alloc` crate", ), Applicability::MaybeIncorrect, )) } else { self.find_similarly_named_module_or_crate( ident.name, &parent_scope.module, ) .map(|sugg| { ( vec![(ident.span, sugg.to_string())], String::from( "there is a crate or module with a similar name", ), Applicability::MaybeIncorrect, ) }) }, ) } } else { let parent = path[i - 1].ident.name; let parent = match parent { // ::foo is mounted at the crate root for 2015, and is the extern // prelude for 2018+ kw::PathRoot if self.session.edition() > Edition::Edition2015 => { "the list of imported crates".to_owned() } kw::PathRoot | kw::Crate => "the crate root".to_owned(), _ => { format!("`{}`", parent) } }; let mut msg = format!("could not find `{}` in {}", ident, parent); if ns == TypeNS || ns == ValueNS { let ns_to_try = if ns == TypeNS { ValueNS } else { TypeNS }; if let FindBindingResult::Binding(Ok(binding)) = find_binding_in_ns(self, ns_to_try) { let mut found = |what| { msg = format!( "expected {}, found {} `{}` in {}", ns.descr(), what, ident, parent ) }; if binding.module().is_some() { found("module") } else { match binding.res() { def::Res::::Def(kind, id) => found(kind.descr(id)), _ => found(ns_to_try.descr()), } } }; } (msg, None) }; return PathResult::Failed { span: ident.span, label, suggestion, is_error_from_last_segment: is_last, }; } } } self.lint_if_path_starts_with_module(crate_lint, path, path_span, second_binding); PathResult::Module(match module { Some(module) => module, None if path.is_empty() => ModuleOrUniformRoot::CurrentScope, _ => span_bug!(path_span, "resolve_path: non-empty path `{:?}` has no module", path), }) } fn lint_if_path_starts_with_module( &mut self, crate_lint: CrateLint, path: &[Segment], path_span: Span, second_binding: Option<&NameBinding<'_>>, ) { let (diag_id, diag_span) = match crate_lint { CrateLint::No => return, CrateLint::SimplePath(id) => (id, path_span), CrateLint::UsePath { root_id, root_span } => (root_id, root_span), CrateLint::QPathTrait { qpath_id, qpath_span } => (qpath_id, qpath_span), }; let first_name = match path.get(0) { // In the 2018 edition this lint is a hard error, so nothing to do Some(seg) if seg.ident.span.rust_2015() && self.session.rust_2015() => seg.ident.name, _ => return, }; // We're only interested in `use` paths which should start with // `{{root}}` currently. if first_name != kw::PathRoot { return; } match path.get(1) { // If this import looks like `crate::...` it's already good Some(Segment { ident, .. }) if ident.name == kw::Crate => return, // Otherwise go below to see if it's an extern crate Some(_) => {} // If the path has length one (and it's `PathRoot` most likely) // then we don't know whether we're gonna be importing a crate or an // item in our crate. Defer this lint to elsewhere None => return, } // If the first element of our path was actually resolved to an // `ExternCrate` (also used for `crate::...`) then no need to issue a // warning, this looks all good! if let Some(binding) = second_binding { if let NameBindingKind::Import { import, .. } = binding.kind { // Careful: we still want to rewrite paths from renamed extern crates. if let ImportKind::ExternCrate { source: None, .. } = import.kind { return; } } } let diag = BuiltinLintDiagnostics::AbsPathWithModule(diag_span); self.lint_buffer.buffer_lint_with_diagnostic( lint::builtin::ABSOLUTE_PATHS_NOT_STARTING_WITH_CRATE, diag_id, diag_span, "absolute paths must start with `self`, `super`, \ `crate`, or an external crate name in the 2018 edition", diag, ); } // Validate a local resolution (from ribs). fn validate_res_from_ribs( &mut self, rib_index: usize, rib_ident: Ident, mut res: Res, record_used: bool, span: Span, original_rib_ident_def: Ident, all_ribs: &[Rib<'a>], ) -> Res { const CG_BUG_STR: &str = "min_const_generics resolve check didn't stop compilation"; debug!("validate_res_from_ribs({:?})", res); let ribs = &all_ribs[rib_index + 1..]; // An invalid forward use of a generic parameter from a previous default. if let ForwardGenericParamBanRibKind = all_ribs[rib_index].kind { if record_used { let res_error = if rib_ident.name == kw::SelfUpper { ResolutionError::SelfInGenericParamDefault } else { ResolutionError::ForwardDeclaredGenericParam }; self.report_error(span, res_error); } assert_eq!(res, Res::Err); return Res::Err; } match res { Res::Local(_) => { use ResolutionError::*; let mut res_err = None; for rib in ribs { match rib.kind { NormalRibKind | ClosureOrAsyncRibKind | ModuleRibKind(..) | MacroDefinition(..) | ForwardGenericParamBanRibKind => { // Nothing to do. Continue. } ItemRibKind(_) | FnItemRibKind | AssocItemRibKind => { // This was an attempt to access an upvar inside a // named function item. This is not allowed, so we // report an error. if record_used { // We don't immediately trigger a resolve error, because // we want certain other resolution errors (namely those // emitted for `ConstantItemRibKind` below) to take // precedence. res_err = Some(CannotCaptureDynamicEnvironmentInFnItem); } } ConstantItemRibKind(_, item) => { // Still doesn't deal with upvars if record_used { let (span, resolution_error) = if let Some((ident, constant_item_kind)) = item { let kind_str = match constant_item_kind { ConstantItemKind::Const => "const", ConstantItemKind::Static => "static", }; ( span, AttemptToUseNonConstantValueInConstant( ident, "let", kind_str, ), ) } else { ( rib_ident.span, AttemptToUseNonConstantValueInConstant( original_rib_ident_def, "const", "let", ), ) }; self.report_error(span, resolution_error); } return Res::Err; } ConstParamTyRibKind => { if record_used { self.report_error(span, ParamInTyOfConstParam(rib_ident.name)); } return Res::Err; } } } if let Some(res_err) = res_err { self.report_error(span, res_err); return Res::Err; } } Res::Def(DefKind::TyParam, _) | Res::SelfTy(..) => { for rib in ribs { let has_generic_params: HasGenericParams = match rib.kind { NormalRibKind | ClosureOrAsyncRibKind | AssocItemRibKind | ModuleRibKind(..) | MacroDefinition(..) | ForwardGenericParamBanRibKind => { // Nothing to do. Continue. continue; } ConstantItemRibKind(trivial, _) => { let features = self.session.features_untracked(); // HACK(min_const_generics): We currently only allow `N` or `{ N }`. if !(trivial || features.generic_const_exprs) { // HACK(min_const_generics): If we encounter `Self` in an anonymous constant // we can't easily tell if it's generic at this stage, so we instead remember // this and then enforce the self type to be concrete later on. if let Res::SelfTy(trait_def, Some((impl_def, _))) = res { res = Res::SelfTy(trait_def, Some((impl_def, true))); } else { if record_used { self.report_error( span, ResolutionError::ParamInNonTrivialAnonConst { name: rib_ident.name, is_type: true, }, ); } self.session.delay_span_bug(span, CG_BUG_STR); return Res::Err; } } continue; } // This was an attempt to use a type parameter outside its scope. ItemRibKind(has_generic_params) => has_generic_params, FnItemRibKind => HasGenericParams::Yes, ConstParamTyRibKind => { if record_used { self.report_error( span, ResolutionError::ParamInTyOfConstParam(rib_ident.name), ); } return Res::Err; } }; if record_used { self.report_error( span, ResolutionError::GenericParamsFromOuterFunction( res, has_generic_params, ), ); } return Res::Err; } } Res::Def(DefKind::ConstParam, _) => { let mut ribs = ribs.iter().peekable(); if let Some(Rib { kind: FnItemRibKind, .. }) = ribs.peek() { // When declaring const parameters inside function signatures, the first rib // is always a `FnItemRibKind`. In this case, we can skip it, to avoid it // (spuriously) conflicting with the const param. ribs.next(); } for rib in ribs { let has_generic_params = match rib.kind { NormalRibKind | ClosureOrAsyncRibKind | AssocItemRibKind | ModuleRibKind(..) | MacroDefinition(..) | ForwardGenericParamBanRibKind => continue, ConstantItemRibKind(trivial, _) => { let features = self.session.features_untracked(); // HACK(min_const_generics): We currently only allow `N` or `{ N }`. if !(trivial || features.generic_const_exprs) { if record_used { self.report_error( span, ResolutionError::ParamInNonTrivialAnonConst { name: rib_ident.name, is_type: false, }, ); } self.session.delay_span_bug(span, CG_BUG_STR); return Res::Err; } continue; } ItemRibKind(has_generic_params) => has_generic_params, FnItemRibKind => HasGenericParams::Yes, ConstParamTyRibKind => { if record_used { self.report_error( span, ResolutionError::ParamInTyOfConstParam(rib_ident.name), ); } return Res::Err; } }; // This was an attempt to use a const parameter outside its scope. if record_used { self.report_error( span, ResolutionError::GenericParamsFromOuterFunction( res, has_generic_params, ), ); } return Res::Err; } } _ => {} } res } fn record_partial_res(&mut self, node_id: NodeId, resolution: PartialRes) { debug!("(recording res) recording {:?} for {}", resolution, node_id); if let Some(prev_res) = self.partial_res_map.insert(node_id, resolution) { panic!("path resolved multiple times ({:?} before, {:?} now)", prev_res, resolution); } } fn record_pat_span(&mut self, node: NodeId, span: Span) { debug!("(recording pat) recording {:?} for {:?}", node, span); self.pat_span_map.insert(node, span); } fn is_accessible_from(&self, vis: ty::Visibility, module: Module<'a>) -> bool { vis.is_accessible_from(module.nearest_parent_mod(), self) } fn set_binding_parent_module(&mut self, binding: &'a NameBinding<'a>, module: Module<'a>) { if let Some(old_module) = self.binding_parent_modules.insert(PtrKey(binding), module) { if !ptr::eq(module, old_module) { span_bug!(binding.span, "parent module is reset for binding"); } } } fn disambiguate_macro_rules_vs_modularized( &self, macro_rules: &'a NameBinding<'a>, modularized: &'a NameBinding<'a>, ) -> bool { // Some non-controversial subset of ambiguities "modularized macro name" vs "macro_rules" // is disambiguated to mitigate regressions from macro modularization. // Scoping for `macro_rules` behaves like scoping for `let` at module level, in general. match ( self.binding_parent_modules.get(&PtrKey(macro_rules)), self.binding_parent_modules.get(&PtrKey(modularized)), ) { (Some(macro_rules), Some(modularized)) => { macro_rules.nearest_parent_mod() == modularized.nearest_parent_mod() && modularized.is_ancestor_of(macro_rules) } _ => false, } } fn report_errors(&mut self, krate: &Crate) { self.report_with_use_injections(krate); for &(span_use, span_def) in &self.macro_expanded_macro_export_errors { let msg = "macro-expanded `macro_export` macros from the current crate \ cannot be referred to by absolute paths"; self.lint_buffer.buffer_lint_with_diagnostic( lint::builtin::MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS, CRATE_NODE_ID, span_use, msg, BuiltinLintDiagnostics::MacroExpandedMacroExportsAccessedByAbsolutePaths(span_def), ); } for ambiguity_error in &self.ambiguity_errors { self.report_ambiguity_error(ambiguity_error); } let mut reported_spans = FxHashSet::default(); for error in &self.privacy_errors { if reported_spans.insert(error.dedup_span) { self.report_privacy_error(error); } } } fn report_with_use_injections(&mut self, krate: &Crate) { for UseError { mut err, candidates, def_id, instead, suggestion } in self.use_injections.drain(..) { let (span, found_use) = if let Some(def_id) = def_id.as_local() { UsePlacementFinder::check(krate, self.def_id_to_node_id[def_id]) } else { (None, false) }; if !candidates.is_empty() { diagnostics::show_candidates( &self.definitions, self.session, &mut err, span, &candidates, instead, found_use, ); } else if let Some((span, msg, sugg, appl)) = suggestion { err.span_suggestion(span, msg, sugg, appl); } err.emit(); } } fn report_conflict<'b>( &mut self, parent: Module<'_>, ident: Ident, ns: Namespace, new_binding: &NameBinding<'b>, old_binding: &NameBinding<'b>, ) { // Error on the second of two conflicting names if old_binding.span.lo() > new_binding.span.lo() { return self.report_conflict(parent, ident, ns, old_binding, new_binding); } let container = match parent.kind { ModuleKind::Def(kind, _, _) => kind.descr(parent.def_id()), ModuleKind::Block(..) => "block", }; let old_noun = match old_binding.is_import() { true => "import", false => "definition", }; let new_participle = match new_binding.is_import() { true => "imported", false => "defined", }; let (name, span) = (ident.name, self.session.source_map().guess_head_span(new_binding.span)); if let Some(s) = self.name_already_seen.get(&name) { if s == &span { return; } } let old_kind = match (ns, old_binding.module()) { (ValueNS, _) => "value", (MacroNS, _) => "macro", (TypeNS, _) if old_binding.is_extern_crate() => "extern crate", (TypeNS, Some(module)) if module.is_normal() => "module", (TypeNS, Some(module)) if module.is_trait() => "trait", (TypeNS, _) => "type", }; let msg = format!("the name `{}` is defined multiple times", name); let mut err = match (old_binding.is_extern_crate(), new_binding.is_extern_crate()) { (true, true) => struct_span_err!(self.session, span, E0259, "{}", msg), (true, _) | (_, true) => match new_binding.is_import() && old_binding.is_import() { true => struct_span_err!(self.session, span, E0254, "{}", msg), false => struct_span_err!(self.session, span, E0260, "{}", msg), }, _ => match (old_binding.is_import(), new_binding.is_import()) { (false, false) => struct_span_err!(self.session, span, E0428, "{}", msg), (true, true) => struct_span_err!(self.session, span, E0252, "{}", msg), _ => struct_span_err!(self.session, span, E0255, "{}", msg), }, }; err.note(&format!( "`{}` must be defined only once in the {} namespace of this {}", name, ns.descr(), container )); err.span_label(span, format!("`{}` re{} here", name, new_participle)); err.span_label( self.session.source_map().guess_head_span(old_binding.span), format!("previous {} of the {} `{}` here", old_noun, old_kind, name), ); // See https://github.com/rust-lang/rust/issues/32354 use NameBindingKind::Import; let import = match (&new_binding.kind, &old_binding.kind) { // If there are two imports where one or both have attributes then prefer removing the // import without attributes. (Import { import: new, .. }, Import { import: old, .. }) if { !new_binding.span.is_dummy() && !old_binding.span.is_dummy() && (new.has_attributes || old.has_attributes) } => { if old.has_attributes { Some((new, new_binding.span, true)) } else { Some((old, old_binding.span, true)) } } // Otherwise prioritize the new binding. (Import { import, .. }, other) if !new_binding.span.is_dummy() => { Some((import, new_binding.span, other.is_import())) } (other, Import { import, .. }) if !old_binding.span.is_dummy() => { Some((import, old_binding.span, other.is_import())) } _ => None, }; // Check if the target of the use for both bindings is the same. let duplicate = new_binding.res().opt_def_id() == old_binding.res().opt_def_id(); let has_dummy_span = new_binding.span.is_dummy() || old_binding.span.is_dummy(); let from_item = self.extern_prelude.get(&ident).map_or(true, |entry| entry.introduced_by_item); // Only suggest removing an import if both bindings are to the same def, if both spans // aren't dummy spans. Further, if both bindings are imports, then the ident must have // been introduced by an item. let should_remove_import = duplicate && !has_dummy_span && ((new_binding.is_extern_crate() || old_binding.is_extern_crate()) || from_item); match import { Some((import, span, true)) if should_remove_import && import.is_nested() => { self.add_suggestion_for_duplicate_nested_use(&mut err, import, span) } Some((import, _, true)) if should_remove_import && !import.is_glob() => { // Simple case - remove the entire import. Due to the above match arm, this can // only be a single use so just remove it entirely. err.tool_only_span_suggestion( import.use_span_with_attributes, "remove unnecessary import", String::new(), Applicability::MaybeIncorrect, ); } Some((import, span, _)) => { self.add_suggestion_for_rename_of_use(&mut err, name, import, span) } _ => {} } err.emit(); self.name_already_seen.insert(name, span); } /// This function adds a suggestion to change the binding name of a new import that conflicts /// with an existing import. /// /// ```text,ignore (diagnostic) /// help: you can use `as` to change the binding name of the import /// | /// LL | use foo::bar as other_bar; /// | ^^^^^^^^^^^^^^^^^^^^^ /// ``` fn add_suggestion_for_rename_of_use( &self, err: &mut DiagnosticBuilder<'_>, name: Symbol, import: &Import<'_>, binding_span: Span, ) { let suggested_name = if name.as_str().chars().next().unwrap().is_uppercase() { format!("Other{}", name) } else { format!("other_{}", name) }; let mut suggestion = None; match import.kind { ImportKind::Single { type_ns_only: true, .. } => { suggestion = Some(format!("self as {}", suggested_name)) } ImportKind::Single { source, .. } => { if let Some(pos) = source.span.hi().0.checked_sub(binding_span.lo().0).map(|pos| pos as usize) { if let Ok(snippet) = self.session.source_map().span_to_snippet(binding_span) { if pos <= snippet.len() { suggestion = Some(format!( "{} as {}{}", &snippet[..pos], suggested_name, if snippet.ends_with(';') { ";" } else { "" } )) } } } } ImportKind::ExternCrate { source, target, .. } => { suggestion = Some(format!( "extern crate {} as {};", source.unwrap_or(target.name), suggested_name, )) } _ => unreachable!(), } let rename_msg = "you can use `as` to change the binding name of the import"; if let Some(suggestion) = suggestion { err.span_suggestion( binding_span, rename_msg, suggestion, Applicability::MaybeIncorrect, ); } else { err.span_label(binding_span, rename_msg); } } /// This function adds a suggestion to remove an unnecessary binding from an import that is /// nested. In the following example, this function will be invoked to remove the `a` binding /// in the second use statement: /// /// ```ignore (diagnostic) /// use issue_52891::a; /// use issue_52891::{d, a, e}; /// ``` /// /// The following suggestion will be added: /// /// ```ignore (diagnostic) /// use issue_52891::{d, a, e}; /// ^-- help: remove unnecessary import /// ``` /// /// If the nested use contains only one import then the suggestion will remove the entire /// line. /// /// It is expected that the provided import is nested - this isn't checked by the /// function. If this invariant is not upheld, this function's behaviour will be unexpected /// as characters expected by span manipulations won't be present. fn add_suggestion_for_duplicate_nested_use( &self, err: &mut DiagnosticBuilder<'_>, import: &Import<'_>, binding_span: Span, ) { assert!(import.is_nested()); let message = "remove unnecessary import"; // Two examples will be used to illustrate the span manipulations we're doing: // // - Given `use issue_52891::{d, a, e};` where `a` is a duplicate then `binding_span` is // `a` and `import.use_span` is `issue_52891::{d, a, e};`. // - Given `use issue_52891::{d, e, a};` where `a` is a duplicate then `binding_span` is // `a` and `import.use_span` is `issue_52891::{d, e, a};`. let (found_closing_brace, span) = find_span_of_binding_until_next_binding(self.session, binding_span, import.use_span); // If there was a closing brace then identify the span to remove any trailing commas from // previous imports. if found_closing_brace { if let Some(span) = extend_span_to_previous_binding(self.session, span) { err.tool_only_span_suggestion( span, message, String::new(), Applicability::MaybeIncorrect, ); } else { // Remove the entire line if we cannot extend the span back, this indicates an // `issue_52891::{self}` case. err.span_suggestion( import.use_span_with_attributes, message, String::new(), Applicability::MaybeIncorrect, ); } return; } err.span_suggestion(span, message, String::new(), Applicability::MachineApplicable); } fn extern_prelude_get( &mut self, ident: Ident, speculative: bool, ) -> Option<&'a NameBinding<'a>> { if ident.is_path_segment_keyword() { // Make sure `self`, `super` etc produce an error when passed to here. return None; } self.extern_prelude.get(&ident.normalize_to_macros_2_0()).cloned().and_then(|entry| { if let Some(binding) = entry.extern_crate_item { if !speculative && entry.introduced_by_item { self.record_use(ident, binding, false); } Some(binding) } else { let crate_id = if !speculative { self.crate_loader.process_path_extern(ident.name, ident.span) } else { self.crate_loader.maybe_process_path_extern(ident.name)? }; let crate_root = self.expect_module(crate_id.as_def_id()); Some( (crate_root, ty::Visibility::Public, DUMMY_SP, LocalExpnId::ROOT) .to_name_binding(self.arenas), ) } }) } /// Rustdoc uses this to resolve things in a recoverable way. `ResolutionError<'a>` /// isn't something that can be returned because it can't be made to live that long, /// and also it's a private type. Fortunately rustdoc doesn't need to know the error, /// just that an error occurred. // FIXME(Manishearth): intra-doc links won't get warned of epoch changes. pub fn resolve_str_path_error( &mut self, span: Span, path_str: &str, ns: Namespace, module_id: DefId, ) -> Result<(ast::Path, Res), ()> { let path = if path_str.starts_with("::") { ast::Path { span, segments: iter::once(Ident::with_dummy_span(kw::PathRoot)) .chain(path_str.split("::").skip(1).map(Ident::from_str)) .map(|i| self.new_ast_path_segment(i)) .collect(), tokens: None, } } else { ast::Path { span, segments: path_str .split("::") .map(Ident::from_str) .map(|i| self.new_ast_path_segment(i)) .collect(), tokens: None, } }; let module = self.expect_module(module_id); let parent_scope = &ParentScope::module(module, self); let res = self.resolve_ast_path(&path, ns, parent_scope).map_err(|_| ())?; Ok((path, res)) } // Resolve a path passed from rustdoc or HIR lowering. fn resolve_ast_path( &mut self, path: &ast::Path, ns: Namespace, parent_scope: &ParentScope<'a>, ) -> Result)> { match self.resolve_path( &Segment::from_path(path), Some(ns), parent_scope, false, path.span, CrateLint::No, ) { PathResult::Module(ModuleOrUniformRoot::Module(module)) => Ok(module.res().unwrap()), PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 => { Ok(path_res.base_res()) } PathResult::NonModule(..) => Err(( path.span, ResolutionError::FailedToResolve { label: String::from("type-relative paths are not supported in this context"), suggestion: None, }, )), PathResult::Module(..) | PathResult::Indeterminate => unreachable!(), PathResult::Failed { span, label, suggestion, .. } => { Err((span, ResolutionError::FailedToResolve { label, suggestion })) } } } fn new_ast_path_segment(&mut self, ident: Ident) -> ast::PathSegment { let mut seg = ast::PathSegment::from_ident(ident); seg.id = self.next_node_id(); seg } // For rustdoc. pub fn graph_root(&self) -> Module<'a> { self.graph_root } // For rustdoc. pub fn all_macros(&self) -> &FxHashMap { &self.all_macros } /// Retrieves the span of the given `DefId` if `DefId` is in the local crate. #[inline] pub fn opt_span(&self, def_id: DefId) -> Option { def_id.as_local().map(|def_id| self.definitions.def_span(def_id)) } /// Checks if an expression refers to a function marked with /// `#[rustc_legacy_const_generics]` and returns the argument index list /// from the attribute. pub fn legacy_const_generic_args(&mut self, expr: &Expr) -> Option> { if let ExprKind::Path(None, path) = &expr.kind { // Don't perform legacy const generics rewriting if the path already // has generic arguments. if path.segments.last().unwrap().args.is_some() { return None; } let partial_res = self.partial_res_map.get(&expr.id)?; if partial_res.unresolved_segments() != 0 { return None; } if let Res::Def(def::DefKind::Fn, def_id) = partial_res.base_res() { // We only support cross-crate argument rewriting. Uses // within the same crate should be updated to use the new // const generics style. if def_id.is_local() { return None; } if let Some(v) = self.legacy_const_generic_args.get(&def_id) { return v.clone(); } let parse_attrs = || { let attrs = self.cstore().item_attrs(def_id, self.session); let attr = attrs.iter().find(|a| a.has_name(sym::rustc_legacy_const_generics))?; let mut ret = vec![]; for meta in attr.meta_item_list()? { match meta.literal()?.kind { LitKind::Int(a, _) => { ret.push(a as usize); } _ => panic!("invalid arg index"), } } Some(ret) }; // Cache the lookup to avoid parsing attributes for an iterm // multiple times. let ret = parse_attrs(); self.legacy_const_generic_args.insert(def_id, ret.clone()); return ret; } } None } fn resolve_main(&mut self) { let module = self.graph_root; let ident = Ident::with_dummy_span(sym::main); let parent_scope = &ParentScope::module(module, self); let name_binding = match self.resolve_ident_in_module( ModuleOrUniformRoot::Module(module), ident, ValueNS, parent_scope, false, DUMMY_SP, ) { Ok(name_binding) => name_binding, _ => return, }; let res = name_binding.res(); let is_import = name_binding.is_import(); let span = name_binding.span; if let Res::Def(DefKind::Fn, _) = res { self.record_use(ident, name_binding, false); } self.main_def = Some(MainDefinition { res, is_import, span }); } } fn names_to_string(names: &[Symbol]) -> String { let mut result = String::new(); for (i, name) in names.iter().filter(|name| **name != kw::PathRoot).enumerate() { if i > 0 { result.push_str("::"); } if Ident::with_dummy_span(*name).is_raw_guess() { result.push_str("r#"); } result.push_str(&name.as_str()); } result } fn path_names_to_string(path: &Path) -> String { names_to_string(&path.segments.iter().map(|seg| seg.ident.name).collect::>()) } /// A somewhat inefficient routine to obtain the name of a module. fn module_to_string(module: Module<'_>) -> Option { let mut names = Vec::new(); fn collect_mod(names: &mut Vec, module: Module<'_>) { if let ModuleKind::Def(.., name) = module.kind { if let Some(parent) = module.parent { names.push(name); collect_mod(names, parent); } } else { names.push(Symbol::intern("")); collect_mod(names, module.parent.unwrap()); } } collect_mod(&mut names, module); if names.is_empty() { return None; } names.reverse(); Some(names_to_string(&names)) } #[derive(Copy, Clone, Debug)] enum CrateLint { /// Do not issue the lint. No, /// This lint applies to some arbitrary path; e.g., `impl ::foo::Bar`. /// In this case, we can take the span of that path. SimplePath(NodeId), /// This lint comes from a `use` statement. In this case, what we /// care about really is the *root* `use` statement; e.g., if we /// have nested things like `use a::{b, c}`, we care about the /// `use a` part. UsePath { root_id: NodeId, root_span: Span }, /// This is the "trait item" from a fully qualified path. For example, /// we might be resolving `X::Y::Z` from a path like `::Z`. /// The `path_span` is the span of the to the trait itself (`X::Y`). QPathTrait { qpath_id: NodeId, qpath_span: Span }, } impl CrateLint { fn node_id(&self) -> Option { match *self { CrateLint::No => None, CrateLint::SimplePath(id) | CrateLint::UsePath { root_id: id, .. } | CrateLint::QPathTrait { qpath_id: id, .. } => Some(id), } } } pub fn provide(providers: &mut Providers) { late::lifetimes::provide(providers); }