Add slice methods for indexing via an array of indices.
Disclaimer: It's been a while since I contributed to the main Rust repo, apologies in advance if this is large enough already that it should've been an RFC.
---
# Update:
- Based on feedback, removed the `&[T]` variant of this API, and removed the requirements for the indices to be sorted.
# Description
This adds the following slice methods to `core`:
```rust
impl<T> [T] {
pub unsafe fn get_many_unchecked_mut<const N: usize>(&mut self, indices: [usize; N]) -> [&mut T; N];
pub fn get_many_mut<const N: usize>(&mut self, indices: [usize; N]) -> Option<[&mut T; N]>;
}
```
This allows creating multiple mutable references to disjunct positions in a slice, which previously required writing some awkward code with `split_at_mut()` or `iter_mut()`. For the bound-checked variant, the indices are checked against each other and against the bounds of the slice, which requires `N * (N + 1) / 2` comparison operations.
This has a proof-of-concept standalone implementation here: https://crates.io/crates/index_many
Care has been taken that the implementation passes miri borrow checks, and generates straight-forward assembly (though this was only checked on x86_64).
# Example
```rust
let v = &mut [1, 2, 3, 4];
let [a, b] = v.get_many_mut([0, 2]).unwrap();
std::mem::swap(a, b);
*v += 100;
assert_eq!(v, &[3, 2, 101, 4]);
```
# Codegen Examples
<details>
<summary>Click to expand!</summary>
Disclaimer: Taken from local tests with the standalone implementation.
## Unchecked Indexing:
```rust
pub unsafe fn example_unchecked(slice: &mut [usize], indices: [usize; 3]) -> [&mut usize; 3] {
slice.get_many_unchecked_mut(indices)
}
```
```nasm
example_unchecked:
mov rcx, qword, ptr, [r9]
mov r8, qword, ptr, [r9, +, 8]
mov r9, qword, ptr, [r9, +, 16]
lea rcx, [rdx, +, 8*rcx]
lea r8, [rdx, +, 8*r8]
lea rdx, [rdx, +, 8*r9]
mov qword, ptr, [rax], rcx
mov qword, ptr, [rax, +, 8], r8
mov qword, ptr, [rax, +, 16], rdx
ret
```
## Checked Indexing (Option):
```rust
pub unsafe fn example_option(slice: &mut [usize], indices: [usize; 3]) -> Option<[&mut usize; 3]> {
slice.get_many_mut(indices)
}
```
```nasm
mov r10, qword, ptr, [r9, +, 8]
mov rcx, qword, ptr, [r9, +, 16]
cmp rcx, r10
je .LBB0_7
mov r9, qword, ptr, [r9]
cmp rcx, r9
je .LBB0_7
cmp rcx, r8
jae .LBB0_7
cmp r10, r9
je .LBB0_7
cmp r9, r8
jae .LBB0_7
cmp r10, r8
jae .LBB0_7
lea r8, [rdx, +, 8*r9]
lea r9, [rdx, +, 8*r10]
lea rcx, [rdx, +, 8*rcx]
mov qword, ptr, [rax], r8
mov qword, ptr, [rax, +, 8], r9
mov qword, ptr, [rax, +, 16], rcx
ret
.LBB0_7:
mov qword, ptr, [rax], 0
ret
```
## Checked Indexing (Panic):
```rust
pub fn example_panic(slice: &mut [usize], indices: [usize; 3]) -> [&mut usize; 3] {
let len = slice.len();
match slice.get_many_mut(indices) {
Some(s) => s,
None => {
let tmp = indices;
index_many::sorted_bound_check_failed(&tmp, len)
}
}
}
```
```nasm
example_panic:
sub rsp, 56
mov rax, qword, ptr, [r9]
mov r10, qword, ptr, [r9, +, 8]
mov r9, qword, ptr, [r9, +, 16]
cmp r9, r10
je .LBB0_6
cmp r9, rax
je .LBB0_6
cmp r9, r8
jae .LBB0_6
cmp r10, rax
je .LBB0_6
cmp rax, r8
jae .LBB0_6
cmp r10, r8
jae .LBB0_6
lea rax, [rdx, +, 8*rax]
lea r8, [rdx, +, 8*r10]
lea rdx, [rdx, +, 8*r9]
mov qword, ptr, [rcx], rax
mov qword, ptr, [rcx, +, 8], r8
mov qword, ptr, [rcx, +, 16], rdx
mov rax, rcx
add rsp, 56
ret
.LBB0_6:
mov qword, ptr, [rsp, +, 32], rax
mov qword, ptr, [rsp, +, 40], r10
mov qword, ptr, [rsp, +, 48], r9
lea rcx, [rsp, +, 32]
mov edx, 3
call index_many::bound_check_failed
ud2
```
</details>
# Extensions
There are multiple optional extensions to this.
## Indexing With Ranges
This could easily be expanded to allow indexing with `[I; N]` where `I: SliceIndex<Self>`. I wanted to keep the initial implementation simple, so I didn't include it yet.
## Panicking Variant
We could also add this method:
```rust
impl<T> [T] {
fn index_many_mut<const N: usize>(&mut self, indices: [usize; N]) -> [&mut T; N];
}
```
This would work similar to the regular index operator and panic with out-of-bound indices. The advantage would be that we could more easily ensure good codegen with a useful panic message, which is non-trivial with the `Option` variant.
This is implemented in the standalone implementation, and used as basis for the codegen examples here and there.