
Some float methods are now `const fn` under the `const_float_methods` feature gate. In order to support `min`, `max`, `abs` and `copysign`, the implementation of some intrinsics had to be moved from Miri to rustc_const_eval.
780 lines
35 KiB
Rust
780 lines
35 KiB
Rust
//! Intrinsics and other functions that the interpreter executes without
|
|
//! looking at their MIR. Intrinsics/functions supported here are shared by CTFE
|
|
//! and miri.
|
|
|
|
use std::assert_matches::assert_matches;
|
|
|
|
use rustc_apfloat::ieee::{Double, Half, Quad, Single};
|
|
use rustc_hir::def_id::DefId;
|
|
use rustc_middle::mir::{self, BinOp, ConstValue, NonDivergingIntrinsic};
|
|
use rustc_middle::ty::layout::{LayoutOf as _, TyAndLayout, ValidityRequirement};
|
|
use rustc_middle::ty::{GenericArgsRef, Ty, TyCtxt};
|
|
use rustc_middle::{bug, ty};
|
|
use rustc_span::symbol::{Symbol, sym};
|
|
use rustc_target::abi::Size;
|
|
use tracing::trace;
|
|
|
|
use super::memory::MemoryKind;
|
|
use super::util::ensure_monomorphic_enough;
|
|
use super::{
|
|
Allocation, CheckInAllocMsg, ConstAllocation, GlobalId, ImmTy, InterpCx, InterpResult,
|
|
MPlaceTy, Machine, OpTy, Pointer, PointerArithmetic, Provenance, Scalar, err_inval,
|
|
err_ub_custom, err_unsup_format, interp_ok, throw_inval, throw_ub_custom, throw_ub_format,
|
|
};
|
|
use crate::fluent_generated as fluent;
|
|
|
|
/// Directly returns an `Allocation` containing an absolute path representation of the given type.
|
|
pub(crate) fn alloc_type_name<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> ConstAllocation<'tcx> {
|
|
let path = crate::util::type_name(tcx, ty);
|
|
let alloc = Allocation::from_bytes_byte_aligned_immutable(path.into_bytes());
|
|
tcx.mk_const_alloc(alloc)
|
|
}
|
|
|
|
/// The logic for all nullary intrinsics is implemented here. These intrinsics don't get evaluated
|
|
/// inside an `InterpCx` and instead have their value computed directly from rustc internal info.
|
|
pub(crate) fn eval_nullary_intrinsic<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
def_id: DefId,
|
|
args: GenericArgsRef<'tcx>,
|
|
) -> InterpResult<'tcx, ConstValue<'tcx>> {
|
|
let tp_ty = args.type_at(0);
|
|
let name = tcx.item_name(def_id);
|
|
interp_ok(match name {
|
|
sym::type_name => {
|
|
ensure_monomorphic_enough(tcx, tp_ty)?;
|
|
let alloc = alloc_type_name(tcx, tp_ty);
|
|
ConstValue::Slice { data: alloc, meta: alloc.inner().size().bytes() }
|
|
}
|
|
sym::needs_drop => {
|
|
ensure_monomorphic_enough(tcx, tp_ty)?;
|
|
ConstValue::from_bool(tp_ty.needs_drop(tcx, param_env))
|
|
}
|
|
sym::pref_align_of => {
|
|
// Correctly handles non-monomorphic calls, so there is no need for ensure_monomorphic_enough.
|
|
let layout = tcx.layout_of(param_env.and(tp_ty)).map_err(|e| err_inval!(Layout(*e)))?;
|
|
ConstValue::from_target_usize(layout.align.pref.bytes(), &tcx)
|
|
}
|
|
sym::type_id => {
|
|
ensure_monomorphic_enough(tcx, tp_ty)?;
|
|
ConstValue::from_u128(tcx.type_id_hash(tp_ty).as_u128())
|
|
}
|
|
sym::variant_count => match tp_ty.kind() {
|
|
// Correctly handles non-monomorphic calls, so there is no need for ensure_monomorphic_enough.
|
|
ty::Adt(adt, _) => ConstValue::from_target_usize(adt.variants().len() as u64, &tcx),
|
|
ty::Alias(..) | ty::Param(_) | ty::Placeholder(_) | ty::Infer(_) => {
|
|
throw_inval!(TooGeneric)
|
|
}
|
|
ty::Pat(_, pat) => match **pat {
|
|
ty::PatternKind::Range { .. } => ConstValue::from_target_usize(0u64, &tcx),
|
|
// Future pattern kinds may have more variants
|
|
},
|
|
ty::Bound(_, _) => bug!("bound ty during ctfe"),
|
|
ty::Bool
|
|
| ty::Char
|
|
| ty::Int(_)
|
|
| ty::Uint(_)
|
|
| ty::Float(_)
|
|
| ty::Foreign(_)
|
|
| ty::Str
|
|
| ty::Array(_, _)
|
|
| ty::Slice(_)
|
|
| ty::RawPtr(_, _)
|
|
| ty::Ref(_, _, _)
|
|
| ty::FnDef(_, _)
|
|
| ty::FnPtr(..)
|
|
| ty::Dynamic(_, _, _)
|
|
| ty::Closure(_, _)
|
|
| ty::CoroutineClosure(_, _)
|
|
| ty::Coroutine(_, _)
|
|
| ty::CoroutineWitness(..)
|
|
| ty::Never
|
|
| ty::Tuple(_)
|
|
| ty::Error(_) => ConstValue::from_target_usize(0u64, &tcx),
|
|
},
|
|
other => bug!("`{}` is not a zero arg intrinsic", other),
|
|
})
|
|
}
|
|
|
|
impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
|
/// Returns `true` if emulation happened.
|
|
/// Here we implement the intrinsics that are common to all Miri instances; individual machines can add their own
|
|
/// intrinsic handling.
|
|
pub fn eval_intrinsic(
|
|
&mut self,
|
|
instance: ty::Instance<'tcx>,
|
|
args: &[OpTy<'tcx, M::Provenance>],
|
|
dest: &MPlaceTy<'tcx, M::Provenance>,
|
|
ret: Option<mir::BasicBlock>,
|
|
) -> InterpResult<'tcx, bool> {
|
|
let instance_args = instance.args;
|
|
let intrinsic_name = self.tcx.item_name(instance.def_id());
|
|
|
|
match intrinsic_name {
|
|
sym::caller_location => {
|
|
let span = self.find_closest_untracked_caller_location();
|
|
let val = self.tcx.span_as_caller_location(span);
|
|
let val =
|
|
self.const_val_to_op(val, self.tcx.caller_location_ty(), Some(dest.layout))?;
|
|
self.copy_op(&val, dest)?;
|
|
}
|
|
|
|
sym::min_align_of_val | sym::size_of_val => {
|
|
// Avoid `deref_pointer` -- this is not a deref, the ptr does not have to be
|
|
// dereferenceable!
|
|
let place = self.ref_to_mplace(&self.read_immediate(&args[0])?)?;
|
|
let (size, align) = self
|
|
.size_and_align_of_mplace(&place)?
|
|
.ok_or_else(|| err_unsup_format!("`extern type` does not have known layout"))?;
|
|
|
|
let result = match intrinsic_name {
|
|
sym::min_align_of_val => align.bytes(),
|
|
sym::size_of_val => size.bytes(),
|
|
_ => bug!(),
|
|
};
|
|
|
|
self.write_scalar(Scalar::from_target_usize(result, self), dest)?;
|
|
}
|
|
|
|
sym::pref_align_of
|
|
| sym::needs_drop
|
|
| sym::type_id
|
|
| sym::type_name
|
|
| sym::variant_count => {
|
|
let gid = GlobalId { instance, promoted: None };
|
|
let ty = match intrinsic_name {
|
|
sym::pref_align_of | sym::variant_count => self.tcx.types.usize,
|
|
sym::needs_drop => self.tcx.types.bool,
|
|
sym::type_id => self.tcx.types.u128,
|
|
sym::type_name => Ty::new_static_str(self.tcx.tcx),
|
|
_ => bug!(),
|
|
};
|
|
let val =
|
|
self.ctfe_query(|tcx| tcx.const_eval_global_id(self.param_env, gid, tcx.span))?;
|
|
let val = self.const_val_to_op(val, ty, Some(dest.layout))?;
|
|
self.copy_op(&val, dest)?;
|
|
}
|
|
|
|
sym::ctpop
|
|
| sym::cttz
|
|
| sym::cttz_nonzero
|
|
| sym::ctlz
|
|
| sym::ctlz_nonzero
|
|
| sym::bswap
|
|
| sym::bitreverse => {
|
|
let ty = instance_args.type_at(0);
|
|
let layout = self.layout_of(ty)?;
|
|
let val = self.read_scalar(&args[0])?;
|
|
|
|
let out_val = self.numeric_intrinsic(intrinsic_name, val, layout, dest.layout)?;
|
|
self.write_scalar(out_val, dest)?;
|
|
}
|
|
sym::saturating_add | sym::saturating_sub => {
|
|
let l = self.read_immediate(&args[0])?;
|
|
let r = self.read_immediate(&args[1])?;
|
|
let val = self.saturating_arith(
|
|
if intrinsic_name == sym::saturating_add { BinOp::Add } else { BinOp::Sub },
|
|
&l,
|
|
&r,
|
|
)?;
|
|
self.write_scalar(val, dest)?;
|
|
}
|
|
sym::discriminant_value => {
|
|
let place = self.deref_pointer(&args[0])?;
|
|
let variant = self.read_discriminant(&place)?;
|
|
let discr = self.discriminant_for_variant(place.layout.ty, variant)?;
|
|
self.write_immediate(*discr, dest)?;
|
|
}
|
|
sym::exact_div => {
|
|
let l = self.read_immediate(&args[0])?;
|
|
let r = self.read_immediate(&args[1])?;
|
|
self.exact_div(&l, &r, dest)?;
|
|
}
|
|
sym::rotate_left | sym::rotate_right => {
|
|
// rotate_left: (X << (S % BW)) | (X >> ((BW - S) % BW))
|
|
// rotate_right: (X << ((BW - S) % BW)) | (X >> (S % BW))
|
|
let layout_val = self.layout_of(instance_args.type_at(0))?;
|
|
let val = self.read_scalar(&args[0])?;
|
|
let val_bits = val.to_bits(layout_val.size)?; // sign is ignored here
|
|
|
|
let layout_raw_shift = self.layout_of(self.tcx.types.u32)?;
|
|
let raw_shift = self.read_scalar(&args[1])?;
|
|
let raw_shift_bits = raw_shift.to_bits(layout_raw_shift.size)?;
|
|
|
|
let width_bits = u128::from(layout_val.size.bits());
|
|
let shift_bits = raw_shift_bits % width_bits;
|
|
let inv_shift_bits = (width_bits - shift_bits) % width_bits;
|
|
let result_bits = if intrinsic_name == sym::rotate_left {
|
|
(val_bits << shift_bits) | (val_bits >> inv_shift_bits)
|
|
} else {
|
|
(val_bits >> shift_bits) | (val_bits << inv_shift_bits)
|
|
};
|
|
let truncated_bits = layout_val.size.truncate(result_bits);
|
|
let result = Scalar::from_uint(truncated_bits, layout_val.size);
|
|
self.write_scalar(result, dest)?;
|
|
}
|
|
sym::copy => {
|
|
self.copy_intrinsic(&args[0], &args[1], &args[2], /*nonoverlapping*/ false)?;
|
|
}
|
|
sym::write_bytes => {
|
|
self.write_bytes_intrinsic(&args[0], &args[1], &args[2], "write_bytes")?;
|
|
}
|
|
sym::compare_bytes => {
|
|
let result = self.compare_bytes_intrinsic(&args[0], &args[1], &args[2])?;
|
|
self.write_scalar(result, dest)?;
|
|
}
|
|
sym::arith_offset => {
|
|
let ptr = self.read_pointer(&args[0])?;
|
|
let offset_count = self.read_target_isize(&args[1])?;
|
|
let pointee_ty = instance_args.type_at(0);
|
|
|
|
let pointee_size = i64::try_from(self.layout_of(pointee_ty)?.size.bytes()).unwrap();
|
|
let offset_bytes = offset_count.wrapping_mul(pointee_size);
|
|
let offset_ptr = ptr.wrapping_signed_offset(offset_bytes, self);
|
|
self.write_pointer(offset_ptr, dest)?;
|
|
}
|
|
sym::ptr_offset_from | sym::ptr_offset_from_unsigned => {
|
|
let a = self.read_pointer(&args[0])?;
|
|
let b = self.read_pointer(&args[1])?;
|
|
|
|
let usize_layout = self.layout_of(self.tcx.types.usize)?;
|
|
let isize_layout = self.layout_of(self.tcx.types.isize)?;
|
|
|
|
// Get offsets for both that are at least relative to the same base.
|
|
// With `OFFSET_IS_ADDR` this is trivial; without it we need either
|
|
// two integers or two pointers into the same allocation.
|
|
let (a_offset, b_offset, is_addr) = if M::Provenance::OFFSET_IS_ADDR {
|
|
(a.addr().bytes(), b.addr().bytes(), /*is_addr*/ true)
|
|
} else {
|
|
match (self.ptr_try_get_alloc_id(a, 0), self.ptr_try_get_alloc_id(b, 0)) {
|
|
(Err(a), Err(b)) => {
|
|
// Neither pointer points to an allocation, so they are both absolute.
|
|
(a, b, /*is_addr*/ true)
|
|
}
|
|
(Ok((a_alloc_id, a_offset, _)), Ok((b_alloc_id, b_offset, _)))
|
|
if a_alloc_id == b_alloc_id =>
|
|
{
|
|
// Found allocation for both, and it's the same.
|
|
// Use these offsets for distance calculation.
|
|
(a_offset.bytes(), b_offset.bytes(), /*is_addr*/ false)
|
|
}
|
|
_ => {
|
|
// Not into the same allocation -- this is UB.
|
|
throw_ub_custom!(
|
|
fluent::const_eval_offset_from_different_allocations,
|
|
name = intrinsic_name,
|
|
);
|
|
}
|
|
}
|
|
};
|
|
|
|
// Compute distance: a - b.
|
|
let dist = {
|
|
// Addresses are unsigned, so this is a `usize` computation. We have to do the
|
|
// overflow check separately anyway.
|
|
let (val, overflowed) = {
|
|
let a_offset = ImmTy::from_uint(a_offset, usize_layout);
|
|
let b_offset = ImmTy::from_uint(b_offset, usize_layout);
|
|
self.binary_op(BinOp::SubWithOverflow, &a_offset, &b_offset)?
|
|
.to_scalar_pair()
|
|
};
|
|
if overflowed.to_bool()? {
|
|
// a < b
|
|
if intrinsic_name == sym::ptr_offset_from_unsigned {
|
|
throw_ub_custom!(
|
|
fluent::const_eval_offset_from_unsigned_overflow,
|
|
a_offset = a_offset,
|
|
b_offset = b_offset,
|
|
is_addr = is_addr,
|
|
);
|
|
}
|
|
// The signed form of the intrinsic allows this. If we interpret the
|
|
// difference as isize, we'll get the proper signed difference. If that
|
|
// seems *positive* or equal to isize::MIN, they were more than isize::MAX apart.
|
|
let dist = val.to_target_isize(self)?;
|
|
if dist >= 0 || i128::from(dist) == self.pointer_size().signed_int_min() {
|
|
throw_ub_custom!(
|
|
fluent::const_eval_offset_from_underflow,
|
|
name = intrinsic_name,
|
|
);
|
|
}
|
|
dist
|
|
} else {
|
|
// b >= a
|
|
let dist = val.to_target_isize(self)?;
|
|
// If converting to isize produced a *negative* result, we had an overflow
|
|
// because they were more than isize::MAX apart.
|
|
if dist < 0 {
|
|
throw_ub_custom!(
|
|
fluent::const_eval_offset_from_overflow,
|
|
name = intrinsic_name,
|
|
);
|
|
}
|
|
dist
|
|
}
|
|
};
|
|
|
|
// Check that the memory between them is dereferenceable at all, starting from the
|
|
// origin pointer: `dist` is `a - b`, so it is based on `b`.
|
|
self.check_ptr_access_signed(b, dist, CheckInAllocMsg::OffsetFromTest)?;
|
|
// Then check that this is also dereferenceable from `a`. This ensures that they are
|
|
// derived from the same allocation.
|
|
self.check_ptr_access_signed(
|
|
a,
|
|
dist.checked_neg().unwrap(), // i64::MIN is impossible as no allocation can be that large
|
|
CheckInAllocMsg::OffsetFromTest,
|
|
)
|
|
.map_err(|_| {
|
|
// Make the error more specific.
|
|
err_ub_custom!(
|
|
fluent::const_eval_offset_from_different_allocations,
|
|
name = intrinsic_name,
|
|
)
|
|
.into()
|
|
})?;
|
|
|
|
// Perform division by size to compute return value.
|
|
let ret_layout = if intrinsic_name == sym::ptr_offset_from_unsigned {
|
|
assert!(0 <= dist && dist <= self.target_isize_max());
|
|
usize_layout
|
|
} else {
|
|
assert!(self.target_isize_min() <= dist && dist <= self.target_isize_max());
|
|
isize_layout
|
|
};
|
|
let pointee_layout = self.layout_of(instance_args.type_at(0))?;
|
|
// If ret_layout is unsigned, we checked that so is the distance, so we are good.
|
|
let val = ImmTy::from_int(dist, ret_layout);
|
|
let size = ImmTy::from_int(pointee_layout.size.bytes(), ret_layout);
|
|
self.exact_div(&val, &size, dest)?;
|
|
}
|
|
|
|
sym::assert_inhabited
|
|
| sym::assert_zero_valid
|
|
| sym::assert_mem_uninitialized_valid => {
|
|
let ty = instance.args.type_at(0);
|
|
let requirement = ValidityRequirement::from_intrinsic(intrinsic_name).unwrap();
|
|
|
|
let should_panic = !self
|
|
.tcx
|
|
.check_validity_requirement((requirement, self.param_env.and(ty)))
|
|
.map_err(|_| err_inval!(TooGeneric))?;
|
|
|
|
if should_panic {
|
|
let layout = self.layout_of(ty)?;
|
|
|
|
let msg = match requirement {
|
|
// For *all* intrinsics we first check `is_uninhabited` to give a more specific
|
|
// error message.
|
|
_ if layout.abi.is_uninhabited() => format!(
|
|
"aborted execution: attempted to instantiate uninhabited type `{ty}`"
|
|
),
|
|
ValidityRequirement::Inhabited => bug!("handled earlier"),
|
|
ValidityRequirement::Zero => format!(
|
|
"aborted execution: attempted to zero-initialize type `{ty}`, which is invalid"
|
|
),
|
|
ValidityRequirement::UninitMitigated0x01Fill => format!(
|
|
"aborted execution: attempted to leave type `{ty}` uninitialized, which is invalid"
|
|
),
|
|
ValidityRequirement::Uninit => bug!("assert_uninit_valid doesn't exist"),
|
|
};
|
|
|
|
M::panic_nounwind(self, &msg)?;
|
|
// Skip the `return_to_block` at the end (we panicked, we do not return).
|
|
return interp_ok(true);
|
|
}
|
|
}
|
|
sym::simd_insert => {
|
|
let index = u64::from(self.read_scalar(&args[1])?.to_u32()?);
|
|
let elem = &args[2];
|
|
let (input, input_len) = self.project_to_simd(&args[0])?;
|
|
let (dest, dest_len) = self.project_to_simd(dest)?;
|
|
assert_eq!(input_len, dest_len, "Return vector length must match input length");
|
|
// Bounds are not checked by typeck so we have to do it ourselves.
|
|
if index >= input_len {
|
|
throw_ub_format!(
|
|
"`simd_insert` index {index} is out-of-bounds of vector with length {input_len}"
|
|
);
|
|
}
|
|
|
|
for i in 0..dest_len {
|
|
let place = self.project_index(&dest, i)?;
|
|
let value =
|
|
if i == index { elem.clone() } else { self.project_index(&input, i)? };
|
|
self.copy_op(&value, &place)?;
|
|
}
|
|
}
|
|
sym::simd_extract => {
|
|
let index = u64::from(self.read_scalar(&args[1])?.to_u32()?);
|
|
let (input, input_len) = self.project_to_simd(&args[0])?;
|
|
// Bounds are not checked by typeck so we have to do it ourselves.
|
|
if index >= input_len {
|
|
throw_ub_format!(
|
|
"`simd_extract` index {index} is out-of-bounds of vector with length {input_len}"
|
|
);
|
|
}
|
|
self.copy_op(&self.project_index(&input, index)?, dest)?;
|
|
}
|
|
sym::black_box => {
|
|
// These just return their argument
|
|
self.copy_op(&args[0], dest)?;
|
|
}
|
|
sym::raw_eq => {
|
|
let result = self.raw_eq_intrinsic(&args[0], &args[1])?;
|
|
self.write_scalar(result, dest)?;
|
|
}
|
|
sym::typed_swap => {
|
|
self.typed_swap_intrinsic(&args[0], &args[1])?;
|
|
}
|
|
|
|
sym::vtable_size => {
|
|
let ptr = self.read_pointer(&args[0])?;
|
|
// `None` because we don't know which trait to expect here; any vtable is okay.
|
|
let (size, _align) = self.get_vtable_size_and_align(ptr, None)?;
|
|
self.write_scalar(Scalar::from_target_usize(size.bytes(), self), dest)?;
|
|
}
|
|
sym::vtable_align => {
|
|
let ptr = self.read_pointer(&args[0])?;
|
|
// `None` because we don't know which trait to expect here; any vtable is okay.
|
|
let (_size, align) = self.get_vtable_size_and_align(ptr, None)?;
|
|
self.write_scalar(Scalar::from_target_usize(align.bytes(), self), dest)?;
|
|
}
|
|
|
|
sym::minnumf16 => self.float_min_intrinsic::<Half>(args, dest)?,
|
|
sym::minnumf32 => self.float_min_intrinsic::<Single>(args, dest)?,
|
|
sym::minnumf64 => self.float_min_intrinsic::<Double>(args, dest)?,
|
|
sym::minnumf128 => self.float_min_intrinsic::<Quad>(args, dest)?,
|
|
|
|
sym::maxnumf16 => self.float_max_intrinsic::<Half>(args, dest)?,
|
|
sym::maxnumf32 => self.float_max_intrinsic::<Single>(args, dest)?,
|
|
sym::maxnumf64 => self.float_max_intrinsic::<Double>(args, dest)?,
|
|
sym::maxnumf128 => self.float_max_intrinsic::<Quad>(args, dest)?,
|
|
|
|
sym::copysignf16 => self.float_copysign_intrinsic::<Half>(args, dest)?,
|
|
sym::copysignf32 => self.float_copysign_intrinsic::<Single>(args, dest)?,
|
|
sym::copysignf64 => self.float_copysign_intrinsic::<Double>(args, dest)?,
|
|
sym::copysignf128 => self.float_copysign_intrinsic::<Quad>(args, dest)?,
|
|
|
|
sym::fabsf16 => self.float_abs_intrinsic::<Half>(args, dest)?,
|
|
sym::fabsf32 => self.float_abs_intrinsic::<Single>(args, dest)?,
|
|
sym::fabsf64 => self.float_abs_intrinsic::<Double>(args, dest)?,
|
|
sym::fabsf128 => self.float_abs_intrinsic::<Quad>(args, dest)?,
|
|
|
|
// Unsupported intrinsic: skip the return_to_block below.
|
|
_ => return interp_ok(false),
|
|
}
|
|
|
|
trace!("{:?}", self.dump_place(&dest.clone().into()));
|
|
self.return_to_block(ret)?;
|
|
interp_ok(true)
|
|
}
|
|
|
|
pub(super) fn eval_nondiverging_intrinsic(
|
|
&mut self,
|
|
intrinsic: &NonDivergingIntrinsic<'tcx>,
|
|
) -> InterpResult<'tcx> {
|
|
match intrinsic {
|
|
NonDivergingIntrinsic::Assume(op) => {
|
|
let op = self.eval_operand(op, None)?;
|
|
let cond = self.read_scalar(&op)?.to_bool()?;
|
|
if !cond {
|
|
throw_ub_custom!(fluent::const_eval_assume_false);
|
|
}
|
|
interp_ok(())
|
|
}
|
|
NonDivergingIntrinsic::CopyNonOverlapping(mir::CopyNonOverlapping {
|
|
count,
|
|
src,
|
|
dst,
|
|
}) => {
|
|
let src = self.eval_operand(src, None)?;
|
|
let dst = self.eval_operand(dst, None)?;
|
|
let count = self.eval_operand(count, None)?;
|
|
self.copy_intrinsic(&src, &dst, &count, /* nonoverlapping */ true)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn numeric_intrinsic(
|
|
&self,
|
|
name: Symbol,
|
|
val: Scalar<M::Provenance>,
|
|
layout: TyAndLayout<'tcx>,
|
|
ret_layout: TyAndLayout<'tcx>,
|
|
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
|
|
assert!(layout.ty.is_integral(), "invalid type for numeric intrinsic: {}", layout.ty);
|
|
let bits = val.to_bits(layout.size)?; // these operations all ignore the sign
|
|
let extra = 128 - u128::from(layout.size.bits());
|
|
let bits_out = match name {
|
|
sym::ctpop => u128::from(bits.count_ones()),
|
|
sym::ctlz_nonzero | sym::cttz_nonzero if bits == 0 => {
|
|
throw_ub_custom!(fluent::const_eval_call_nonzero_intrinsic, name = name,);
|
|
}
|
|
sym::ctlz | sym::ctlz_nonzero => u128::from(bits.leading_zeros()) - extra,
|
|
sym::cttz | sym::cttz_nonzero => u128::from((bits << extra).trailing_zeros()) - extra,
|
|
sym::bswap => {
|
|
assert_eq!(layout, ret_layout);
|
|
(bits << extra).swap_bytes()
|
|
}
|
|
sym::bitreverse => {
|
|
assert_eq!(layout, ret_layout);
|
|
(bits << extra).reverse_bits()
|
|
}
|
|
_ => bug!("not a numeric intrinsic: {}", name),
|
|
};
|
|
interp_ok(Scalar::from_uint(bits_out, ret_layout.size))
|
|
}
|
|
|
|
pub fn exact_div(
|
|
&mut self,
|
|
a: &ImmTy<'tcx, M::Provenance>,
|
|
b: &ImmTy<'tcx, M::Provenance>,
|
|
dest: &MPlaceTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx> {
|
|
assert_eq!(a.layout.ty, b.layout.ty);
|
|
assert_matches!(a.layout.ty.kind(), ty::Int(..) | ty::Uint(..));
|
|
|
|
// Performs an exact division, resulting in undefined behavior where
|
|
// `x % y != 0` or `y == 0` or `x == T::MIN && y == -1`.
|
|
// First, check x % y != 0 (or if that computation overflows).
|
|
let rem = self.binary_op(BinOp::Rem, a, b)?;
|
|
// sign does not matter for 0 test, so `to_bits` is fine
|
|
if rem.to_scalar().to_bits(a.layout.size)? != 0 {
|
|
throw_ub_custom!(
|
|
fluent::const_eval_exact_div_has_remainder,
|
|
a = format!("{a}"),
|
|
b = format!("{b}")
|
|
)
|
|
}
|
|
// `Rem` says this is all right, so we can let `Div` do its job.
|
|
let res = self.binary_op(BinOp::Div, a, b)?;
|
|
self.write_immediate(*res, dest)
|
|
}
|
|
|
|
pub fn saturating_arith(
|
|
&self,
|
|
mir_op: BinOp,
|
|
l: &ImmTy<'tcx, M::Provenance>,
|
|
r: &ImmTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
|
|
assert_eq!(l.layout.ty, r.layout.ty);
|
|
assert_matches!(l.layout.ty.kind(), ty::Int(..) | ty::Uint(..));
|
|
assert_matches!(mir_op, BinOp::Add | BinOp::Sub);
|
|
|
|
let (val, overflowed) =
|
|
self.binary_op(mir_op.wrapping_to_overflowing().unwrap(), l, r)?.to_scalar_pair();
|
|
interp_ok(if overflowed.to_bool()? {
|
|
let size = l.layout.size;
|
|
if l.layout.abi.is_signed() {
|
|
// For signed ints the saturated value depends on the sign of the first
|
|
// term since the sign of the second term can be inferred from this and
|
|
// the fact that the operation has overflowed (if either is 0 no
|
|
// overflow can occur)
|
|
let first_term: i128 = l.to_scalar().to_int(l.layout.size)?;
|
|
if first_term >= 0 {
|
|
// Negative overflow not possible since the positive first term
|
|
// can only increase an (in range) negative term for addition
|
|
// or corresponding negated positive term for subtraction.
|
|
Scalar::from_int(size.signed_int_max(), size)
|
|
} else {
|
|
// Positive overflow not possible for similar reason.
|
|
Scalar::from_int(size.signed_int_min(), size)
|
|
}
|
|
} else {
|
|
// unsigned
|
|
if matches!(mir_op, BinOp::Add) {
|
|
// max unsigned
|
|
Scalar::from_uint(size.unsigned_int_max(), size)
|
|
} else {
|
|
// underflow to 0
|
|
Scalar::from_uint(0u128, size)
|
|
}
|
|
}
|
|
} else {
|
|
val
|
|
})
|
|
}
|
|
|
|
/// Offsets a pointer by some multiple of its type, returning an error if the pointer leaves its
|
|
/// allocation.
|
|
pub fn ptr_offset_inbounds(
|
|
&self,
|
|
ptr: Pointer<Option<M::Provenance>>,
|
|
offset_bytes: i64,
|
|
) -> InterpResult<'tcx, Pointer<Option<M::Provenance>>> {
|
|
// The offset must be in bounds starting from `ptr`.
|
|
self.check_ptr_access_signed(ptr, offset_bytes, CheckInAllocMsg::PointerArithmeticTest)?;
|
|
// This also implies that there is no overflow, so we are done.
|
|
interp_ok(ptr.wrapping_signed_offset(offset_bytes, self))
|
|
}
|
|
|
|
/// Copy `count*size_of::<T>()` many bytes from `*src` to `*dst`.
|
|
pub(crate) fn copy_intrinsic(
|
|
&mut self,
|
|
src: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
|
|
dst: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
|
|
count: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
|
|
nonoverlapping: bool,
|
|
) -> InterpResult<'tcx> {
|
|
let count = self.read_target_usize(count)?;
|
|
let layout = self.layout_of(src.layout.ty.builtin_deref(true).unwrap())?;
|
|
let (size, align) = (layout.size, layout.align.abi);
|
|
|
|
let size = self.compute_size_in_bytes(size, count).ok_or_else(|| {
|
|
err_ub_custom!(
|
|
fluent::const_eval_size_overflow,
|
|
name = if nonoverlapping { "copy_nonoverlapping" } else { "copy" }
|
|
)
|
|
})?;
|
|
|
|
let src = self.read_pointer(src)?;
|
|
let dst = self.read_pointer(dst)?;
|
|
|
|
self.check_ptr_align(src, align)?;
|
|
self.check_ptr_align(dst, align)?;
|
|
|
|
self.mem_copy(src, dst, size, nonoverlapping)
|
|
}
|
|
|
|
/// Does a *typed* swap of `*left` and `*right`.
|
|
fn typed_swap_intrinsic(
|
|
&mut self,
|
|
left: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
|
|
right: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
|
|
) -> InterpResult<'tcx> {
|
|
let left = self.deref_pointer(left)?;
|
|
let right = self.deref_pointer(right)?;
|
|
debug_assert_eq!(left.layout, right.layout);
|
|
let kind = MemoryKind::Stack;
|
|
let temp = self.allocate(left.layout, kind)?;
|
|
self.copy_op(&left, &temp)?;
|
|
self.copy_op(&right, &left)?;
|
|
self.copy_op(&temp, &right)?;
|
|
self.deallocate_ptr(temp.ptr(), None, kind)?;
|
|
interp_ok(())
|
|
}
|
|
|
|
pub fn write_bytes_intrinsic(
|
|
&mut self,
|
|
dst: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
|
|
byte: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
|
|
count: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
|
|
name: &'static str,
|
|
) -> InterpResult<'tcx> {
|
|
let layout = self.layout_of(dst.layout.ty.builtin_deref(true).unwrap())?;
|
|
|
|
let dst = self.read_pointer(dst)?;
|
|
let byte = self.read_scalar(byte)?.to_u8()?;
|
|
let count = self.read_target_usize(count)?;
|
|
|
|
// `checked_mul` enforces a too small bound (the correct one would probably be target_isize_max),
|
|
// but no actual allocation can be big enough for the difference to be noticeable.
|
|
let len = self
|
|
.compute_size_in_bytes(layout.size, count)
|
|
.ok_or_else(|| err_ub_custom!(fluent::const_eval_size_overflow, name = name))?;
|
|
|
|
let bytes = std::iter::repeat(byte).take(len.bytes_usize());
|
|
self.write_bytes_ptr(dst, bytes)
|
|
}
|
|
|
|
pub(crate) fn compare_bytes_intrinsic(
|
|
&mut self,
|
|
left: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
|
|
right: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
|
|
byte_count: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
|
|
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
|
|
let left = self.read_pointer(left)?;
|
|
let right = self.read_pointer(right)?;
|
|
let n = Size::from_bytes(self.read_target_usize(byte_count)?);
|
|
|
|
let left_bytes = self.read_bytes_ptr_strip_provenance(left, n)?;
|
|
let right_bytes = self.read_bytes_ptr_strip_provenance(right, n)?;
|
|
|
|
// `Ordering`'s discriminants are -1/0/+1, so casting does the right thing.
|
|
let result = Ord::cmp(left_bytes, right_bytes) as i32;
|
|
interp_ok(Scalar::from_i32(result))
|
|
}
|
|
|
|
pub(crate) fn raw_eq_intrinsic(
|
|
&mut self,
|
|
lhs: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
|
|
rhs: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>,
|
|
) -> InterpResult<'tcx, Scalar<M::Provenance>> {
|
|
let layout = self.layout_of(lhs.layout.ty.builtin_deref(true).unwrap())?;
|
|
assert!(layout.is_sized());
|
|
|
|
let get_bytes = |this: &InterpCx<'tcx, M>,
|
|
op: &OpTy<'tcx, <M as Machine<'tcx>>::Provenance>|
|
|
-> InterpResult<'tcx, &[u8]> {
|
|
let ptr = this.read_pointer(op)?;
|
|
this.check_ptr_align(ptr, layout.align.abi)?;
|
|
let Some(alloc_ref) = self.get_ptr_alloc(ptr, layout.size)? else {
|
|
// zero-sized access
|
|
return interp_ok(&[]);
|
|
};
|
|
alloc_ref.get_bytes_strip_provenance()
|
|
};
|
|
|
|
let lhs_bytes = get_bytes(self, lhs)?;
|
|
let rhs_bytes = get_bytes(self, rhs)?;
|
|
interp_ok(Scalar::from_bool(lhs_bytes == rhs_bytes))
|
|
}
|
|
|
|
fn float_min_intrinsic<F>(
|
|
&mut self,
|
|
args: &[OpTy<'tcx, M::Provenance>],
|
|
dest: &MPlaceTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx, ()>
|
|
where
|
|
F: rustc_apfloat::Float + rustc_apfloat::FloatConvert<F> + Into<Scalar<M::Provenance>>,
|
|
{
|
|
let a: F = self.read_scalar(&args[0])?.to_float()?;
|
|
let b: F = self.read_scalar(&args[1])?.to_float()?;
|
|
let res = self.adjust_nan(a.min(b), &[a, b]);
|
|
self.write_scalar(res, dest)?;
|
|
interp_ok(())
|
|
}
|
|
|
|
fn float_max_intrinsic<F>(
|
|
&mut self,
|
|
args: &[OpTy<'tcx, M::Provenance>],
|
|
dest: &MPlaceTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx, ()>
|
|
where
|
|
F: rustc_apfloat::Float + rustc_apfloat::FloatConvert<F> + Into<Scalar<M::Provenance>>,
|
|
{
|
|
let a: F = self.read_scalar(&args[0])?.to_float()?;
|
|
let b: F = self.read_scalar(&args[1])?.to_float()?;
|
|
let res = self.adjust_nan(a.max(b), &[a, b]);
|
|
self.write_scalar(res, dest)?;
|
|
interp_ok(())
|
|
}
|
|
|
|
fn float_copysign_intrinsic<F>(
|
|
&mut self,
|
|
args: &[OpTy<'tcx, M::Provenance>],
|
|
dest: &MPlaceTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx, ()>
|
|
where
|
|
F: rustc_apfloat::Float + rustc_apfloat::FloatConvert<F> + Into<Scalar<M::Provenance>>,
|
|
{
|
|
let a: F = self.read_scalar(&args[0])?.to_float()?;
|
|
let b: F = self.read_scalar(&args[1])?.to_float()?;
|
|
// bitwise, no NaN adjustments
|
|
self.write_scalar(a.copy_sign(b), dest)?;
|
|
interp_ok(())
|
|
}
|
|
|
|
fn float_abs_intrinsic<F>(
|
|
&mut self,
|
|
args: &[OpTy<'tcx, M::Provenance>],
|
|
dest: &MPlaceTy<'tcx, M::Provenance>,
|
|
) -> InterpResult<'tcx, ()>
|
|
where
|
|
F: rustc_apfloat::Float + rustc_apfloat::FloatConvert<F> + Into<Scalar<M::Provenance>>,
|
|
{
|
|
let x: F = self.read_scalar(&args[0])?.to_float()?;
|
|
// bitwise, no NaN adjustments
|
|
self.write_scalar(x.abs(), dest)?;
|
|
interp_ok(())
|
|
}
|
|
}
|