os-rust/src/test/run-pass-fulldeps/pprust-expr-roundtrip.rs

228 lines
8.9 KiB
Rust
Raw Normal View History

2017-07-20 16:53:56 -04:00
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// ignore-cross-compile
// The general idea of this test is to enumerate all "interesting" expressions and check that
// `parse(print(e)) == e` for all `e`. Here's what's interesting, for the purposes of this test:
//
// 1. The test focuses on expression nesting, because interactions between different expression
// types are harder to test manually than single expression types in isolation.
//
// 2. The test only considers expressions of at most two nontrivial nodes. So it will check `x +
// x` and `x + (x - x)` but not `(x * x) + (x - x)`. The assumption here is that the correct
// handling of an expression might depend on the expression's parent, but doesn't depend on its
// siblings or any more distant ancestors.
//
// 3. The test only checks certain expression kinds. The assumption is that similar expression
// types, such as `if` and `while` or `+` and `-`, will be handled identically in the printer
// and parser. So if all combinations of exprs involving `if` work correctly, then combinations
// using `while`, `if let`, and so on will likely work as well.
2017-07-20 16:53:56 -04:00
#![feature(rustc_private)]
extern crate syntax;
use syntax::ast::*;
use syntax::codemap::{Spanned, DUMMY_SP, FileName};
2017-07-20 16:53:56 -04:00
use syntax::codemap::FilePathMapping;
use syntax::fold::{self, Folder};
use syntax::parse::{self, ParseSess};
use syntax::print::pprust;
use syntax::ptr::P;
use syntax::util::ThinVec;
fn parse_expr(ps: &ParseSess, src: &str) -> P<Expr> {
let mut p = parse::new_parser_from_source_str(ps,
FileName::Custom("expr".to_owned()),
2017-07-20 16:53:56 -04:00
src.to_owned());
p.parse_expr().unwrap()
}
// Helper functions for building exprs
fn expr(kind: ExprKind) -> P<Expr> {
P(Expr {
id: DUMMY_NODE_ID,
node: kind,
span: DUMMY_SP,
attrs: ThinVec::new(),
})
}
fn make_x() -> P<Expr> {
let seg = PathSegment::from_ident(Ident::from_str("x"), DUMMY_SP);
let path = Path { segments: vec![seg], span: DUMMY_SP };
2017-07-20 16:53:56 -04:00
expr(ExprKind::Path(None, path))
}
/// Iterate over exprs of depth up to `depth`. The goal is to explore all "interesting"
/// combinations of expression nesting. For example, we explore combinations using `if`, but not
/// `while` or `match`, since those should print and parse in much the same way as `if`.
fn iter_exprs(depth: usize, f: &mut FnMut(P<Expr>)) {
if depth == 0 {
f(make_x());
return;
}
let mut g = |e| f(expr(e));
for kind in 0 .. 16 {
2017-07-20 16:53:56 -04:00
match kind {
0 => iter_exprs(depth - 1, &mut |e| g(ExprKind::Box(e))),
1 => iter_exprs(depth - 1, &mut |e| g(ExprKind::Call(e, vec![]))),
2 => {
let seg = PathSegment::from_ident(Ident::from_str("x"), DUMMY_SP);
2017-07-20 16:53:56 -04:00
iter_exprs(depth - 1, &mut |e| g(ExprKind::MethodCall(
seg.clone(), vec![e, make_x()])));
iter_exprs(depth - 1, &mut |e| g(ExprKind::MethodCall(
seg.clone(), vec![make_x(), e])));
},
3 => {
2017-07-20 16:53:56 -04:00
let op = Spanned { span: DUMMY_SP, node: BinOpKind::Add };
iter_exprs(depth - 1, &mut |e| g(ExprKind::Binary(op, e, make_x())));
iter_exprs(depth - 1, &mut |e| g(ExprKind::Binary(op, make_x(), e)));
},
4 => {
2017-07-20 16:53:56 -04:00
let op = Spanned { span: DUMMY_SP, node: BinOpKind::Mul };
iter_exprs(depth - 1, &mut |e| g(ExprKind::Binary(op, e, make_x())));
iter_exprs(depth - 1, &mut |e| g(ExprKind::Binary(op, make_x(), e)));
},
5 => {
2017-07-20 16:53:56 -04:00
let op = Spanned { span: DUMMY_SP, node: BinOpKind::Shl };
iter_exprs(depth - 1, &mut |e| g(ExprKind::Binary(op, e, make_x())));
iter_exprs(depth - 1, &mut |e| g(ExprKind::Binary(op, make_x(), e)));
},
6 => {
2017-07-20 16:53:56 -04:00
iter_exprs(depth - 1, &mut |e| g(ExprKind::Unary(UnOp::Deref, e)));
},
7 => {
2017-07-20 16:53:56 -04:00
let block = P(Block {
stmts: Vec::new(),
id: DUMMY_NODE_ID,
rules: BlockCheckMode::Default,
span: DUMMY_SP,
recovered: false,
2017-07-20 16:53:56 -04:00
});
iter_exprs(depth - 1, &mut |e| g(ExprKind::If(e, block.clone(), None)));
},
8 => {
2017-07-20 16:53:56 -04:00
let decl = P(FnDecl {
inputs: vec![],
output: FunctionRetTy::Default(DUMMY_SP),
variadic: false,
});
iter_exprs(depth - 1, &mut |e| g(
ExprKind::Closure(CaptureBy::Value,
Movability::Movable,
decl.clone(),
e,
DUMMY_SP)));
2017-07-20 16:53:56 -04:00
},
9 => {
2017-07-20 16:53:56 -04:00
iter_exprs(depth - 1, &mut |e| g(ExprKind::Assign(e, make_x())));
iter_exprs(depth - 1, &mut |e| g(ExprKind::Assign(make_x(), e)));
},
10 => {
2017-07-20 16:53:56 -04:00
let ident = Spanned { span: DUMMY_SP, node: Ident::from_str("f") };
iter_exprs(depth - 1, &mut |e| g(ExprKind::Field(e, ident)));
},
11 => {
2017-07-20 16:53:56 -04:00
iter_exprs(depth - 1, &mut |e| g(ExprKind::Range(
Some(e), Some(make_x()), RangeLimits::HalfOpen)));
iter_exprs(depth - 1, &mut |e| g(ExprKind::Range(
Some(make_x()), Some(e), RangeLimits::HalfOpen)));
},
12 => {
2017-07-20 16:53:56 -04:00
iter_exprs(depth - 1, &mut |e| g(ExprKind::AddrOf(Mutability::Immutable, e)));
},
13 => {
2017-07-20 16:53:56 -04:00
g(ExprKind::Ret(None));
iter_exprs(depth - 1, &mut |e| g(ExprKind::Ret(Some(e))));
},
14 => {
let seg = PathSegment::new(Ident::from_str("S"), DUMMY_SP);
let path = Path { segments: vec![seg], span: DUMMY_SP };
2017-07-20 16:53:56 -04:00
g(ExprKind::Struct(path, vec![], Some(make_x())));
},
15 => {
2017-07-20 16:53:56 -04:00
iter_exprs(depth - 1, &mut |e| g(ExprKind::Try(e)));
},
_ => panic!("bad counter value in iter_exprs"),
}
}
}
// Folders for manipulating the placement of `Paren` nodes. See below for why this is needed.
/// Folder that removes all `ExprKind::Paren` nodes.
struct RemoveParens;
impl Folder for RemoveParens {
fn fold_expr(&mut self, e: P<Expr>) -> P<Expr> {
let e = match e.node {
ExprKind::Paren(ref inner) => inner.clone(),
_ => e.clone(),
};
e.map(|e| fold::noop_fold_expr(e, self))
}
}
/// Folder that inserts `ExprKind::Paren` nodes around every `Expr`.
struct AddParens;
impl Folder for AddParens {
fn fold_expr(&mut self, e: P<Expr>) -> P<Expr> {
let e = e.map(|e| fold::noop_fold_expr(e, self));
P(Expr {
id: DUMMY_NODE_ID,
node: ExprKind::Paren(e),
span: DUMMY_SP,
attrs: ThinVec::new(),
})
}
}
fn main() {
syntax::with_globals(|| run());
}
fn run() {
2017-07-20 16:53:56 -04:00
let ps = ParseSess::new(FilePathMapping::empty());
iter_exprs(2, &mut |e| {
// If the pretty printer is correct, then `parse(print(e))` should be identical to `e`,
// modulo placement of `Paren` nodes.
let printed = pprust::expr_to_string(&e);
println!("printed: {}", printed);
let parsed = parse_expr(&ps, &printed);
// We want to know if `parsed` is structurally identical to `e`, ignoring trivial
// differences like placement of `Paren`s or the exact ranges of node spans.
// Unfortunately, there is no easy way to make this comparison. Instead, we add `Paren`s
// everywhere we can, then pretty-print. This should give an unambiguous representation of
// each `Expr`, and it bypasses nearly all of the parenthesization logic, so we aren't
// relying on the correctness of the very thing we're testing.
let e1 = AddParens.fold_expr(RemoveParens.fold_expr(e));
let text1 = pprust::expr_to_string(&e1);
let e2 = AddParens.fold_expr(RemoveParens.fold_expr(parsed));
let text2 = pprust::expr_to_string(&e2);
assert!(text1 == text2,
"exprs are not equal:\n e = {:?}\n parsed = {:?}",
text1, text2);
});
}