os-rust/src/librustc_llvm/build.rs

291 lines
11 KiB
Rust
Raw Normal View History

use std::process::Command;
use std::env;
use std::path::{PathBuf, Path};
use build_helper::output;
fn detect_llvm_link() -> (&'static str, &'static str) {
// Force the link mode we want, preferring static by default, but
// possibly overridden by `configure --enable-llvm-link-shared`.
if env::var_os("LLVM_LINK_SHARED").is_some() {
("dylib", "--link-shared")
} else {
("static", "--link-static")
}
}
fn main() {
2018-04-18 00:50:41 +01:00
if env::var_os("RUST_CHECK").is_some() {
// If we're just running `check`, there's no need for LLVM to be built.
println!("cargo:rerun-if-env-changed=RUST_CHECK");
2018-04-18 00:50:41 +01:00
return;
}
build_helper::restore_library_path();
let target = env::var("TARGET").expect("TARGET was not set");
2016-05-29 14:57:34 +05:30
let llvm_config = env::var_os("LLVM_CONFIG")
2016-10-22 18:37:35 +05:30
.map(PathBuf::from)
.unwrap_or_else(|| {
if let Some(dir) = env::var_os("CARGO_TARGET_DIR").map(PathBuf::from) {
let to_test = dir.parent()
.unwrap()
.parent()
.unwrap()
.join(&target)
.join("llvm/bin/llvm-config");
if Command::new(&to_test).output().is_ok() {
return to_test;
}
}
PathBuf::from("llvm-config")
});
println!("cargo:rerun-if-changed={}", llvm_config.display());
println!("cargo:rerun-if-env-changed=LLVM_CONFIG");
// Test whether we're cross-compiling LLVM. This is a pretty rare case
// currently where we're producing an LLVM for a different platform than
// what this build script is currently running on.
//
// In that case, there's no guarantee that we can actually run the target,
// so the build system works around this by giving us the LLVM_CONFIG for
// the host platform. This only really works if the host LLVM and target
// LLVM are compiled the same way, but for us that's typically the case.
//
// We *want* detect this cross compiling situation by asking llvm-config
// what it's host-target is. If that's not the TARGET, then we're cross
// compiling. Unfortunately `llvm-config` seems either be buggy, or we're
// misconfiguring it, because the `i686-pc-windows-gnu` build of LLVM will
// report itself with a `--host-target` of `x86_64-pc-windows-gnu`. This
// tricks us into thinking we're doing a cross build when we aren't, so
// havoc ensues.
//
// In any case, if we're cross compiling, this generally just means that we
// can't trust all the output of llvm-config becaues it might be targeted
// for the host rather than the target. As a result a bunch of blocks below
// are gated on `if !is_crossed`
let target = env::var("TARGET").expect("TARGET was not set");
let host = env::var("HOST").expect("HOST was not set");
let is_crossed = target != host;
let mut optional_components =
vec!["x86", "arm", "aarch64", "amdgpu", "mips", "powerpc",
"systemz", "jsbackend", "webassembly", "msp430", "sparc", "nvptx",
"hexagon"];
let mut version_cmd = Command::new(&llvm_config);
version_cmd.arg("--version");
let version_output = output(&mut version_cmd);
let mut parts = version_output.split('.').take(2)
.filter_map(|s| s.parse::<u32>().ok());
let (major, _minor) =
if let (Some(major), Some(minor)) = (parts.next(), parts.next()) {
(major, minor)
} else {
(6, 0)
};
2018-07-24 12:03:28 +02:00
if major > 6 {
optional_components.push("riscv");
}
2016-05-29 14:57:34 +05:30
let required_components = &["ipo",
"bitreader",
"bitwriter",
"linker",
"asmparser",
rustc: Implement ThinLTO This commit is an implementation of LLVM's ThinLTO for consumption in rustc itself. Currently today LTO works by merging all relevant LLVM modules into one and then running optimization passes. "Thin" LTO operates differently by having more sharded work and allowing parallelism opportunities between optimizing codegen units. Further down the road Thin LTO also allows *incremental* LTO which should enable even faster release builds without compromising on the performance we have today. This commit uses a `-Z thinlto` flag to gate whether ThinLTO is enabled. It then also implements two forms of ThinLTO: * In one mode we'll *only* perform ThinLTO over the codegen units produced in a single compilation. That is, we won't load upstream rlibs, but we'll instead just perform ThinLTO amongst all codegen units produced by the compiler for the local crate. This is intended to emulate a desired end point where we have codegen units turned on by default for all crates and ThinLTO allows us to do this without performance loss. * In anther mode, like full LTO today, we'll optimize all upstream dependencies in "thin" mode. Unlike today, however, this LTO step is fully parallelized so should finish much more quickly. There's a good bit of comments about what the implementation is doing and where it came from, but the tl;dr; is that currently most of the support here is copied from upstream LLVM. This code duplication is done for a number of reasons: * Controlling parallelism means we can use the existing jobserver support to avoid overloading machines. * We will likely want a slightly different form of incremental caching which integrates with our own incremental strategy, but this is yet to be determined. * This buys us some flexibility about when/where we run ThinLTO, as well as having it tailored to fit our needs for the time being. * Finally this allows us to reuse some artifacts such as our `TargetMachine` creation, where all our options we used today aren't necessarily supported by upstream LLVM yet. My hope is that we can get some experience with this copy/paste in tree and then eventually upstream some work to LLVM itself to avoid the duplication while still ensuring our needs are met. Otherwise I fear that maintaining these bindings may be quite costly over the years with LLVM updates!
2017-07-23 08:14:38 -07:00
"lto",
"instrumentation"];
let components = output(Command::new(&llvm_config).arg("--components"));
let mut components = components.split_whitespace().collect::<Vec<_>>();
2016-05-29 14:57:34 +05:30
components.retain(|c| optional_components.contains(c) || required_components.contains(c));
for component in required_components {
if !components.contains(component) {
panic!("require llvm component {} but wasn't found", component);
}
}
for component in components.iter() {
println!("cargo:rustc-cfg=llvm_component=\"{}\"", component);
}
if major >= 9 {
println!("cargo:rustc-cfg=llvm_has_msp430_asm_parser");
}
// Link in our own LLVM shims, compiled with the same flags as LLVM
let mut cmd = Command::new(&llvm_config);
cmd.arg("--cxxflags");
let cxxflags = output(&mut cmd);
let mut cfg = cc::Build::new();
2017-09-05 17:48:47 +02:00
cfg.warnings(false);
for flag in cxxflags.split_whitespace() {
// Ignore flags like `-m64` when we're doing a cross build
if is_crossed && flag.starts_with("-m") {
2016-05-29 14:57:34 +05:30
continue;
}
if flag.starts_with("-flto") {
continue;
}
// -Wdate-time is not supported by the netbsd cross compiler
if is_crossed && target.contains("netbsd") && flag.contains("date-time") {
continue;
}
cfg.flag(flag);
}
for component in &components {
2017-11-26 16:25:49 -05:00
let mut flag = String::from("LLVM_COMPONENT_");
flag.push_str(&component.to_uppercase());
2017-11-26 16:25:49 -05:00
cfg.define(&flag, None);
}
println!("cargo:rerun-if-changed-env=LLVM_RUSTLLVM");
if env::var_os("LLVM_RUSTLLVM").is_some() {
2017-11-26 16:25:49 -05:00
cfg.define("LLVM_RUSTLLVM", None);
}
build_helper::rerun_if_changed_anything_in_dir(Path::new("../rustllvm"));
cfg.file("../rustllvm/PassWrapper.cpp")
.file("../rustllvm/RustWrapper.cpp")
.file("../rustllvm/ArchiveWrapper.cpp")
.file("../rustllvm/Linker.cpp")
.cpp(true)
.cpp_link_stdlib(None) // we handle this below
.compile("rustllvm");
let (llvm_kind, llvm_link_arg) = detect_llvm_link();
// Link in all LLVM libraries, if we're uwring the "wrong" llvm-config then
// we don't pick up system libs because unfortunately they're for the host
// of llvm-config, not the target that we're attempting to link.
let mut cmd = Command::new(&llvm_config);
cmd.arg(llvm_link_arg).arg("--libs");
if !is_crossed {
cmd.arg("--system-libs");
}
cmd.args(&components);
for lib in output(&mut cmd).split_whitespace() {
let name = if lib.starts_with("-l") {
&lib[2..]
} else if lib.starts_with("-") {
&lib[1..]
} else if Path::new(lib).exists() {
// On MSVC llvm-config will print the full name to libraries, but
// we're only interested in the name part
let name = Path::new(lib).file_name().unwrap().to_str().unwrap();
name.trim_end_matches(".lib")
} else if lib.ends_with(".lib") {
// Some MSVC libraries just come up with `.lib` tacked on, so chop
// that off
lib.trim_end_matches(".lib")
} else {
2016-10-22 18:37:35 +05:30
continue;
};
// Don't need or want this library, but LLVM's CMake build system
// doesn't provide a way to disable it, so filter it here even though we
// may or may not have built it. We don't reference anything from this
// library and it otherwise may just pull in extra dependencies on
// libedit which we don't want
if name == "LLVMLineEditor" {
2016-10-22 18:37:35 +05:30
continue;
}
2016-05-29 14:57:34 +05:30
let kind = if name.starts_with("LLVM") {
llvm_kind
2016-05-29 14:57:34 +05:30
} else {
"dylib"
};
println!("cargo:rustc-link-lib={}={}", kind, name);
}
// LLVM ldflags
//
// If we're a cross-compile of LLVM then unfortunately we can't trust these
// ldflags (largely where all the LLVM libs are located). Currently just
// hack around this by replacing the host triple with the target and pray
// that those -L directories are the same!
let mut cmd = Command::new(&llvm_config);
cmd.arg(llvm_link_arg).arg("--ldflags");
for lib in output(&mut cmd).split_whitespace() {
if lib.starts_with("-LIBPATH:") {
2016-10-22 18:37:35 +05:30
println!("cargo:rustc-link-search=native={}", &lib[9..]);
} else if is_crossed {
if lib.starts_with("-L") {
println!("cargo:rustc-link-search=native={}",
lib[2..].replace(&host, &target));
}
} else if lib.starts_with("-l") {
println!("cargo:rustc-link-lib={}", &lib[2..]);
} else if lib.starts_with("-L") {
println!("cargo:rustc-link-search=native={}", &lib[2..]);
}
}
// Some LLVM linker flags (-L and -l) may be needed even when linking
// librustc_llvm, for example when using static libc++, we may need to
// manually specify the library search path and -ldl -lpthread as link
// dependencies.
let llvm_linker_flags = env::var_os("LLVM_LINKER_FLAGS");
if let Some(s) = llvm_linker_flags {
for lib in s.into_string().unwrap().split_whitespace() {
if lib.starts_with("-l") {
println!("cargo:rustc-link-lib={}", &lib[2..]);
} else if lib.starts_with("-L") {
println!("cargo:rustc-link-search=native={}", &lib[2..]);
}
}
}
2017-03-19 19:31:49 +01:00
let llvm_static_stdcpp = env::var_os("LLVM_STATIC_STDCPP");
let llvm_use_libcxx = env::var_os("LLVM_USE_LIBCXX");
2017-03-19 19:31:49 +01:00
let stdcppname = if target.contains("openbsd") {
// llvm-config on OpenBSD doesn't mention stdlib=libc++
"c++"
} else if target.contains("freebsd") {
"c++"
} else if target.contains("darwin") {
"c++"
2017-03-19 19:31:49 +01:00
} else if target.contains("netbsd") && llvm_static_stdcpp.is_some() {
// NetBSD uses a separate library when relocation is required
"stdc++_pic"
} else if llvm_use_libcxx.is_some() {
"c++"
} else {
"stdc++"
};
// C++ runtime library
if !target.contains("msvc") {
2017-03-19 19:31:49 +01:00
if let Some(s) = llvm_static_stdcpp {
assert!(!cxxflags.contains("stdlib=libc++"));
let path = PathBuf::from(s);
println!("cargo:rustc-link-search=native={}",
path.parent().unwrap().display());
println!("cargo:rustc-link-lib=static={}", stdcppname);
} else if cxxflags.contains("stdlib=libc++") {
println!("cargo:rustc-link-lib=c++");
} else {
println!("cargo:rustc-link-lib={}", stdcppname);
}
}
// LLVM requires symbols from this library, but apparently they're not printed
// during llvm-config?
if target.contains("windows-gnu") {
println!("cargo:rustc-link-lib=static-nobundle=gcc_s");
println!("cargo:rustc-link-lib=static-nobundle=pthread");
2018-07-31 15:36:38 +03:00
println!("cargo:rustc-link-lib=dylib=uuid");
}
}