Don't emit divide-by-zero panic paths in StepBy::len

I happened to notice today that there's actually two such calls emitted in the assembly: <https://rust.godbolt.org/z/1Wbbd3Ts6>

Since they're impossible, hopefully telling LLVM that will also help optimizations elsewhere.
This commit is contained in:
Scott McMurray 2024-04-06 11:37:57 -07:00
parent 773fb88e13
commit 00bd24766f
2 changed files with 75 additions and 31 deletions

View file

@ -1,6 +1,7 @@
use crate::{
intrinsics,
iter::{from_fn, TrustedLen, TrustedRandomAccess},
num::NonZeroUsize,
ops::{Range, Try},
};
@ -22,7 +23,11 @@ pub struct StepBy<I> {
/// Additionally this type-dependent preprocessing means specialized implementations
/// cannot be used interchangeably.
iter: I,
step: usize,
/// This field is `step - 1`, aka the correct amount to pass to `nth` when iterating.
/// It MUST NOT be `usize::MAX`, as `unsafe` code depends on being able to add one
/// without the risk of overflow. (This is important so that length calculations
/// don't need to check for division-by-zero, for example.)
step_minus_one: usize,
first_take: bool,
}
@ -31,7 +36,16 @@ impl<I> StepBy<I> {
pub(in crate::iter) fn new(iter: I, step: usize) -> StepBy<I> {
assert!(step != 0);
let iter = <I as SpecRangeSetup<I>>::setup(iter, step);
StepBy { iter, step: step - 1, first_take: true }
StepBy { iter, step_minus_one: step - 1, first_take: true }
}
/// The `step` that was originally passed to `Iterator::step_by(step)`,
/// aka `self.step_minus_one + 1`.
#[inline]
fn original_step(&self) -> NonZeroUsize {
// SAFETY: By type invariant, `step_minus_one` cannot be `MAX`, which
// means the addition cannot overflow and the result cannot be zero.
unsafe { NonZeroUsize::new_unchecked(intrinsics::unchecked_add(self.step_minus_one, 1)) }
}
}
@ -81,8 +95,8 @@ where
// The zero-based index starting from the end of the iterator of the
// last element. Used in the `DoubleEndedIterator` implementation.
fn next_back_index(&self) -> usize {
let rem = self.iter.len() % (self.step + 1);
if self.first_take { if rem == 0 { self.step } else { rem - 1 } } else { rem }
let rem = self.iter.len() % self.original_step();
if self.first_take { if rem == 0 { self.step_minus_one } else { rem - 1 } } else { rem }
}
}
@ -209,7 +223,7 @@ unsafe impl<I: Iterator> StepByImpl<I> for StepBy<I> {
#[inline]
default fn spec_next(&mut self) -> Option<I::Item> {
let step_size = if self.first_take { 0 } else { self.step };
let step_size = if self.first_take { 0 } else { self.step_minus_one };
self.first_take = false;
self.iter.nth(step_size)
}
@ -217,22 +231,22 @@ unsafe impl<I: Iterator> StepByImpl<I> for StepBy<I> {
#[inline]
default fn spec_size_hint(&self) -> (usize, Option<usize>) {
#[inline]
fn first_size(step: usize) -> impl Fn(usize) -> usize {
move |n| if n == 0 { 0 } else { 1 + (n - 1) / (step + 1) }
fn first_size(step: NonZeroUsize) -> impl Fn(usize) -> usize {
move |n| if n == 0 { 0 } else { 1 + (n - 1) / step }
}
#[inline]
fn other_size(step: usize) -> impl Fn(usize) -> usize {
move |n| n / (step + 1)
fn other_size(step: NonZeroUsize) -> impl Fn(usize) -> usize {
move |n| n / step
}
let (low, high) = self.iter.size_hint();
if self.first_take {
let f = first_size(self.step);
let f = first_size(self.original_step());
(f(low), high.map(f))
} else {
let f = other_size(self.step);
let f = other_size(self.original_step());
(f(low), high.map(f))
}
}
@ -247,10 +261,9 @@ unsafe impl<I: Iterator> StepByImpl<I> for StepBy<I> {
}
n -= 1;
}
// n and self.step are indices, we need to add 1 to get the amount of elements
// n and self.step_minus_one are indices, we need to add 1 to get the amount of elements
// When calling `.nth`, we need to subtract 1 again to convert back to an index
// step + 1 can't overflow because `.step_by` sets `self.step` to `step - 1`
let mut step = self.step + 1;
let mut step = self.original_step().get();
// n + 1 could overflow
// thus, if n is usize::MAX, instead of adding one, we call .nth(step)
if n == usize::MAX {
@ -288,8 +301,11 @@ unsafe impl<I: Iterator> StepByImpl<I> for StepBy<I> {
R: Try<Output = Acc>,
{
#[inline]
fn nth<I: Iterator>(iter: &mut I, step: usize) -> impl FnMut() -> Option<I::Item> + '_ {
move || iter.nth(step)
fn nth<I: Iterator>(
iter: &mut I,
step_minus_one: usize,
) -> impl FnMut() -> Option<I::Item> + '_ {
move || iter.nth(step_minus_one)
}
if self.first_take {
@ -299,7 +315,7 @@ unsafe impl<I: Iterator> StepByImpl<I> for StepBy<I> {
Some(x) => acc = f(acc, x)?,
}
}
from_fn(nth(&mut self.iter, self.step)).try_fold(acc, f)
from_fn(nth(&mut self.iter, self.step_minus_one)).try_fold(acc, f)
}
default fn spec_fold<Acc, F>(mut self, mut acc: Acc, mut f: F) -> Acc
@ -307,8 +323,11 @@ unsafe impl<I: Iterator> StepByImpl<I> for StepBy<I> {
F: FnMut(Acc, Self::Item) -> Acc,
{
#[inline]
fn nth<I: Iterator>(iter: &mut I, step: usize) -> impl FnMut() -> Option<I::Item> + '_ {
move || iter.nth(step)
fn nth<I: Iterator>(
iter: &mut I,
step_minus_one: usize,
) -> impl FnMut() -> Option<I::Item> + '_ {
move || iter.nth(step_minus_one)
}
if self.first_take {
@ -318,7 +337,7 @@ unsafe impl<I: Iterator> StepByImpl<I> for StepBy<I> {
Some(x) => acc = f(acc, x),
}
}
from_fn(nth(&mut self.iter, self.step)).fold(acc, f)
from_fn(nth(&mut self.iter, self.step_minus_one)).fold(acc, f)
}
}
@ -336,7 +355,7 @@ unsafe impl<I: DoubleEndedIterator + ExactSizeIterator> StepByBackImpl<I> for St
// is out of bounds because the length of `self.iter` does not exceed
// `usize::MAX` (because `I: ExactSizeIterator`) and `nth_back` is
// zero-indexed
let n = n.saturating_mul(self.step + 1).saturating_add(self.next_back_index());
let n = n.saturating_mul(self.original_step().get()).saturating_add(self.next_back_index());
self.iter.nth_back(n)
}
@ -348,16 +367,16 @@ unsafe impl<I: DoubleEndedIterator + ExactSizeIterator> StepByBackImpl<I> for St
#[inline]
fn nth_back<I: DoubleEndedIterator>(
iter: &mut I,
step: usize,
step_minus_one: usize,
) -> impl FnMut() -> Option<I::Item> + '_ {
move || iter.nth_back(step)
move || iter.nth_back(step_minus_one)
}
match self.next_back() {
None => try { init },
Some(x) => {
let acc = f(init, x)?;
from_fn(nth_back(&mut self.iter, self.step)).try_fold(acc, f)
from_fn(nth_back(&mut self.iter, self.step_minus_one)).try_fold(acc, f)
}
}
}
@ -371,16 +390,16 @@ unsafe impl<I: DoubleEndedIterator + ExactSizeIterator> StepByBackImpl<I> for St
#[inline]
fn nth_back<I: DoubleEndedIterator>(
iter: &mut I,
step: usize,
step_minus_one: usize,
) -> impl FnMut() -> Option<I::Item> + '_ {
move || iter.nth_back(step)
move || iter.nth_back(step_minus_one)
}
match self.next_back() {
None => init,
Some(x) => {
let acc = f(init, x);
from_fn(nth_back(&mut self.iter, self.step)).fold(acc, f)
from_fn(nth_back(&mut self.iter, self.step_minus_one)).fold(acc, f)
}
}
}
@ -424,8 +443,7 @@ macro_rules! spec_int_ranges {
fn spec_next(&mut self) -> Option<$t> {
// if a step size larger than the type has been specified fall back to
// t::MAX, in which case remaining will be at most 1.
// The `+ 1` can't overflow since the constructor substracted 1 from the original value.
let step = <$t>::try_from(self.step + 1).unwrap_or(<$t>::MAX);
let step = <$t>::try_from(self.original_step().get()).unwrap_or(<$t>::MAX);
let remaining = self.iter.end;
if remaining > 0 {
let val = self.iter.start;
@ -474,7 +492,7 @@ macro_rules! spec_int_ranges {
{
// if a step size larger than the type has been specified fall back to
// t::MAX, in which case remaining will be at most 1.
let step = <$t>::try_from(self.step + 1).unwrap_or(<$t>::MAX);
let step = <$t>::try_from(self.original_step().get()).unwrap_or(<$t>::MAX);
let remaining = self.iter.end;
let mut acc = init;
let mut val = self.iter.start;
@ -500,7 +518,7 @@ macro_rules! spec_int_ranges_r {
fn spec_next_back(&mut self) -> Option<Self::Item>
where Range<$t>: DoubleEndedIterator + ExactSizeIterator,
{
let step = (self.step + 1) as $t;
let step = self.original_step().get() as $t;
let remaining = self.iter.end;
if remaining > 0 {
let start = self.iter.start;

View file

@ -0,0 +1,26 @@
//@ compile-flags: -O
#![crate_type = "lib"]
use std::iter::StepBy;
use std::slice::Iter;
// The constructor for `StepBy` ensures we can never end up needing to do zero
// checks on denominators, so check that the code isn't emitting panic paths.
// CHECK-LABEL: @step_by_len_std
#[no_mangle]
pub fn step_by_len_std(x: &StepBy<Iter<i32>>) -> usize {
// CHECK-NOT: div_by_zero
// CHECK: udiv
// CHECK-NOT: div_by_zero
x.len()
}
// CHECK-LABEL: @step_by_len_naive
#[no_mangle]
pub fn step_by_len_naive(x: Iter<i32>, step_minus_one: usize) -> usize {
// CHECK: udiv
// CHECK: call{{.+}}div_by_zero
x.len() / (step_minus_one + 1)
}