Serialize dependency graph directly from DepGraph

Reduce memory usage by serializing dep graph directly from `DepGraph`,
rather than copying it into `SerializedDepGraph` and serializing that.
This commit is contained in:
Tyson Nottingham 2021-01-12 13:04:51 -08:00
parent 704e47f78b
commit 09067db8a0
4 changed files with 328 additions and 170 deletions

View file

@ -1,6 +1,6 @@
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::sync::join;
use rustc_middle::dep_graph::{DepGraph, DepKind, WorkProduct, WorkProductId};
use rustc_middle::dep_graph::{DepGraph, WorkProduct, WorkProductId};
use rustc_middle::ty::TyCtxt;
use rustc_serialize::opaque::{FileEncodeResult, FileEncoder};
use rustc_serialize::Encodable as RustcEncodable;
@ -148,83 +148,15 @@ fn encode_dep_graph(tcx: TyCtxt<'_>, encoder: &mut FileEncoder) -> FileEncodeRes
// First encode the commandline arguments hash
tcx.sess.opts.dep_tracking_hash().encode(encoder)?;
// Encode the graph data.
let serialized_graph =
tcx.sess.time("incr_comp_serialize_dep_graph", || tcx.dep_graph.serialize());
if tcx.sess.opts.debugging_opts.incremental_info {
#[derive(Clone)]
struct Stat {
kind: DepKind,
node_counter: u64,
edge_counter: u64,
}
let total_node_count = serialized_graph.nodes.len();
let total_edge_count = serialized_graph.edge_list_data.len();
let mut counts: FxHashMap<_, Stat> =
FxHashMap::with_capacity_and_hasher(total_node_count, Default::default());
for (i, &node) in serialized_graph.nodes.iter_enumerated() {
let stat = counts.entry(node.kind).or_insert(Stat {
kind: node.kind,
node_counter: 0,
edge_counter: 0,
});
stat.node_counter += 1;
let (edge_start, edge_end) = serialized_graph.edge_list_indices[i];
stat.edge_counter += (edge_end - edge_start) as u64;
}
let mut counts: Vec<_> = counts.values().cloned().collect();
counts.sort_by_key(|s| -(s.node_counter as i64));
println!("[incremental]");
println!("[incremental] DepGraph Statistics");
const SEPARATOR: &str = "[incremental] --------------------------------\
----------------------------------------------\
------------";
println!("{}", SEPARATOR);
println!("[incremental]");
println!("[incremental] Total Node Count: {}", total_node_count);
println!("[incremental] Total Edge Count: {}", total_edge_count);
if let Some((total_edge_reads, total_duplicate_edge_reads)) =
tcx.dep_graph.edge_deduplication_data()
{
println!("[incremental] Total Edge Reads: {}", total_edge_reads);
println!("[incremental] Total Duplicate Edge Reads: {}", total_duplicate_edge_reads);
}
println!("[incremental]");
println!(
"[incremental] {:<36}| {:<17}| {:<12}| {:<17}|",
"Node Kind", "Node Frequency", "Node Count", "Avg. Edge Count"
);
println!(
"[incremental] -------------------------------------\
|------------------\
|-------------\
|------------------|"
);
for stat in counts.iter() {
println!(
"[incremental] {:<36}|{:>16.1}% |{:>12} |{:>17.1} |",
format!("{:?}", stat.kind),
(100.0 * (stat.node_counter as f64)) / (total_node_count as f64), // percentage of all nodes
stat.node_counter,
(stat.edge_counter as f64) / (stat.node_counter as f64), // average edges per kind
);
}
println!("{}", SEPARATOR);
println!("[incremental]");
tcx.dep_graph.print_incremental_info();
}
tcx.sess.time("incr_comp_encode_serialized_dep_graph", || serialized_graph.encode(encoder))
// There is a tiny window between printing the incremental info above and encoding the dep
// graph below in which the dep graph could change, thus making the printed incremental info
// slightly out of date. If this matters to you, please feel free to submit a patch. :)
tcx.sess.time("incr_comp_encode_serialized_dep_graph", || tcx.dep_graph.encode(encoder))
}
fn encode_work_product_index(

View file

@ -7,6 +7,7 @@ use rustc_data_structures::sync::{AtomicU32, AtomicU64, Lock, LockGuard, Lrc, Or
use rustc_data_structures::unlikely;
use rustc_errors::Diagnostic;
use rustc_index::vec::{Idx, IndexVec};
use rustc_serialize::{Encodable, Encoder};
use parking_lot::{Condvar, Mutex};
use smallvec::{smallvec, SmallVec};
@ -21,7 +22,7 @@ use std::sync::atomic::Ordering::Relaxed;
use super::debug::EdgeFilter;
use super::prev::PreviousDepGraph;
use super::query::DepGraphQuery;
use super::serialized::{SerializedDepGraph, SerializedDepNodeIndex};
use super::serialized::SerializedDepNodeIndex;
use super::{DepContext, DepKind, DepNode, WorkProductId};
#[derive(Clone)]
@ -148,7 +149,7 @@ impl<K: DepKind> DepGraph<K> {
let mut edge_list_indices = Vec::with_capacity(node_count);
let mut edge_list_data = Vec::with_capacity(edge_count);
// See `serialize` for notes on the approach used here.
// See `DepGraph`'s `Encodable` implementation for notes on the approach used here.
edge_list_data.extend(data.unshared_edges.iter().map(|i| i.index()));
@ -551,19 +552,6 @@ impl<K: DepKind> DepGraph<K> {
self.data.as_ref()?.dep_node_debug.borrow().get(&dep_node).cloned()
}
pub fn edge_deduplication_data(&self) -> Option<(u64, u64)> {
if cfg!(debug_assertions) {
let current_dep_graph = &self.data.as_ref().unwrap().current;
Some((
current_dep_graph.total_read_count.load(Relaxed),
current_dep_graph.total_duplicate_read_count.load(Relaxed),
))
} else {
None
}
}
fn edge_count(&self, node_data: &LockGuard<'_, DepNodeData<K>>) -> usize {
let data = self.data.as_ref().unwrap();
let previous = &data.previous;
@ -579,84 +567,6 @@ impl<K: DepKind> DepGraph<K> {
edge_count
}
pub fn serialize(&self) -> SerializedDepGraph<K> {
type SDNI = SerializedDepNodeIndex;
let data = self.data.as_ref().unwrap();
let previous = &data.previous;
// Note locking order: `prev_index_to_index`, then `data`.
let prev_index_to_index = data.current.prev_index_to_index.lock();
let data = data.current.data.lock();
let node_count = data.hybrid_indices.len();
let edge_count = self.edge_count(&data);
let mut nodes = IndexVec::with_capacity(node_count);
let mut fingerprints = IndexVec::with_capacity(node_count);
let mut edge_list_indices = IndexVec::with_capacity(node_count);
let mut edge_list_data = Vec::with_capacity(edge_count);
// `rustc_middle::ty::query::OnDiskCache` expects nodes to be in
// `DepNodeIndex` order. The edges in `edge_list_data`, on the other
// hand, don't need to be in a particular order, as long as each node
// can reference its edges as a contiguous range within it. This is why
// we're able to copy `unshared_edges` directly into `edge_list_data`.
// It meets the above requirements, and each non-dark-green node already
// knows the range of edges to reference within it, which they'll push
// onto `edge_list_indices`. Dark green nodes, however, don't have their
// edges in `unshared_edges`, so need to add them to `edge_list_data`.
edge_list_data.extend(data.unshared_edges.iter().map(|i| SDNI::new(i.index())));
for &hybrid_index in data.hybrid_indices.iter() {
match hybrid_index.into() {
HybridIndex::New(i) => {
let new = &data.new;
nodes.push(new.nodes[i]);
fingerprints.push(new.fingerprints[i]);
let edges = &new.edges[i];
edge_list_indices.push((edges.start.as_u32(), edges.end.as_u32()));
}
HybridIndex::Red(i) => {
let red = &data.red;
nodes.push(previous.index_to_node(red.node_indices[i]));
fingerprints.push(red.fingerprints[i]);
let edges = &red.edges[i];
edge_list_indices.push((edges.start.as_u32(), edges.end.as_u32()));
}
HybridIndex::LightGreen(i) => {
let lg = &data.light_green;
nodes.push(previous.index_to_node(lg.node_indices[i]));
fingerprints.push(previous.fingerprint_by_index(lg.node_indices[i]));
let edges = &lg.edges[i];
edge_list_indices.push((edges.start.as_u32(), edges.end.as_u32()));
}
HybridIndex::DarkGreen(prev_index) => {
nodes.push(previous.index_to_node(prev_index));
fingerprints.push(previous.fingerprint_by_index(prev_index));
let edges_iter = previous
.edge_targets_from(prev_index)
.iter()
.map(|&dst| prev_index_to_index[dst].as_ref().unwrap());
let start = edge_list_data.len() as u32;
edge_list_data.extend(edges_iter.map(|i| SDNI::new(i.index())));
let end = edge_list_data.len() as u32;
edge_list_indices.push((start, end));
}
}
}
debug_assert_eq!(nodes.len(), node_count);
debug_assert_eq!(fingerprints.len(), node_count);
debug_assert_eq!(edge_list_indices.len(), node_count);
debug_assert_eq!(edge_list_data.len(), edge_count);
debug_assert!(edge_list_data.len() <= u32::MAX as usize);
SerializedDepGraph { nodes, fingerprints, edge_list_indices, edge_list_data }
}
pub fn node_color(&self, dep_node: &DepNode<K>) -> Option<DepNodeColor> {
if let Some(ref data) = self.data {
if let Some(prev_index) = data.previous.node_to_index_opt(dep_node) {
@ -997,12 +907,251 @@ impl<K: DepKind> DepGraph<K> {
}
}
pub fn print_incremental_info(&self) {
#[derive(Clone)]
struct Stat<Kind: DepKind> {
kind: Kind,
node_counter: u64,
edge_counter: u64,
}
let data = self.data.as_ref().unwrap();
let prev = &data.previous;
let current = &data.current;
let data = current.data.lock();
let mut stats: FxHashMap<_, Stat<K>> = FxHashMap::with_hasher(Default::default());
for &hybrid_index in data.hybrid_indices.iter() {
let (kind, edge_count) = match hybrid_index.into() {
HybridIndex::New(new_index) => {
let kind = data.new.nodes[new_index].kind;
let edge_range = &data.new.edges[new_index];
(kind, edge_range.end.as_usize() - edge_range.start.as_usize())
}
HybridIndex::Red(red_index) => {
let kind = prev.index_to_node(data.red.node_indices[red_index]).kind;
let edge_range = &data.red.edges[red_index];
(kind, edge_range.end.as_usize() - edge_range.start.as_usize())
}
HybridIndex::LightGreen(lg_index) => {
let kind = prev.index_to_node(data.light_green.node_indices[lg_index]).kind;
let edge_range = &data.light_green.edges[lg_index];
(kind, edge_range.end.as_usize() - edge_range.start.as_usize())
}
HybridIndex::DarkGreen(prev_index) => {
let kind = prev.index_to_node(prev_index).kind;
let edge_count = prev.edge_targets_from(prev_index).len();
(kind, edge_count)
}
};
let stat = stats.entry(kind).or_insert(Stat { kind, node_counter: 0, edge_counter: 0 });
stat.node_counter += 1;
stat.edge_counter += edge_count as u64;
}
let total_node_count = data.hybrid_indices.len();
let total_edge_count = self.edge_count(&data);
// Drop the lock guard.
std::mem::drop(data);
let mut stats: Vec<_> = stats.values().cloned().collect();
stats.sort_by_key(|s| -(s.node_counter as i64));
const SEPARATOR: &str = "[incremental] --------------------------------\
----------------------------------------------\
------------";
println!("[incremental]");
println!("[incremental] DepGraph Statistics");
println!("{}", SEPARATOR);
println!("[incremental]");
println!("[incremental] Total Node Count: {}", total_node_count);
println!("[incremental] Total Edge Count: {}", total_edge_count);
if cfg!(debug_assertions) {
let total_edge_reads = current.total_read_count.load(Relaxed);
let total_duplicate_edge_reads = current.total_duplicate_read_count.load(Relaxed);
println!("[incremental] Total Edge Reads: {}", total_edge_reads);
println!("[incremental] Total Duplicate Edge Reads: {}", total_duplicate_edge_reads);
}
println!("[incremental]");
println!(
"[incremental] {:<36}| {:<17}| {:<12}| {:<17}|",
"Node Kind", "Node Frequency", "Node Count", "Avg. Edge Count"
);
println!(
"[incremental] -------------------------------------\
|------------------\
|-------------\
|------------------|"
);
for stat in stats {
let node_kind_ratio = (100.0 * (stat.node_counter as f64)) / (total_node_count as f64);
let node_kind_avg_edges = (stat.edge_counter as f64) / (stat.node_counter as f64);
println!(
"[incremental] {:<36}|{:>16.1}% |{:>12} |{:>17.1} |",
format!("{:?}", stat.kind),
node_kind_ratio,
stat.node_counter,
node_kind_avg_edges,
);
}
println!("{}", SEPARATOR);
println!("[incremental]");
}
fn next_virtual_depnode_index(&self) -> DepNodeIndex {
let index = self.virtual_dep_node_index.fetch_add(1, Relaxed);
DepNodeIndex::from_u32(index)
}
}
impl<E: Encoder, K: DepKind + Encodable<E>> Encodable<E> for DepGraph<K> {
fn encode(&self, e: &mut E) -> Result<(), E::Error> {
// We used to serialize the dep graph by creating and serializing a `SerializedDepGraph`
// using data copied from the `DepGraph`. But copying created a large memory spike, so we
// now serialize directly from the `DepGraph` as if it's a `SerializedDepGraph`. Because we
// deserialize that data into a `SerializedDepGraph` in the next compilation session, we
// need `DepGraph`'s `Encodable` and `SerializedDepGraph`'s `Decodable` implementations to
// be in sync. If you update this encoding, be sure to update the decoding, and vice-versa.
let data = self.data.as_ref().unwrap();
let prev = &data.previous;
// Note locking order: `prev_index_to_index`, then `data`.
let prev_index_to_index = data.current.prev_index_to_index.lock();
let data = data.current.data.lock();
let new = &data.new;
let red = &data.red;
let lg = &data.light_green;
let node_count = data.hybrid_indices.len();
let edge_count = self.edge_count(&data);
// `rustc_middle::ty::query::OnDiskCache` expects nodes to be encoded in `DepNodeIndex`
// order. The edges in `edge_list_data` don't need to be in a particular order, as long as
// each node references its edges as a contiguous range within it. Therefore, we can encode
// `edge_list_data` directly from `unshared_edges`. It meets the above requirements, as
// each non-dark-green node already knows the range of edges to reference within it, which
// they'll encode in `edge_list_indices`. Dark green nodes, however, don't have their edges
// in `unshared_edges`, so need to add them to `edge_list_data`.
use HybridIndex::*;
// Encoded values (nodes, etc.) are explicitly typed below to avoid inadvertently
// serializing data in the wrong format (i.e. one incompatible with `SerializedDepGraph`).
e.emit_struct("SerializedDepGraph", 4, |e| {
e.emit_struct_field("nodes", 0, |e| {
// `SerializedDepGraph` expects this to be encoded as a sequence of `DepNode`s.
e.emit_seq(node_count, |e| {
for (seq_index, &hybrid_index) in data.hybrid_indices.iter().enumerate() {
let node: DepNode<K> = match hybrid_index.into() {
New(i) => new.nodes[i],
Red(i) => prev.index_to_node(red.node_indices[i]),
LightGreen(i) => prev.index_to_node(lg.node_indices[i]),
DarkGreen(prev_index) => prev.index_to_node(prev_index),
};
e.emit_seq_elt(seq_index, |e| node.encode(e))?;
}
Ok(())
})
})?;
e.emit_struct_field("fingerprints", 1, |e| {
// `SerializedDepGraph` expects this to be encoded as a sequence of `Fingerprints`s.
e.emit_seq(node_count, |e| {
for (seq_index, &hybrid_index) in data.hybrid_indices.iter().enumerate() {
let fingerprint: Fingerprint = match hybrid_index.into() {
New(i) => new.fingerprints[i],
Red(i) => red.fingerprints[i],
LightGreen(i) => prev.fingerprint_by_index(lg.node_indices[i]),
DarkGreen(prev_index) => prev.fingerprint_by_index(prev_index),
};
e.emit_seq_elt(seq_index, |e| fingerprint.encode(e))?;
}
Ok(())
})
})?;
e.emit_struct_field("edge_list_indices", 2, |e| {
// `SerializedDepGraph` expects this to be encoded as a sequence of `(u32, u32)`s.
e.emit_seq(node_count, |e| {
// Dark green node edges start after the unshared (all other nodes') edges.
let mut dark_green_edge_index = data.unshared_edges.len();
for (seq_index, &hybrid_index) in data.hybrid_indices.iter().enumerate() {
let edge_indices: (u32, u32) = match hybrid_index.into() {
New(i) => (new.edges[i].start.as_u32(), new.edges[i].end.as_u32()),
Red(i) => (red.edges[i].start.as_u32(), red.edges[i].end.as_u32()),
LightGreen(i) => (lg.edges[i].start.as_u32(), lg.edges[i].end.as_u32()),
DarkGreen(prev_index) => {
let edge_count = prev.edge_targets_from(prev_index).len();
let start = dark_green_edge_index as u32;
dark_green_edge_index += edge_count;
let end = dark_green_edge_index as u32;
(start, end)
}
};
e.emit_seq_elt(seq_index, |e| edge_indices.encode(e))?;
}
assert_eq!(dark_green_edge_index, edge_count);
Ok(())
})
})?;
e.emit_struct_field("edge_list_data", 3, |e| {
// `SerializedDepGraph` expects this to be encoded as a sequence of
// `SerializedDepNodeIndex`.
e.emit_seq(edge_count, |e| {
for (seq_index, &edge) in data.unshared_edges.iter().enumerate() {
let serialized_edge = SerializedDepNodeIndex::new(edge.index());
e.emit_seq_elt(seq_index, |e| serialized_edge.encode(e))?;
}
let mut seq_index = data.unshared_edges.len();
for &hybrid_index in data.hybrid_indices.iter() {
if let DarkGreen(prev_index) = hybrid_index.into() {
for &edge in prev.edge_targets_from(prev_index) {
// Dark green node edges are stored in the previous graph
// and must be converted to edges in the current graph,
// and then serialized as `SerializedDepNodeIndex`.
let serialized_edge = SerializedDepNodeIndex::new(
prev_index_to_index[edge].as_ref().unwrap().index(),
);
e.emit_seq_elt(seq_index, |e| serialized_edge.encode(e))?;
seq_index += 1;
}
}
}
assert_eq!(seq_index, edge_count);
Ok(())
})
})
})
}
}
/// A "work product" is an intermediate result that we save into the
/// incremental directory for later re-use. The primary example are
/// the object files that we save for each partition at code

View file

@ -3,7 +3,7 @@ use super::{DepKind, DepNode};
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_data_structures::fx::FxHashMap;
#[derive(Debug, Encodable, Decodable)]
#[derive(Debug)]
pub struct PreviousDepGraph<K: DepKind> {
data: SerializedDepGraph<K>,
index: FxHashMap<DepNode<K>, SerializedDepNodeIndex>,

View file

@ -3,6 +3,7 @@
use super::{DepKind, DepNode};
use rustc_data_structures::fingerprint::Fingerprint;
use rustc_index::vec::IndexVec;
use rustc_serialize::{Decodable, Decoder};
// The maximum value of `SerializedDepNodeIndex` leaves the upper two bits
// unused so that we can store multiple index types in `CompressedHybridIndex`,
@ -14,7 +15,7 @@ rustc_index::newtype_index! {
}
/// Data for use when recompiling the **current crate**.
#[derive(Debug, Encodable, Decodable)]
#[derive(Debug)]
pub struct SerializedDepGraph<K: DepKind> {
/// The set of all DepNodes in the graph
pub nodes: IndexVec<SerializedDepNodeIndex, DepNode<K>>,
@ -48,3 +49,79 @@ impl<K: DepKind> SerializedDepGraph<K> {
&self.edge_list_data[targets.0 as usize..targets.1 as usize]
}
}
impl<D: Decoder, K: DepKind + Decodable<D>> Decodable<D> for SerializedDepGraph<K> {
fn decode(d: &mut D) -> Result<SerializedDepGraph<K>, D::Error> {
// We used to serialize the dep graph by creating and serializing a `SerializedDepGraph`
// using data copied from the `DepGraph`. But copying created a large memory spike, so we
// now serialize directly from the `DepGraph` as if it's a `SerializedDepGraph`. Because we
// deserialize that data into a `SerializedDepGraph` in the next compilation session, we
// need `DepGraph`'s `Encodable` and `SerializedDepGraph`'s `Decodable` implementations to
// be in sync. If you update this decoding, be sure to update the encoding, and vice-versa.
//
// We mimic the sequence of `Encode` and `Encodable` method calls used by the `DepGraph`'s
// `Encodable` implementation with the corresponding sequence of `Decode` and `Decodable`
// method calls. E.g. `Decode::read_struct` pairs with `Encode::emit_struct`, `DepNode`'s
// `decode` pairs with `DepNode`'s `encode`, and so on. Any decoding methods not associated
// with corresponding encoding methods called in `DepGraph`'s `Encodable` implementation
// are off limits, because we'd be relying on their implementation details.
//
// For example, because we know it happens to do the right thing, its tempting to just use
// `IndexVec`'s `Decodable` implementation to decode into some of the collections below,
// even though `DepGraph` doesn't use its `Encodable` implementation. But the `IndexVec`
// implementation could change, and we'd have a bug.
//
// Variables below are explicitly typed so that anyone who changes the `SerializedDepGraph`
// representation without updating this function will encounter a compilation error, and
// know to update this and possibly the `DepGraph` `Encodable` implementation accordingly
// (the latter should serialize data in a format compatible with our representation).
d.read_struct("SerializedDepGraph", 4, |d| {
let nodes: IndexVec<SerializedDepNodeIndex, DepNode<K>> =
d.read_struct_field("nodes", 0, |d| {
d.read_seq(|d, len| {
let mut v = IndexVec::with_capacity(len);
for i in 0..len {
v.push(d.read_seq_elt(i, |d| Decodable::decode(d))?);
}
Ok(v)
})
})?;
let fingerprints: IndexVec<SerializedDepNodeIndex, Fingerprint> =
d.read_struct_field("fingerprints", 1, |d| {
d.read_seq(|d, len| {
let mut v = IndexVec::with_capacity(len);
for i in 0..len {
v.push(d.read_seq_elt(i, |d| Decodable::decode(d))?);
}
Ok(v)
})
})?;
let edge_list_indices: IndexVec<SerializedDepNodeIndex, (u32, u32)> = d
.read_struct_field("edge_list_indices", 2, |d| {
d.read_seq(|d, len| {
let mut v = IndexVec::with_capacity(len);
for i in 0..len {
v.push(d.read_seq_elt(i, |d| Decodable::decode(d))?);
}
Ok(v)
})
})?;
let edge_list_data: Vec<SerializedDepNodeIndex> =
d.read_struct_field("edge_list_data", 3, |d| {
d.read_seq(|d, len| {
let mut v = Vec::with_capacity(len);
for i in 0..len {
v.push(d.read_seq_elt(i, |d| Decodable::decode(d))?);
}
Ok(v)
})
})?;
Ok(SerializedDepGraph { nodes, fingerprints, edge_list_indices, edge_list_data })
})
}
}