Replace in-tree rustc_apfloat with the new version of the crate

This commit is contained in:
Wesley Wiser 2023-07-18 15:22:56 -04:00
parent 52bdc37727
commit 15e9f56088
14 changed files with 10 additions and 7749 deletions

View file

@ -38,11 +38,6 @@ Files: compiler/*
Copyright: The Rust Project Developers (see https://thanks.rust-lang.org)
License: MIT or Apache-2.0
Files: compiler/rustc_apfloat/*
Copyright: LLVM APFloat authors
The Rust Project Developers (see https://thanks.rust-lang.org)
License: NCSA AND (MIT OR Apache-2.0)
Files: compiler/rustc_codegen_cranelift/src/cranelift_native.rs
Copyright: The Cranelift Project Developers
The Rust Project Developers (see https://thanks.rust-lang.org)

View file

@ -3135,7 +3135,9 @@ dependencies = [
[[package]]
name = "rustc_apfloat"
version = "0.0.0"
version = "0.2.0+llvm-462a31f5a5ab"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "465187772033a5ee566f69fe008df03628fce549a0899aae76f0a0c2e34696be"
dependencies = [
"bitflags 1.3.2",
"smallvec",
@ -4725,9 +4727,9 @@ dependencies = [
[[package]]
name = "smallvec"
version = "1.10.0"
version = "1.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a507befe795404456341dfab10cef66ead4c041f62b8b11bbb92bffe5d0953e0"
checksum = "62bb4feee49fdd9f707ef802e22365a35de4b7b299de4763d44bfea899442ff9"
[[package]]
name = "snap"

View file

@ -1,8 +0,0 @@
[package]
name = "rustc_apfloat"
version = "0.0.0"
edition = "2021"
[dependencies]
bitflags = "1.2.1"
smallvec = { version = "1.8.1", features = ["union", "may_dangle"] }

File diff suppressed because it is too large Load diff

View file

@ -1,695 +0,0 @@
//! Port of LLVM's APFloat software floating-point implementation from the
//! following C++ sources (please update commit hash when backporting):
//! <https://github.com/llvm-mirror/llvm/tree/23efab2bbd424ed13495a420ad8641cb2c6c28f9>
//!
//! * `include/llvm/ADT/APFloat.h` -> `Float` and `FloatConvert` traits
//! * `lib/Support/APFloat.cpp` -> `ieee` and `ppc` modules
//! * `unittests/ADT/APFloatTest.cpp` -> `tests` directory
//!
//! The port contains no unsafe code, global state, or side-effects in general,
//! and the only allocations are in the conversion to/from decimal strings.
//!
//! Most of the API and the testcases are intact in some form or another,
//! with some ergonomic changes, such as idiomatic short names, returning
//! new values instead of mutating the receiver, and having separate method
//! variants that take a non-default rounding mode (with the suffix `_r`).
//! Comments have been preserved where possible, only slightly adapted.
//!
//! Instead of keeping a pointer to a configuration struct and inspecting it
//! dynamically on every operation, types (e.g., `ieee::Double`), traits
//! (e.g., `ieee::Semantics`) and associated constants are employed for
//! increased type safety and performance.
//!
//! On-heap bigints are replaced everywhere (except in decimal conversion),
//! with short arrays of `type Limb = u128` elements (instead of `u64`),
//! This allows fitting the largest supported significands in one integer
//! (`ieee::Quad` and `ppc::Fallback` use slightly less than 128 bits).
//! All of the functions in the `ieee::sig` module operate on slices.
//!
//! # Note
//!
//! This API is completely unstable and subject to change.
#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")]
#![no_std]
#![forbid(unsafe_code)]
#![deny(rustc::untranslatable_diagnostic)]
#![deny(rustc::diagnostic_outside_of_impl)]
#[macro_use]
extern crate alloc;
use core::cmp::Ordering;
use core::fmt;
use core::ops::{Add, Div, Mul, Neg, Rem, Sub};
use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign};
use core::str::FromStr;
bitflags::bitflags! {
/// IEEE-754R 7: Default exception handling.
///
/// UNDERFLOW or OVERFLOW are always returned or-ed with INEXACT.
#[must_use]
pub struct Status: u8 {
const OK = 0x00;
const INVALID_OP = 0x01;
const DIV_BY_ZERO = 0x02;
const OVERFLOW = 0x04;
const UNDERFLOW = 0x08;
const INEXACT = 0x10;
}
}
#[must_use]
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct StatusAnd<T> {
pub status: Status,
pub value: T,
}
impl Status {
pub fn and<T>(self, value: T) -> StatusAnd<T> {
StatusAnd { status: self, value }
}
}
impl<T> StatusAnd<T> {
pub fn map<F: FnOnce(T) -> U, U>(self, f: F) -> StatusAnd<U> {
StatusAnd { status: self.status, value: f(self.value) }
}
}
#[macro_export]
macro_rules! unpack {
($status:ident|=, $e:expr) => {
match $e {
$crate::StatusAnd { status, value } => {
$status |= status;
value
}
}
};
($status:ident=, $e:expr) => {
match $e {
$crate::StatusAnd { status, value } => {
$status = status;
value
}
}
};
}
/// Category of internally-represented number.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum Category {
Infinity,
NaN,
Normal,
Zero,
}
/// IEEE-754R 4.3: Rounding-direction attributes.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum Round {
NearestTiesToEven,
TowardPositive,
TowardNegative,
TowardZero,
NearestTiesToAway,
}
impl Neg for Round {
type Output = Round;
fn neg(self) -> Round {
match self {
Round::TowardPositive => Round::TowardNegative,
Round::TowardNegative => Round::TowardPositive,
Round::NearestTiesToEven | Round::TowardZero | Round::NearestTiesToAway => self,
}
}
}
/// A signed type to represent a floating point number's unbiased exponent.
pub type ExpInt = i16;
// \c ilogb error results.
pub const IEK_INF: ExpInt = ExpInt::MAX;
pub const IEK_NAN: ExpInt = ExpInt::MIN;
pub const IEK_ZERO: ExpInt = ExpInt::MIN + 1;
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct ParseError(pub &'static str);
/// A self-contained host- and target-independent arbitrary-precision
/// floating-point software implementation.
///
/// `apfloat` uses significand bignum integer arithmetic as provided by functions
/// in the `ieee::sig`.
///
/// Written for clarity rather than speed, in particular with a view to use in
/// the front-end of a cross compiler so that target arithmetic can be correctly
/// performed on the host. Performance should nonetheless be reasonable,
/// particularly for its intended use. It may be useful as a base
/// implementation for a run-time library during development of a faster
/// target-specific one.
///
/// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
/// implemented operations. Currently implemented operations are add, subtract,
/// multiply, divide, fused-multiply-add, conversion-to-float,
/// conversion-to-integer and conversion-from-integer. New rounding modes
/// (e.g., away from zero) can be added with three or four lines of code.
///
/// Four formats are built-in: IEEE single precision, double precision,
/// quadruple precision, and x87 80-bit extended double (when operating with
/// full extended precision). Adding a new format that obeys IEEE semantics
/// only requires adding two lines of code: a declaration and definition of the
/// format.
///
/// All operations return the status of that operation as an exception bit-mask,
/// so multiple operations can be done consecutively with their results or-ed
/// together. The returned status can be useful for compiler diagnostics; e.g.,
/// inexact, underflow and overflow can be easily diagnosed on constant folding,
/// and compiler optimizers can determine what exceptions would be raised by
/// folding operations and optimize, or perhaps not optimize, accordingly.
///
/// At present, underflow tininess is detected after rounding; it should be
/// straight forward to add support for the before-rounding case too.
///
/// The library reads hexadecimal floating point numbers as per C99, and
/// correctly rounds if necessary according to the specified rounding mode.
/// Syntax is required to have been validated by the caller.
///
/// It also reads decimal floating point numbers and correctly rounds according
/// to the specified rounding mode.
///
/// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
/// signed exponent, and the significand as an array of integer limbs. After
/// normalization of a number of precision P the exponent is within the range of
/// the format, and if the number is not denormal the P-th bit of the
/// significand is set as an explicit integer bit. For denormals the most
/// significant bit is shifted right so that the exponent is maintained at the
/// format's minimum, so that the smallest denormal has just the least
/// significant bit of the significand set. The sign of zeros and infinities
/// is significant; the exponent and significand of such numbers is not stored,
/// but has a known implicit (deterministic) value: 0 for the significands, 0
/// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and
/// significand are deterministic, although not really meaningful, and preserved
/// in non-conversion operations. The exponent is implicitly all 1 bits.
///
/// `apfloat` does not provide any exception handling beyond default exception
/// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
/// by encoding Signaling NaNs with the first bit of its trailing significand
/// as 0.
///
/// Future work
/// ===========
///
/// Some features that may or may not be worth adding:
///
/// Optional ability to detect underflow tininess before rounding.
///
/// New formats: x87 in single and double precision mode (IEEE apart from
/// extended exponent range) (hard).
///
/// New operations: sqrt, nexttoward.
///
pub trait Float:
Copy
+ Default
+ FromStr<Err = ParseError>
+ PartialOrd
+ fmt::Display
+ Neg<Output = Self>
+ AddAssign
+ SubAssign
+ MulAssign
+ DivAssign
+ RemAssign
+ Add<Output = StatusAnd<Self>>
+ Sub<Output = StatusAnd<Self>>
+ Mul<Output = StatusAnd<Self>>
+ Div<Output = StatusAnd<Self>>
+ Rem<Output = StatusAnd<Self>>
{
/// Total number of bits in the in-memory format.
const BITS: usize;
/// Number of bits in the significand. This includes the integer bit.
const PRECISION: usize;
/// The largest E such that 2<sup>E</sup> is representable; this matches the
/// definition of IEEE 754.
const MAX_EXP: ExpInt;
/// The smallest E such that 2<sup>E</sup> is a normalized number; this
/// matches the definition of IEEE 754.
const MIN_EXP: ExpInt;
/// Positive Zero.
const ZERO: Self;
/// Positive Infinity.
const INFINITY: Self;
/// NaN (Not a Number).
// FIXME(eddyb) provide a default when qnan becomes const fn.
const NAN: Self;
/// Factory for QNaN values.
// FIXME(eddyb) should be const fn.
fn qnan(payload: Option<u128>) -> Self;
/// Factory for SNaN values.
// FIXME(eddyb) should be const fn.
fn snan(payload: Option<u128>) -> Self;
/// Largest finite number.
// FIXME(eddyb) should be const (but FloatPair::largest is nontrivial).
fn largest() -> Self;
/// Smallest (by magnitude) finite number.
/// Might be denormalized, which implies a relative loss of precision.
const SMALLEST: Self;
/// Smallest (by magnitude) normalized finite number.
// FIXME(eddyb) should be const (but FloatPair::smallest_normalized is nontrivial).
fn smallest_normalized() -> Self;
// Arithmetic
fn add_r(self, rhs: Self, round: Round) -> StatusAnd<Self>;
fn sub_r(self, rhs: Self, round: Round) -> StatusAnd<Self> {
self.add_r(-rhs, round)
}
fn mul_r(self, rhs: Self, round: Round) -> StatusAnd<Self>;
fn mul_add_r(self, multiplicand: Self, addend: Self, round: Round) -> StatusAnd<Self>;
fn mul_add(self, multiplicand: Self, addend: Self) -> StatusAnd<Self> {
self.mul_add_r(multiplicand, addend, Round::NearestTiesToEven)
}
fn div_r(self, rhs: Self, round: Round) -> StatusAnd<Self>;
/// IEEE remainder.
// This is not currently correct in all cases.
fn ieee_rem(self, rhs: Self) -> StatusAnd<Self> {
let mut v = self;
let status;
v = unpack!(status=, v / rhs);
if status == Status::DIV_BY_ZERO {
return status.and(self);
}
assert!(Self::PRECISION < 128);
let status;
let x = unpack!(status=, v.to_i128_r(128, Round::NearestTiesToEven, &mut false));
if status == Status::INVALID_OP {
return status.and(self);
}
let status;
let mut v = unpack!(status=, Self::from_i128(x));
assert_eq!(status, Status::OK); // should always work
let status;
v = unpack!(status=, v * rhs);
assert_eq!(status - Status::INEXACT, Status::OK); // should not overflow or underflow
let status;
v = unpack!(status=, self - v);
assert_eq!(status - Status::INEXACT, Status::OK); // likewise
if v.is_zero() {
status.and(v.copy_sign(self)) // IEEE754 requires this
} else {
status.and(v)
}
}
/// C fmod, or llvm frem.
fn c_fmod(self, rhs: Self) -> StatusAnd<Self>;
fn round_to_integral(self, round: Round) -> StatusAnd<Self>;
/// IEEE-754R 2008 5.3.1: nextUp.
fn next_up(self) -> StatusAnd<Self>;
/// IEEE-754R 2008 5.3.1: nextDown.
///
/// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
/// appropriate sign switching before/after the computation.
fn next_down(self) -> StatusAnd<Self> {
(-self).next_up().map(|r| -r)
}
fn abs(self) -> Self {
if self.is_negative() { -self } else { self }
}
fn copy_sign(self, rhs: Self) -> Self {
if self.is_negative() != rhs.is_negative() { -self } else { self }
}
// Conversions
fn from_bits(input: u128) -> Self;
fn from_i128_r(input: i128, round: Round) -> StatusAnd<Self> {
if input < 0 {
Self::from_u128_r(input.wrapping_neg() as u128, -round).map(|r| -r)
} else {
Self::from_u128_r(input as u128, round)
}
}
fn from_i128(input: i128) -> StatusAnd<Self> {
Self::from_i128_r(input, Round::NearestTiesToEven)
}
fn from_u128_r(input: u128, round: Round) -> StatusAnd<Self>;
fn from_u128(input: u128) -> StatusAnd<Self> {
Self::from_u128_r(input, Round::NearestTiesToEven)
}
fn from_str_r(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError>;
fn to_bits(self) -> u128;
/// Converts a floating point number to an integer according to the
/// rounding mode. In case of an invalid operation exception,
/// deterministic values are returned, namely zero for NaNs and the
/// minimal or maximal value respectively for underflow or overflow.
/// If the rounded value is in range but the floating point number is
/// not the exact integer, the C standard doesn't require an inexact
/// exception to be raised. IEEE-854 does require it so we do that.
///
/// Note that for conversions to integer type the C standard requires
/// round-to-zero to always be used.
///
/// The *is_exact output tells whether the result is exact, in the sense
/// that converting it back to the original floating point type produces
/// the original value. This is almost equivalent to `result == Status::OK`,
/// except for negative zeroes.
fn to_i128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<i128> {
let status;
if self.is_negative() {
if self.is_zero() {
// Negative zero can't be represented as an int.
*is_exact = false;
}
let r = unpack!(status=, (-self).to_u128_r(width, -round, is_exact));
// Check for values that don't fit in the signed integer.
if r > (1 << (width - 1)) {
// Return the most negative integer for the given width.
*is_exact = false;
Status::INVALID_OP.and(-1 << (width - 1))
} else {
status.and(r.wrapping_neg() as i128)
}
} else {
// Positive case is simpler, can pretend it's a smaller unsigned
// integer, and `to_u128` will take care of all the edge cases.
self.to_u128_r(width - 1, round, is_exact).map(|r| r as i128)
}
}
fn to_i128(self, width: usize) -> StatusAnd<i128> {
self.to_i128_r(width, Round::TowardZero, &mut true)
}
fn to_u128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<u128>;
fn to_u128(self, width: usize) -> StatusAnd<u128> {
self.to_u128_r(width, Round::TowardZero, &mut true)
}
fn cmp_abs_normal(self, rhs: Self) -> Ordering;
/// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
fn bitwise_eq(self, rhs: Self) -> bool;
// IEEE-754R 5.7.2 General operations.
/// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if
/// both are not NaN. If either argument is a NaN, returns the other argument.
fn min(self, other: Self) -> Self {
if self.is_nan() {
other
} else if other.is_nan() {
self
} else if other.partial_cmp(&self) == Some(Ordering::Less) {
other
} else {
self
}
}
/// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if
/// both are not NaN. If either argument is a NaN, returns the other argument.
fn max(self, other: Self) -> Self {
if self.is_nan() {
other
} else if other.is_nan() {
self
} else if self.partial_cmp(&other) == Some(Ordering::Less) {
other
} else {
self
}
}
/// IEEE-754R isSignMinus: Returns whether the current value is
/// negative.
///
/// This applies to zeros and NaNs as well.
fn is_negative(self) -> bool;
/// IEEE-754R isNormal: Returns whether the current value is normal.
///
/// This implies that the current value of the float is not zero, subnormal,
/// infinite, or NaN following the definition of normality from IEEE-754R.
fn is_normal(self) -> bool {
!self.is_denormal() && self.is_finite_non_zero()
}
/// Returns `true` if the current value is zero, subnormal, or
/// normal.
///
/// This means that the value is not infinite or NaN.
fn is_finite(self) -> bool {
!self.is_nan() && !self.is_infinite()
}
/// Returns `true` if the float is plus or minus zero.
fn is_zero(self) -> bool {
self.category() == Category::Zero
}
/// IEEE-754R isSubnormal(): Returns whether the float is a
/// denormal.
fn is_denormal(self) -> bool;
/// IEEE-754R isInfinite(): Returns whether the float is infinity.
fn is_infinite(self) -> bool {
self.category() == Category::Infinity
}
/// Returns `true` if the float is a quiet or signaling NaN.
fn is_nan(self) -> bool {
self.category() == Category::NaN
}
/// Returns `true` if the float is a signaling NaN.
fn is_signaling(self) -> bool;
// Simple Queries
fn category(self) -> Category;
fn is_non_zero(self) -> bool {
!self.is_zero()
}
fn is_finite_non_zero(self) -> bool {
self.is_finite() && !self.is_zero()
}
fn is_pos_zero(self) -> bool {
self.is_zero() && !self.is_negative()
}
fn is_neg_zero(self) -> bool {
self.is_zero() && self.is_negative()
}
/// Returns `true` if the number has the smallest possible non-zero
/// magnitude in the current semantics.
fn is_smallest(self) -> bool {
Self::SMALLEST.copy_sign(self).bitwise_eq(self)
}
/// Returns `true` if the number has the largest possible finite
/// magnitude in the current semantics.
fn is_largest(self) -> bool {
Self::largest().copy_sign(self).bitwise_eq(self)
}
/// Returns `true` if the number is an exact integer.
fn is_integer(self) -> bool {
// This could be made more efficient; I'm going for obviously correct.
if !self.is_finite() {
return false;
}
self.round_to_integral(Round::TowardZero).value.bitwise_eq(self)
}
/// If this value has an exact multiplicative inverse, return it.
fn get_exact_inverse(self) -> Option<Self>;
/// Returns the exponent of the internal representation of the Float.
///
/// Because the radix of Float is 2, this is equivalent to floor(log2(x)).
/// For special Float values, this returns special error codes:
///
/// NaN -> \c IEK_NAN
/// 0 -> \c IEK_ZERO
/// Inf -> \c IEK_INF
///
fn ilogb(self) -> ExpInt;
/// Returns: self * 2<sup>exp</sup> for integral exponents.
/// Equivalent to C standard library function `ldexp`.
fn scalbn_r(self, exp: ExpInt, round: Round) -> Self;
fn scalbn(self, exp: ExpInt) -> Self {
self.scalbn_r(exp, Round::NearestTiesToEven)
}
/// Equivalent to C standard library function with the same name.
///
/// While the C standard says exp is an unspecified value for infinity and nan,
/// this returns INT_MAX for infinities, and INT_MIN for NaNs (see `ilogb`).
fn frexp_r(self, exp: &mut ExpInt, round: Round) -> Self;
fn frexp(self, exp: &mut ExpInt) -> Self {
self.frexp_r(exp, Round::NearestTiesToEven)
}
}
pub trait FloatConvert<T: Float>: Float {
/// Converts a value of one floating point type to another.
/// The return value corresponds to the IEEE754 exceptions. *loses_info
/// records whether the transformation lost information, i.e., whether
/// converting the result back to the original type will produce the
/// original value (this is almost the same as return `value == Status::OK`,
/// but there are edge cases where this is not so).
fn convert_r(self, round: Round, loses_info: &mut bool) -> StatusAnd<T>;
fn convert(self, loses_info: &mut bool) -> StatusAnd<T> {
self.convert_r(Round::NearestTiesToEven, loses_info)
}
}
macro_rules! float_common_impls {
($ty:ident<$t:tt>) => {
impl<$t> Default for $ty<$t>
where
Self: Float,
{
fn default() -> Self {
Self::ZERO
}
}
impl<$t> ::core::str::FromStr for $ty<$t>
where
Self: Float,
{
type Err = ParseError;
fn from_str(s: &str) -> Result<Self, ParseError> {
Self::from_str_r(s, Round::NearestTiesToEven).map(|x| x.value)
}
}
// Rounding ties to the nearest even, by default.
impl<$t> ::core::ops::Add for $ty<$t>
where
Self: Float,
{
type Output = StatusAnd<Self>;
fn add(self, rhs: Self) -> StatusAnd<Self> {
self.add_r(rhs, Round::NearestTiesToEven)
}
}
impl<$t> ::core::ops::Sub for $ty<$t>
where
Self: Float,
{
type Output = StatusAnd<Self>;
fn sub(self, rhs: Self) -> StatusAnd<Self> {
self.sub_r(rhs, Round::NearestTiesToEven)
}
}
impl<$t> ::core::ops::Mul for $ty<$t>
where
Self: Float,
{
type Output = StatusAnd<Self>;
fn mul(self, rhs: Self) -> StatusAnd<Self> {
self.mul_r(rhs, Round::NearestTiesToEven)
}
}
impl<$t> ::core::ops::Div for $ty<$t>
where
Self: Float,
{
type Output = StatusAnd<Self>;
fn div(self, rhs: Self) -> StatusAnd<Self> {
self.div_r(rhs, Round::NearestTiesToEven)
}
}
impl<$t> ::core::ops::Rem for $ty<$t>
where
Self: Float,
{
type Output = StatusAnd<Self>;
fn rem(self, rhs: Self) -> StatusAnd<Self> {
self.c_fmod(rhs)
}
}
impl<$t> ::core::ops::AddAssign for $ty<$t>
where
Self: Float,
{
fn add_assign(&mut self, rhs: Self) {
*self = (*self + rhs).value;
}
}
impl<$t> ::core::ops::SubAssign for $ty<$t>
where
Self: Float,
{
fn sub_assign(&mut self, rhs: Self) {
*self = (*self - rhs).value;
}
}
impl<$t> ::core::ops::MulAssign for $ty<$t>
where
Self: Float,
{
fn mul_assign(&mut self, rhs: Self) {
*self = (*self * rhs).value;
}
}
impl<$t> ::core::ops::DivAssign for $ty<$t>
where
Self: Float,
{
fn div_assign(&mut self, rhs: Self) {
*self = (*self / rhs).value;
}
}
impl<$t> ::core::ops::RemAssign for $ty<$t>
where
Self: Float,
{
fn rem_assign(&mut self, rhs: Self) {
*self = (*self % rhs).value;
}
}
};
}
pub mod ieee;
pub mod ppc;

View file

@ -1,434 +0,0 @@
use crate::ieee;
use crate::{Category, ExpInt, Float, FloatConvert, ParseError, Round, Status, StatusAnd};
use core::cmp::Ordering;
use core::fmt;
use core::ops::Neg;
#[must_use]
#[derive(Copy, Clone, PartialEq, PartialOrd, Debug)]
pub struct DoubleFloat<F>(F, F);
pub type DoubleDouble = DoubleFloat<ieee::Double>;
// These are legacy semantics for the Fallback, inaccurate implementation of
// IBM double-double, if the accurate DoubleDouble doesn't handle the
// operation. It's equivalent to having an IEEE number with consecutive 106
// bits of mantissa and 11 bits of exponent.
//
// It's not equivalent to IBM double-double. For example, a legit IBM
// double-double, 1 + epsilon:
//
// 1 + epsilon = 1 + (1 >> 1076)
//
// is not representable by a consecutive 106 bits of mantissa.
//
// Currently, these semantics are used in the following way:
//
// DoubleDouble -> (Double, Double) ->
// DoubleDouble's Fallback -> IEEE operations
//
// FIXME: Implement all operations in DoubleDouble, and delete these
// semantics.
// FIXME(eddyb) This shouldn't need to be `pub`, it's only used in bounds.
pub struct FallbackS<F>(#[allow(unused)] F);
type Fallback<F> = ieee::IeeeFloat<FallbackS<F>>;
impl<F: Float> ieee::Semantics for FallbackS<F> {
// Forbid any conversion to/from bits.
const BITS: usize = 0;
const PRECISION: usize = F::PRECISION * 2;
const MAX_EXP: ExpInt = F::MAX_EXP as ExpInt;
const MIN_EXP: ExpInt = F::MIN_EXP as ExpInt + F::PRECISION as ExpInt;
}
// Convert number to F. To avoid spurious underflows, we re-
// normalize against the F exponent range first, and only *then*
// truncate the mantissa. The result of that second conversion
// may be inexact, but should never underflow.
// FIXME(eddyb) This shouldn't need to be `pub`, it's only used in bounds.
pub struct FallbackExtendedS<F>(#[allow(unused)] F);
type FallbackExtended<F> = ieee::IeeeFloat<FallbackExtendedS<F>>;
impl<F: Float> ieee::Semantics for FallbackExtendedS<F> {
// Forbid any conversion to/from bits.
const BITS: usize = 0;
const PRECISION: usize = Fallback::<F>::PRECISION;
const MAX_EXP: ExpInt = F::MAX_EXP as ExpInt;
}
impl<F: Float> From<Fallback<F>> for DoubleFloat<F>
where
F: FloatConvert<FallbackExtended<F>>,
FallbackExtended<F>: FloatConvert<F>,
{
fn from(x: Fallback<F>) -> Self {
let mut status;
let mut loses_info = false;
let extended: FallbackExtended<F> = unpack!(status=, x.convert(&mut loses_info));
assert_eq!((status, loses_info), (Status::OK, false));
let a = unpack!(status=, extended.convert(&mut loses_info));
assert_eq!(status - Status::INEXACT, Status::OK);
// If conversion was exact or resulted in a special case, we're done;
// just set the second double to zero. Otherwise, re-convert back to
// the extended format and compute the difference. This now should
// convert exactly to double.
let b = if a.is_finite_non_zero() && loses_info {
let u: FallbackExtended<F> = unpack!(status=, a.convert(&mut loses_info));
assert_eq!((status, loses_info), (Status::OK, false));
let v = unpack!(status=, extended - u);
assert_eq!(status, Status::OK);
let v = unpack!(status=, v.convert(&mut loses_info));
assert_eq!((status, loses_info), (Status::OK, false));
v
} else {
F::ZERO
};
DoubleFloat(a, b)
}
}
impl<F: FloatConvert<Self>> From<DoubleFloat<F>> for Fallback<F> {
fn from(DoubleFloat(a, b): DoubleFloat<F>) -> Self {
let mut status;
let mut loses_info = false;
// Get the first F and convert to our format.
let a = unpack!(status=, a.convert(&mut loses_info));
assert_eq!((status, loses_info), (Status::OK, false));
// Unless we have a special case, add in second F.
if a.is_finite_non_zero() {
let b = unpack!(status=, b.convert(&mut loses_info));
assert_eq!((status, loses_info), (Status::OK, false));
(a + b).value
} else {
a
}
}
}
float_common_impls!(DoubleFloat<F>);
impl<F: Float> Neg for DoubleFloat<F> {
type Output = Self;
fn neg(self) -> Self {
if self.1.is_finite_non_zero() {
DoubleFloat(-self.0, -self.1)
} else {
DoubleFloat(-self.0, self.1)
}
}
}
impl<F: FloatConvert<Fallback<F>>> fmt::Display for DoubleFloat<F> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(&Fallback::from(*self), f)
}
}
impl<F: FloatConvert<Fallback<F>>> Float for DoubleFloat<F>
where
Self: From<Fallback<F>>,
{
const BITS: usize = F::BITS * 2;
const PRECISION: usize = Fallback::<F>::PRECISION;
const MAX_EXP: ExpInt = Fallback::<F>::MAX_EXP;
const MIN_EXP: ExpInt = Fallback::<F>::MIN_EXP;
const ZERO: Self = DoubleFloat(F::ZERO, F::ZERO);
const INFINITY: Self = DoubleFloat(F::INFINITY, F::ZERO);
// FIXME(eddyb) remove when qnan becomes const fn.
const NAN: Self = DoubleFloat(F::NAN, F::ZERO);
fn qnan(payload: Option<u128>) -> Self {
DoubleFloat(F::qnan(payload), F::ZERO)
}
fn snan(payload: Option<u128>) -> Self {
DoubleFloat(F::snan(payload), F::ZERO)
}
fn largest() -> Self {
let status;
let mut r = DoubleFloat(F::largest(), F::largest());
r.1 = r.1.scalbn(-(F::PRECISION as ExpInt + 1));
r.1 = unpack!(status=, r.1.next_down());
assert_eq!(status, Status::OK);
r
}
const SMALLEST: Self = DoubleFloat(F::SMALLEST, F::ZERO);
fn smallest_normalized() -> Self {
DoubleFloat(F::smallest_normalized().scalbn(F::PRECISION as ExpInt), F::ZERO)
}
// Implement addition, subtraction, multiplication and division based on:
// "Software for Doubled-Precision Floating-Point Computations",
// by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283.
fn add_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
match (self.category(), rhs.category()) {
(Category::Infinity, Category::Infinity) => {
if self.is_negative() != rhs.is_negative() {
Status::INVALID_OP.and(Self::NAN.copy_sign(self))
} else {
Status::OK.and(self)
}
}
(_, Category::Zero) | (Category::NaN, _) | (Category::Infinity, Category::Normal) => {
Status::OK.and(self)
}
(Category::Zero, _) | (_, Category::NaN | Category::Infinity) => Status::OK.and(rhs),
(Category::Normal, Category::Normal) => {
let mut status = Status::OK;
let (a, aa, c, cc) = (self.0, self.1, rhs.0, rhs.1);
let mut z = a;
z = unpack!(status|=, z.add_r(c, round));
if !z.is_finite() {
if !z.is_infinite() {
return status.and(DoubleFloat(z, F::ZERO));
}
status = Status::OK;
let a_cmp_c = a.cmp_abs_normal(c);
z = cc;
z = unpack!(status|=, z.add_r(aa, round));
if a_cmp_c == Ordering::Greater {
// z = cc + aa + c + a;
z = unpack!(status|=, z.add_r(c, round));
z = unpack!(status|=, z.add_r(a, round));
} else {
// z = cc + aa + a + c;
z = unpack!(status|=, z.add_r(a, round));
z = unpack!(status|=, z.add_r(c, round));
}
if !z.is_finite() {
return status.and(DoubleFloat(z, F::ZERO));
}
self.0 = z;
let mut zz = aa;
zz = unpack!(status|=, zz.add_r(cc, round));
if a_cmp_c == Ordering::Greater {
// self.1 = a - z + c + zz;
self.1 = a;
self.1 = unpack!(status|=, self.1.sub_r(z, round));
self.1 = unpack!(status|=, self.1.add_r(c, round));
self.1 = unpack!(status|=, self.1.add_r(zz, round));
} else {
// self.1 = c - z + a + zz;
self.1 = c;
self.1 = unpack!(status|=, self.1.sub_r(z, round));
self.1 = unpack!(status|=, self.1.add_r(a, round));
self.1 = unpack!(status|=, self.1.add_r(zz, round));
}
} else {
// q = a - z;
let mut q = a;
q = unpack!(status|=, q.sub_r(z, round));
// zz = q + c + (a - (q + z)) + aa + cc;
// Compute a - (q + z) as -((q + z) - a) to avoid temporary copies.
let mut zz = q;
zz = unpack!(status|=, zz.add_r(c, round));
q = unpack!(status|=, q.add_r(z, round));
q = unpack!(status|=, q.sub_r(a, round));
q = -q;
zz = unpack!(status|=, zz.add_r(q, round));
zz = unpack!(status|=, zz.add_r(aa, round));
zz = unpack!(status|=, zz.add_r(cc, round));
if zz.is_zero() && !zz.is_negative() {
return Status::OK.and(DoubleFloat(z, F::ZERO));
}
self.0 = z;
self.0 = unpack!(status|=, self.0.add_r(zz, round));
if !self.0.is_finite() {
self.1 = F::ZERO;
return status.and(self);
}
self.1 = z;
self.1 = unpack!(status|=, self.1.sub_r(self.0, round));
self.1 = unpack!(status|=, self.1.add_r(zz, round));
}
status.and(self)
}
}
}
fn mul_r(mut self, rhs: Self, round: Round) -> StatusAnd<Self> {
// Interesting observation: For special categories, finding the lowest
// common ancestor of the following layered graph gives the correct
// return category:
//
// NaN
// / \
// Zero Inf
// \ /
// Normal
//
// e.g., NaN * NaN = NaN
// Zero * Inf = NaN
// Normal * Zero = Zero
// Normal * Inf = Inf
match (self.category(), rhs.category()) {
(Category::NaN, _) => Status::OK.and(self),
(_, Category::NaN) => Status::OK.and(rhs),
(Category::Zero, Category::Infinity) | (Category::Infinity, Category::Zero) => {
Status::OK.and(Self::NAN)
}
(Category::Zero | Category::Infinity, _) => Status::OK.and(self),
(_, Category::Zero | Category::Infinity) => Status::OK.and(rhs),
(Category::Normal, Category::Normal) => {
let mut status = Status::OK;
let (a, b, c, d) = (self.0, self.1, rhs.0, rhs.1);
// t = a * c
let mut t = a;
t = unpack!(status|=, t.mul_r(c, round));
if !t.is_finite_non_zero() {
return status.and(DoubleFloat(t, F::ZERO));
}
// tau = fmsub(a, c, t), that is -fmadd(-a, c, t).
let mut tau = a;
tau = unpack!(status|=, tau.mul_add_r(c, -t, round));
// v = a * d
let mut v = a;
v = unpack!(status|=, v.mul_r(d, round));
// w = b * c
let mut w = b;
w = unpack!(status|=, w.mul_r(c, round));
v = unpack!(status|=, v.add_r(w, round));
// tau += v + w
tau = unpack!(status|=, tau.add_r(v, round));
// u = t + tau
let mut u = t;
u = unpack!(status|=, u.add_r(tau, round));
self.0 = u;
if !u.is_finite() {
self.1 = F::ZERO;
} else {
// self.1 = (t - u) + tau
t = unpack!(status|=, t.sub_r(u, round));
t = unpack!(status|=, t.add_r(tau, round));
self.1 = t;
}
status.and(self)
}
}
}
fn mul_add_r(self, multiplicand: Self, addend: Self, round: Round) -> StatusAnd<Self> {
Fallback::from(self)
.mul_add_r(Fallback::from(multiplicand), Fallback::from(addend), round)
.map(Self::from)
}
fn div_r(self, rhs: Self, round: Round) -> StatusAnd<Self> {
Fallback::from(self).div_r(Fallback::from(rhs), round).map(Self::from)
}
fn c_fmod(self, rhs: Self) -> StatusAnd<Self> {
Fallback::from(self).c_fmod(Fallback::from(rhs)).map(Self::from)
}
fn round_to_integral(self, round: Round) -> StatusAnd<Self> {
Fallback::from(self).round_to_integral(round).map(Self::from)
}
fn next_up(self) -> StatusAnd<Self> {
Fallback::from(self).next_up().map(Self::from)
}
fn from_bits(input: u128) -> Self {
let (a, b) = (input, input >> F::BITS);
DoubleFloat(F::from_bits(a & ((1 << F::BITS) - 1)), F::from_bits(b & ((1 << F::BITS) - 1)))
}
fn from_u128_r(input: u128, round: Round) -> StatusAnd<Self> {
Fallback::from_u128_r(input, round).map(Self::from)
}
fn from_str_r(s: &str, round: Round) -> Result<StatusAnd<Self>, ParseError> {
Fallback::from_str_r(s, round).map(|r| r.map(Self::from))
}
fn to_bits(self) -> u128 {
self.0.to_bits() | (self.1.to_bits() << F::BITS)
}
fn to_u128_r(self, width: usize, round: Round, is_exact: &mut bool) -> StatusAnd<u128> {
Fallback::from(self).to_u128_r(width, round, is_exact)
}
fn cmp_abs_normal(self, rhs: Self) -> Ordering {
self.0.cmp_abs_normal(rhs.0).then_with(|| {
let result = self.1.cmp_abs_normal(rhs.1);
if result != Ordering::Equal {
let against = self.0.is_negative() ^ self.1.is_negative();
let rhs_against = rhs.0.is_negative() ^ rhs.1.is_negative();
(!against)
.cmp(&!rhs_against)
.then_with(|| if against { result.reverse() } else { result })
} else {
result
}
})
}
fn bitwise_eq(self, rhs: Self) -> bool {
self.0.bitwise_eq(rhs.0) && self.1.bitwise_eq(rhs.1)
}
fn is_negative(self) -> bool {
self.0.is_negative()
}
fn is_denormal(self) -> bool {
self.category() == Category::Normal
&& (self.0.is_denormal() || self.0.is_denormal() ||
// (double)(Hi + Lo) == Hi defines a normal number.
!(self.0 + self.1).value.bitwise_eq(self.0))
}
fn is_signaling(self) -> bool {
self.0.is_signaling()
}
fn category(self) -> Category {
self.0.category()
}
fn get_exact_inverse(self) -> Option<Self> {
Fallback::from(self).get_exact_inverse().map(Self::from)
}
fn ilogb(self) -> ExpInt {
self.0.ilogb()
}
fn scalbn_r(self, exp: ExpInt, round: Round) -> Self {
DoubleFloat(self.0.scalbn_r(exp, round), self.1.scalbn_r(exp, round))
}
fn frexp_r(self, exp: &mut ExpInt, round: Round) -> Self {
let a = self.0.frexp_r(exp, round);
let mut b = self.1;
if self.category() == Category::Normal {
b = b.scalbn_r(-*exp, round);
}
DoubleFloat(a, b)
}
}

File diff suppressed because it is too large Load diff

View file

@ -1,530 +0,0 @@
use rustc_apfloat::ppc::DoubleDouble;
use rustc_apfloat::{Category, Float, Round};
use std::cmp::Ordering;
#[test]
fn ppc_double_double() {
let test = DoubleDouble::ZERO;
let expected = "0x0p+0".parse::<DoubleDouble>().unwrap();
assert!(test.is_zero());
assert!(!test.is_negative());
assert!(test.bitwise_eq(expected));
assert_eq!(0, test.to_bits());
let test = -DoubleDouble::ZERO;
let expected = "-0x0p+0".parse::<DoubleDouble>().unwrap();
assert!(test.is_zero());
assert!(test.is_negative());
assert!(test.bitwise_eq(expected));
assert_eq!(0x8000000000000000, test.to_bits());
let test = "1.0".parse::<DoubleDouble>().unwrap();
assert_eq!(0x3ff0000000000000, test.to_bits());
// LDBL_MAX
let test = "1.79769313486231580793728971405301e+308".parse::<DoubleDouble>().unwrap();
assert_eq!(0x7c8ffffffffffffe_7fefffffffffffff, test.to_bits());
// LDBL_MIN
let test = "2.00416836000897277799610805135016e-292".parse::<DoubleDouble>().unwrap();
assert_eq!(0x0000000000000000_0360000000000000, test.to_bits());
}
#[test]
fn ppc_double_double_add_special() {
let data = [
// (1 + 0) + (-1 + 0) = Category::Zero
(0x3ff0000000000000, 0xbff0000000000000, Category::Zero, Round::NearestTiesToEven),
// LDBL_MAX + (1.1 >> (1023 - 106) + 0)) = Category::Infinity
(
0x7c8ffffffffffffe_7fefffffffffffff,
0x7948000000000000,
Category::Infinity,
Round::NearestTiesToEven,
),
// FIXME: change the 4th 0x75effffffffffffe to 0x75efffffffffffff when
// DoubleDouble's fallback is gone.
// LDBL_MAX + (1.011111... >> (1023 - 106) + (1.1111111...0 >> (1023 -
// 160))) = Category::Normal
(
0x7c8ffffffffffffe_7fefffffffffffff,
0x75effffffffffffe_7947ffffffffffff,
Category::Normal,
Round::NearestTiesToEven,
),
// LDBL_MAX + (1.1 >> (1023 - 106) + 0)) = Category::Infinity
(
0x7c8ffffffffffffe_7fefffffffffffff,
0x7c8ffffffffffffe_7fefffffffffffff,
Category::Infinity,
Round::NearestTiesToEven,
),
// NaN + (1 + 0) = Category::NaN
(0x7ff8000000000000, 0x3ff0000000000000, Category::NaN, Round::NearestTiesToEven),
];
for (op1, op2, expected, round) in data {
{
let mut a1 = DoubleDouble::from_bits(op1);
let a2 = DoubleDouble::from_bits(op2);
a1 = a1.add_r(a2, round).value;
assert_eq!(expected, a1.category(), "{:#x} + {:#x}", op1, op2);
}
{
let a1 = DoubleDouble::from_bits(op1);
let mut a2 = DoubleDouble::from_bits(op2);
a2 = a2.add_r(a1, round).value;
assert_eq!(expected, a2.category(), "{:#x} + {:#x}", op2, op1);
}
}
}
#[test]
fn ppc_double_double_add() {
let data = [
// (1 + 0) + (1e-105 + 0) = (1 + 1e-105)
(
0x3ff0000000000000,
0x3960000000000000,
0x3960000000000000_3ff0000000000000,
Round::NearestTiesToEven,
),
// (1 + 0) + (1e-106 + 0) = (1 + 1e-106)
(
0x3ff0000000000000,
0x3950000000000000,
0x3950000000000000_3ff0000000000000,
Round::NearestTiesToEven,
),
// (1 + 1e-106) + (1e-106 + 0) = (1 + 1e-105)
(
0x3950000000000000_3ff0000000000000,
0x3950000000000000,
0x3960000000000000_3ff0000000000000,
Round::NearestTiesToEven,
),
// (1 + 0) + (epsilon + 0) = (1 + epsilon)
(
0x3ff0000000000000,
0x0000000000000001,
0x0000000000000001_3ff0000000000000,
Round::NearestTiesToEven,
),
// FIXME: change 0xf950000000000000 to 0xf940000000000000, when
// DoubleDouble's fallback is gone.
// (DBL_MAX - 1 << (1023 - 105)) + (1 << (1023 - 53) + 0) = DBL_MAX +
// 1.11111... << (1023 - 52)
(
0xf950000000000000_7fefffffffffffff,
0x7c90000000000000,
0x7c8ffffffffffffe_7fefffffffffffff,
Round::NearestTiesToEven,
),
// FIXME: change 0xf950000000000000 to 0xf940000000000000, when
// DoubleDouble's fallback is gone.
// (1 << (1023 - 53) + 0) + (DBL_MAX - 1 << (1023 - 105)) = DBL_MAX +
// 1.11111... << (1023 - 52)
(
0x7c90000000000000,
0xf950000000000000_7fefffffffffffff,
0x7c8ffffffffffffe_7fefffffffffffff,
Round::NearestTiesToEven,
),
];
for (op1, op2, expected, round) in data {
{
let mut a1 = DoubleDouble::from_bits(op1);
let a2 = DoubleDouble::from_bits(op2);
a1 = a1.add_r(a2, round).value;
assert_eq!(expected, a1.to_bits(), "{:#x} + {:#x}", op1, op2);
}
{
let a1 = DoubleDouble::from_bits(op1);
let mut a2 = DoubleDouble::from_bits(op2);
a2 = a2.add_r(a1, round).value;
assert_eq!(expected, a2.to_bits(), "{:#x} + {:#x}", op2, op1);
}
}
}
#[test]
fn ppc_double_double_subtract() {
let data = [
// (1 + 0) - (-1e-105 + 0) = (1 + 1e-105)
(
0x3ff0000000000000,
0xb960000000000000,
0x3960000000000000_3ff0000000000000,
Round::NearestTiesToEven,
),
// (1 + 0) - (-1e-106 + 0) = (1 + 1e-106)
(
0x3ff0000000000000,
0xb950000000000000,
0x3950000000000000_3ff0000000000000,
Round::NearestTiesToEven,
),
];
for (op1, op2, expected, round) in data {
let mut a1 = DoubleDouble::from_bits(op1);
let a2 = DoubleDouble::from_bits(op2);
a1 = a1.sub_r(a2, round).value;
assert_eq!(expected, a1.to_bits(), "{:#x} - {:#x}", op1, op2);
}
}
#[test]
fn ppc_double_double_multiply_special() {
let data = [
// Category::NaN * Category::NaN = Category::NaN
(0x7ff8000000000000, 0x7ff8000000000000, Category::NaN, Round::NearestTiesToEven),
// Category::NaN * Category::Zero = Category::NaN
(0x7ff8000000000000, 0, Category::NaN, Round::NearestTiesToEven),
// Category::NaN * Category::Infinity = Category::NaN
(0x7ff8000000000000, 0x7ff0000000000000, Category::NaN, Round::NearestTiesToEven),
// Category::NaN * Category::Normal = Category::NaN
(0x7ff8000000000000, 0x3ff0000000000000, Category::NaN, Round::NearestTiesToEven),
// Category::Infinity * Category::Infinity = Category::Infinity
(0x7ff0000000000000, 0x7ff0000000000000, Category::Infinity, Round::NearestTiesToEven),
// Category::Infinity * Category::Zero = Category::NaN
(0x7ff0000000000000, 0, Category::NaN, Round::NearestTiesToEven),
// Category::Infinity * Category::Normal = Category::Infinity
(0x7ff0000000000000, 0x3ff0000000000000, Category::Infinity, Round::NearestTiesToEven),
// Category::Zero * Category::Zero = Category::Zero
(0, 0, Category::Zero, Round::NearestTiesToEven),
// Category::Zero * Category::Normal = Category::Zero
(0, 0x3ff0000000000000, Category::Zero, Round::NearestTiesToEven),
];
for (op1, op2, expected, round) in data {
{
let mut a1 = DoubleDouble::from_bits(op1);
let a2 = DoubleDouble::from_bits(op2);
a1 = a1.mul_r(a2, round).value;
assert_eq!(expected, a1.category(), "{:#x} * {:#x}", op1, op2);
}
{
let a1 = DoubleDouble::from_bits(op1);
let mut a2 = DoubleDouble::from_bits(op2);
a2 = a2.mul_r(a1, round).value;
assert_eq!(expected, a2.category(), "{:#x} * {:#x}", op2, op1);
}
}
}
#[test]
fn ppc_double_double_multiply() {
let data = [
// 1/3 * 3 = 1.0
(
0x3c75555555555556_3fd5555555555555,
0x4008000000000000,
0x3ff0000000000000,
Round::NearestTiesToEven,
),
// (1 + epsilon) * (1 + 0) = Category::Zero
(
0x0000000000000001_3ff0000000000000,
0x3ff0000000000000,
0x0000000000000001_3ff0000000000000,
Round::NearestTiesToEven,
),
// (1 + epsilon) * (1 + epsilon) = 1 + 2 * epsilon
(
0x0000000000000001_3ff0000000000000,
0x0000000000000001_3ff0000000000000,
0x0000000000000002_3ff0000000000000,
Round::NearestTiesToEven,
),
// -(1 + epsilon) * (1 + epsilon) = -1
(
0x0000000000000001_bff0000000000000,
0x0000000000000001_3ff0000000000000,
0xbff0000000000000,
Round::NearestTiesToEven,
),
// (0.5 + 0) * (1 + 2 * epsilon) = 0.5 + epsilon
(
0x3fe0000000000000,
0x0000000000000002_3ff0000000000000,
0x0000000000000001_3fe0000000000000,
Round::NearestTiesToEven,
),
// (0.5 + 0) * (1 + epsilon) = 0.5
(
0x3fe0000000000000,
0x0000000000000001_3ff0000000000000,
0x3fe0000000000000,
Round::NearestTiesToEven,
),
// __LDBL_MAX__ * (1 + 1 << 106) = inf
(
0x7c8ffffffffffffe_7fefffffffffffff,
0x3950000000000000_3ff0000000000000,
0x7ff0000000000000,
Round::NearestTiesToEven,
),
// __LDBL_MAX__ * (1 + 1 << 107) > __LDBL_MAX__, but not inf, yes =_=|||
(
0x7c8ffffffffffffe_7fefffffffffffff,
0x3940000000000000_3ff0000000000000,
0x7c8fffffffffffff_7fefffffffffffff,
Round::NearestTiesToEven,
),
// __LDBL_MAX__ * (1 + 1 << 108) = __LDBL_MAX__
(
0x7c8ffffffffffffe_7fefffffffffffff,
0x3930000000000000_3ff0000000000000,
0x7c8ffffffffffffe_7fefffffffffffff,
Round::NearestTiesToEven,
),
];
for (op1, op2, expected, round) in data {
{
let mut a1 = DoubleDouble::from_bits(op1);
let a2 = DoubleDouble::from_bits(op2);
a1 = a1.mul_r(a2, round).value;
assert_eq!(expected, a1.to_bits(), "{:#x} * {:#x}", op1, op2);
}
{
let a1 = DoubleDouble::from_bits(op1);
let mut a2 = DoubleDouble::from_bits(op2);
a2 = a2.mul_r(a1, round).value;
assert_eq!(expected, a2.to_bits(), "{:#x} * {:#x}", op2, op1);
}
}
}
#[test]
fn ppc_double_double_divide() {
// FIXME: Only a sanity check for now. Add more edge cases when the
// double-double algorithm is implemented.
let data = [
// 1 / 3 = 1/3
(
0x3ff0000000000000,
0x4008000000000000,
0x3c75555555555556_3fd5555555555555,
Round::NearestTiesToEven,
),
];
for (op1, op2, expected, round) in data {
let mut a1 = DoubleDouble::from_bits(op1);
let a2 = DoubleDouble::from_bits(op2);
a1 = a1.div_r(a2, round).value;
assert_eq!(expected, a1.to_bits(), "{:#x} / {:#x}", op1, op2);
}
}
#[test]
fn ppc_double_double_remainder() {
let data = [
// ieee_rem(3.0 + 3.0 << 53, 1.25 + 1.25 << 53) = (0.5 + 0.5 << 53)
(
0x3cb8000000000000_4008000000000000,
0x3ca4000000000000_3ff4000000000000,
0x3c90000000000000_3fe0000000000000,
),
// ieee_rem(3.0 + 3.0 << 53, 1.75 + 1.75 << 53) = (-0.5 - 0.5 << 53)
(
0x3cb8000000000000_4008000000000000,
0x3cac000000000000_3ffc000000000000,
0xbc90000000000000_bfe0000000000000,
),
];
for (op1, op2, expected) in data {
let a1 = DoubleDouble::from_bits(op1);
let a2 = DoubleDouble::from_bits(op2);
let result = a1.ieee_rem(a2).value;
assert_eq!(expected, result.to_bits(), "ieee_rem({:#x}, {:#x})", op1, op2);
}
}
#[test]
fn ppc_double_double_mod() {
let data = [
// mod(3.0 + 3.0 << 53, 1.25 + 1.25 << 53) = (0.5 + 0.5 << 53)
(
0x3cb8000000000000_4008000000000000,
0x3ca4000000000000_3ff4000000000000,
0x3c90000000000000_3fe0000000000000,
),
// mod(3.0 + 3.0 << 53, 1.75 + 1.75 << 53) = (1.25 + 1.25 << 53)
// 0xbc98000000000000 doesn't seem right, but it's what we currently have.
// FIXME: investigate
(
0x3cb8000000000000_4008000000000000,
0x3cac000000000000_3ffc000000000000,
0xbc98000000000000_3ff4000000000001,
),
];
for (op1, op2, expected) in data {
let a1 = DoubleDouble::from_bits(op1);
let a2 = DoubleDouble::from_bits(op2);
let r = (a1 % a2).value;
assert_eq!(expected, r.to_bits(), "fmod({:#x}, {:#x})", op1, op2);
}
}
#[test]
fn ppc_double_double_fma() {
// Sanity check for now.
let mut a = "2".parse::<DoubleDouble>().unwrap();
a = a.mul_add("3".parse::<DoubleDouble>().unwrap(), "4".parse::<DoubleDouble>().unwrap()).value;
assert_eq!(Some(Ordering::Equal), "10".parse::<DoubleDouble>().unwrap().partial_cmp(&a));
}
#[test]
fn ppc_double_double_round_to_integral() {
{
let a = "1.5".parse::<DoubleDouble>().unwrap();
let a = a.round_to_integral(Round::NearestTiesToEven).value;
assert_eq!(Some(Ordering::Equal), "2".parse::<DoubleDouble>().unwrap().partial_cmp(&a));
}
{
let a = "2.5".parse::<DoubleDouble>().unwrap();
let a = a.round_to_integral(Round::NearestTiesToEven).value;
assert_eq!(Some(Ordering::Equal), "2".parse::<DoubleDouble>().unwrap().partial_cmp(&a));
}
}
#[test]
fn ppc_double_double_compare() {
let data = [
// (1 + 0) = (1 + 0)
(0x3ff0000000000000, 0x3ff0000000000000, Some(Ordering::Equal)),
// (1 + 0) < (1.00...1 + 0)
(0x3ff0000000000000, 0x3ff0000000000001, Some(Ordering::Less)),
// (1.00...1 + 0) > (1 + 0)
(0x3ff0000000000001, 0x3ff0000000000000, Some(Ordering::Greater)),
// (1 + 0) < (1 + epsilon)
(0x3ff0000000000000, 0x0000000000000001_3ff0000000000001, Some(Ordering::Less)),
// NaN != NaN
(0x7ff8000000000000, 0x7ff8000000000000, None),
// (1 + 0) != NaN
(0x3ff0000000000000, 0x7ff8000000000000, None),
// Inf = Inf
(0x7ff0000000000000, 0x7ff0000000000000, Some(Ordering::Equal)),
];
for (op1, op2, expected) in data {
let a1 = DoubleDouble::from_bits(op1);
let a2 = DoubleDouble::from_bits(op2);
assert_eq!(expected, a1.partial_cmp(&a2), "compare({:#x}, {:#x})", op1, op2,);
}
}
#[test]
fn ppc_double_double_bitwise_eq() {
let data = [
// (1 + 0) = (1 + 0)
(0x3ff0000000000000, 0x3ff0000000000000, true),
// (1 + 0) != (1.00...1 + 0)
(0x3ff0000000000000, 0x3ff0000000000001, false),
// NaN = NaN
(0x7ff8000000000000, 0x7ff8000000000000, true),
// NaN != NaN with a different bit pattern
(0x7ff8000000000000, 0x3ff0000000000000_7ff8000000000000, false),
// Inf = Inf
(0x7ff0000000000000, 0x7ff0000000000000, true),
];
for (op1, op2, expected) in data {
let a1 = DoubleDouble::from_bits(op1);
let a2 = DoubleDouble::from_bits(op2);
assert_eq!(expected, a1.bitwise_eq(a2), "{:#x} = {:#x}", op1, op2);
}
}
#[test]
fn ppc_double_double_change_sign() {
let float = DoubleDouble::from_bits(0xbcb0000000000000_400f000000000000);
{
let actual = float.copy_sign("1".parse::<DoubleDouble>().unwrap());
assert_eq!(0xbcb0000000000000_400f000000000000, actual.to_bits());
}
{
let actual = float.copy_sign("-1".parse::<DoubleDouble>().unwrap());
assert_eq!(0x3cb0000000000000_c00f000000000000, actual.to_bits());
}
}
#[test]
fn ppc_double_double_factories() {
assert_eq!(0, DoubleDouble::ZERO.to_bits());
assert_eq!(0x7c8ffffffffffffe_7fefffffffffffff, DoubleDouble::largest().to_bits());
assert_eq!(0x0000000000000001, DoubleDouble::SMALLEST.to_bits());
assert_eq!(0x0360000000000000, DoubleDouble::smallest_normalized().to_bits());
assert_eq!(0x0000000000000000_8000000000000000, (-DoubleDouble::ZERO).to_bits());
assert_eq!(0xfc8ffffffffffffe_ffefffffffffffff, (-DoubleDouble::largest()).to_bits());
assert_eq!(0x0000000000000000_8000000000000001, (-DoubleDouble::SMALLEST).to_bits());
assert_eq!(
0x0000000000000000_8360000000000000,
(-DoubleDouble::smallest_normalized()).to_bits()
);
assert!(DoubleDouble::SMALLEST.is_smallest());
assert!(DoubleDouble::largest().is_largest());
}
#[test]
fn ppc_double_double_is_denormal() {
assert!(DoubleDouble::SMALLEST.is_denormal());
assert!(!DoubleDouble::largest().is_denormal());
assert!(!DoubleDouble::smallest_normalized().is_denormal());
{
// (4 + 3) is not normalized
let data = 0x4008000000000000_4010000000000000;
assert!(DoubleDouble::from_bits(data).is_denormal());
}
}
#[test]
fn ppc_double_double_exact_inverse() {
assert!(
"2.0"
.parse::<DoubleDouble>()
.unwrap()
.get_exact_inverse()
.unwrap()
.bitwise_eq("0.5".parse::<DoubleDouble>().unwrap())
);
}
#[test]
fn ppc_double_double_scalbn() {
// 3.0 + 3.0 << 53
let input = 0x3cb8000000000000_4008000000000000;
let result = DoubleDouble::from_bits(input).scalbn(1);
// 6.0 + 6.0 << 53
assert_eq!(0x3cc8000000000000_4018000000000000, result.to_bits());
}
#[test]
fn ppc_double_double_frexp() {
// 3.0 + 3.0 << 53
let input = 0x3cb8000000000000_4008000000000000;
let mut exp = 0;
// 0.75 + 0.75 << 53
let result = DoubleDouble::from_bits(input).frexp(&mut exp);
assert_eq!(2, exp);
assert_eq!(0x3c98000000000000_3fe8000000000000, result.to_bits());
}

View file

@ -8,7 +8,7 @@ edition = "2021"
[dependencies]
tracing = "0.1"
either = "1"
rustc_apfloat = { path = "../rustc_apfloat" }
rustc_apfloat = "0.2.0"
rustc_ast = { path = "../rustc_ast" }
rustc_attr = { path = "../rustc_attr" }
rustc_data_structures = { path = "../rustc_data_structures" }

View file

@ -13,7 +13,7 @@ gsgdt = "0.1.2"
field-offset = "0.3.5"
measureme = "10.0.0"
polonius-engine = "0.13.0"
rustc_apfloat = { path = "../rustc_apfloat" }
rustc_apfloat = "0.2.0"
rustc_arena = { path = "../rustc_arena" }
rustc_ast = { path = "../rustc_ast" }
rustc_attr = { path = "../rustc_attr" }

View file

@ -10,7 +10,7 @@ rustc_arena = { path = "../rustc_arena" }
tracing = "0.1"
either = "1"
rustc_middle = { path = "../rustc_middle" }
rustc_apfloat = { path = "../rustc_apfloat" }
rustc_apfloat = "0.2.0"
rustc_data_structures = { path = "../rustc_data_structures" }
rustc_index = { path = "../rustc_index" }
rustc_errors = { path = "../rustc_errors" }

View file

@ -46,6 +46,7 @@ const EXCEPTIONS: &[(&str, &str)] = &[
("instant", "BSD-3-Clause"), // rustc_driver/tracing-subscriber/parking_lot
("mdbook", "MPL-2.0"), // mdbook
("openssl", "Apache-2.0"), // opt-dist
("rustc_apfloat", "Apache-2.0 WITH LLVM-exception"), // rustc (license is the same as LLVM uses)
("ryu", "Apache-2.0 OR BSL-1.0"), // cargo/... (because of serde)
("self_cell", "Apache-2.0"), // rustc (fluent translations)
("snap", "BSD-3-Clause"), // rustc
@ -224,6 +225,7 @@ const PERMITTED_RUSTC_DEPENDENCIES: &[&str] = &[
"rustc-hash",
"rustc-rayon",
"rustc-rayon-core",
"rustc_apfloat",
"rustc_version",
"rustix",
"ruzstd", // via object in thorin-dwp

View file

@ -302,10 +302,6 @@ pub fn check(path: &Path, bad: &mut bool) {
return;
}
}
// apfloat shouldn't be changed because of license problems
if is_in(file, "compiler", "rustc_apfloat") {
return;
}
let mut skip_cr = contains_ignore_directive(can_contain, &contents, "cr");
let mut skip_undocumented_unsafe =
contains_ignore_directive(can_contain, &contents, "undocumented-unsafe");

View file

@ -318,14 +318,6 @@ changelog-branch = "master"
[shortcut]
[mentions."compiler/rustc_apfloat"]
message = """
Changes rustc_apfloat. rustc_apfloat is currently in limbo and you almost \
certainly don't want to change it (see #55993).
"""
cc = ["@eddyb"]
[mentions."compiler/rustc_codegen_cranelift"]
cc = ["@bjorn3"]
@ -609,7 +601,6 @@ style-team = [
"/Cargo.lock" = ["@Mark-Simulacrum"]
"/Cargo.toml" = ["@Mark-Simulacrum"]
"/compiler" = ["compiler"]
"/compiler/rustc_apfloat" = ["@eddyb"]
"/compiler/rustc_ast" = ["compiler", "parser"]
"/compiler/rustc_ast_lowering" = ["compiler", "ast_lowering"]
"/compiler/rustc_hir_analysis" = ["compiler", "types"]