rework how we handle the type of loops

First, we keep a `CoerceMany` now to find the LUB of all the break
expressions. Second, this `CoerceMany` is actually an
`Option<CoerceMany>`, and we store `None` for loops where "break with an
expression" is disallowed. This avoids silly duplicate errors about a
type mismatch, since the loops pass already reports an error that the
break cannot have an expression. Finally, since we now detect an invalid
break target during HIR lowering, refactor `find_loop` to be infallible.

Adjust tests as needed:

- some spans from breaks are slightly different
- break up a single loop into multiple since `CoerceMany` silences
  redundant and derived errors
- add a ui test that we only give on error for loop-break-value
This commit is contained in:
Niko Matsakis 2017-03-17 11:49:53 -04:00
parent 1ae620bbeb
commit 16a71cce51
5 changed files with 159 additions and 108 deletions

View file

@ -415,15 +415,16 @@ impl Diverges {
}
#[derive(Clone)]
pub struct BreakableCtxt<'gcx, 'tcx> {
unified: Ty<'tcx>,
coerce_to: Ty<'tcx>,
break_exprs: Vec<&'gcx hir::Expr>,
pub struct BreakableCtxt<'gcx: 'tcx, 'tcx> {
may_break: bool,
// this is `null` for loops where break with a value is illegal,
// such as `while`, `for`, and `while let`
coerce: Option<CoerceMany<'gcx, 'tcx>>,
}
#[derive(Clone)]
pub struct EnclosingBreakables<'gcx, 'tcx> {
pub struct EnclosingBreakables<'gcx: 'tcx, 'tcx> {
stack: Vec<BreakableCtxt<'gcx, 'tcx>>,
by_id: NodeMap<usize>,
}
@ -3548,58 +3549,64 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
}
hir::ExprBreak(destination, ref expr_opt) => {
if let Some(target_id) = destination.target_id.opt_id() {
let coerce_to = {
let (e_ty, cause);
if let Some(ref e) = *expr_opt {
// If this is a break with a value, we need to type-check
// the expression. Get an expected type from the loop context.
let opt_coerce_to = {
let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
enclosing_breakables.find_breakable(target_id).coerce_to
enclosing_breakables.find_breakable(target_id)
.coerce
.as_ref()
.map(|coerce| coerce.expected_ty())
};
let e_ty;
let cause;
if let Some(ref e) = *expr_opt {
// Recurse without `enclosing_loops` borrowed.
// If the loop context is not a `loop { }`, then break with
// a value is illegal, and `opt_coerce_to` will be `None`.
// Just set expectation to error in that case.
let coerce_to = opt_coerce_to.unwrap_or(tcx.types.err);
// Recurse without `enclosing_breakables` borrowed.
e_ty = self.check_expr_with_hint(e, coerce_to);
cause = self.misc(e.span);
// Notably, the recursive call may alter coerce_to - must not keep using it!
} else {
// `break` without argument acts like `break ()`.
// Otherwise, this is a break *without* a value. That's
// always legal, and is equivalent to `break ()`.
e_ty = tcx.mk_nil();
cause = self.misc(expr.span);
}
// Now that we have type-checked `expr_opt`, borrow
// the `enclosing_loops` field and let's coerce the
// type of `expr_opt` into what is expected.
let mut enclosing_breakables = self.enclosing_breakables.borrow_mut();
let ctxt = enclosing_breakables.find_breakable(target_id);
let result = if let Some(ref e) = *expr_opt {
// Special-case the first element, as it has no "previous expressions".
let result = if !ctxt.may_break {
self.try_coerce(e, e_ty, ctxt.coerce_to)
if let Some(ref mut coerce) = ctxt.coerce {
if let Some(ref e) = *expr_opt {
coerce.coerce(self, &cause, e, e_ty);
} else {
self.try_find_coercion_lub(&cause, || ctxt.break_exprs.iter().cloned(),
ctxt.unified, e, e_ty)
};
ctxt.break_exprs.push(e);
result
} else {
self.eq_types(true, &cause, e_ty, ctxt.unified)
.map(|InferOk { obligations, .. }| {
// FIXME(#32730) propagate obligations
assert!(obligations.is_empty());
e_ty
})
};
match result {
Ok(ty) => ctxt.unified = ty,
Err(err) => {
self.report_mismatched_types(&cause, ctxt.unified, e_ty, err).emit();
assert!(e_ty.is_nil());
coerce.coerce_forced_unit(self, &cause);
}
} else {
// If `ctxt.coerce` is `None`, we can just ignore
// the type of the expresison. This is because
// either this was a break *without* a value, in
// which case it is always a legal type (`()`), or
// else an error would have been flagged by the
// `loops` pass for using break with an expression
// where you are not supposed to.
assert!(expr_opt.is_none() || self.tcx.sess.err_count() > 0);
}
ctxt.may_break = true;
} else {
// Otherwise, we failed to find the enclosing loop; this can only happen if the
// `break` was not inside a loop at all, which is caught by the loop-checking pass.
assert!(self.tcx.sess.err_count() > 0);
}
// Otherwise, we failed to find the enclosing breakable; this can only happen if the
// `break` target was not found, which is caught in HIR lowering and reported by the
// loop-checking pass.
// the type of a `break` is always `!`, since it diverges
tcx.types.never
}
hir::ExprAgain(_) => { tcx.types.never }
@ -3645,14 +3652,12 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
expr.span, expected)
}
hir::ExprWhile(ref cond, ref body, _) => {
let unified = self.tcx.mk_nil();
let coerce_to = unified;
let ctxt = BreakableCtxt {
unified: unified,
coerce_to: coerce_to,
break_exprs: vec![],
// cannot use break with a value from a while loop
coerce: None,
may_break: true,
};
self.with_breakable_ctxt(expr.id, ctxt, || {
self.check_expr_has_type(&cond, tcx.types.bool);
let cond_diverging = self.diverges.get();
@ -3662,34 +3667,44 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
self.diverges.set(cond_diverging);
});
if self.has_errors.get() {
tcx.types.err
} else {
tcx.mk_nil()
self.tcx.mk_nil()
}
hir::ExprLoop(ref body, _, source) => {
let coerce = match source {
// you can only use break with a value from a normal `loop { }`
hir::LoopSource::Loop => {
let coerce_to = expected.only_has_type_or_fresh_var(self, body.span);
Some(CoerceMany::new(coerce_to))
}
hir::ExprLoop(ref body, _, _) => {
let unified = self.next_ty_var(TypeVariableOrigin::TypeInference(body.span));
let coerce_to = expected.only_has_type(self).unwrap_or(unified);
hir::LoopSource::WhileLet |
hir::LoopSource::ForLoop => {
None
}
};
let ctxt = BreakableCtxt {
unified: unified,
coerce_to: coerce_to,
break_exprs: vec![],
may_break: false,
coerce: coerce,
may_break: false, // will get updated if/when we find a `break`
};
let (ctxt, ()) = self.with_breakable_ctxt(expr.id, ctxt, || {
self.check_block_no_value(&body);
});
if ctxt.may_break {
// No way to know whether it's diverging because
// of a `break` or an outer `break` or `return.
self.diverges.set(Diverges::Maybe);
ctxt.unified
} else {
tcx.types.never
}
// If we permit break with a value, then result type is
// the LUB of the breaks (possibly ! if none); else, it
// is nil. This makes sense because infinite loops
// (which would have type !) are only possible iff we
// permit break with a value [1].
assert!(ctxt.coerce.is_some() || ctxt.may_break); // [1]
ctxt.coerce.map(|c| c.complete(self)).unwrap_or(self.tcx.mk_nil())
}
hir::ExprMatch(ref discrim, ref arms, match_src) => {
self.check_match(expr, &discrim, arms, expected, match_src)

View file

@ -12,14 +12,14 @@
fn main() {
let _: i32 =
'a: //~ ERROR mismatched types
loop { break };
'a: // in this case, the citation is just the `break`:
loop { break }; //~ ERROR mismatched types
let _: i32 =
'b: //~ ERROR mismatched types
while true { break };
while true { break }; // but here we cite the whole loop
let _: i32 =
'c: //~ ERROR mismatched types
for _ in None { break };
for _ in None { break }; // but here we cite the whole loop
let _: i32 =
'd: //~ ERROR mismatched types
while let Some(_) = None { break };

View file

@ -40,37 +40,40 @@ fn main() {
loop {
break 'while_loop 123;
//~^ ERROR `break` with value from a `while` loop
//~| ERROR mismatched types
break 456;
break 789;
};
}
'while_let_loop: while let Some(_) = Some(()) {
while let Some(_) = Some(()) {
if break () { //~ ERROR `break` with value from a `while let` loop
break;
}
}
while let Some(_) = Some(()) {
break None;
//~^ ERROR `break` with value from a `while let` loop
//~| ERROR mismatched types
}
'while_let_loop: while let Some(_) = Some(()) {
loop {
break 'while_let_loop "nope";
//~^ ERROR `break` with value from a `while let` loop
//~| ERROR mismatched types
break 33;
};
}
'for_loop: for _ in &[1,2,3] {
for _ in &[1,2,3] {
break (); //~ ERROR `break` with value from a `for` loop
break [()];
//~^ ERROR `break` with value from a `for` loop
//~| ERROR mismatched types
}
'for_loop: for _ in &[1,2,3] {
loop {
break Some(3);
break 'for_loop Some(17);
//~^ ERROR `break` with value from a `for` loop
//~| ERROR mismatched types
};
}

View file

@ -0,0 +1,25 @@
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(loop_break_value)]
#![allow(unused_variables)]
use std::ptr;
// Test that we only report **one** error here and that is that
// `break` with an expression is illegal in this context. In
// particular, we don't report any mismatched types error, which is
// besides the point.
fn main() {
for _ in &[1,2,3] {
break 22
}
}

View file

@ -0,0 +1,8 @@
error[E0571]: `break` with value from a `for` loop
--> $DIR/loop-break-value-no-repeat.rs:23:9
|
23 | break 22
| ^^^^^^^^ can only break with a value inside `loop`
error: aborting due to previous error