these tests seem to work fine on i586 these days

This commit is contained in:
Ralf Jung 2024-08-31 22:18:30 +02:00 committed by Jubilee Young
parent 0ee7cb5e36
commit 180eacea1c
2 changed files with 0 additions and 26 deletions

View file

@ -2,31 +2,24 @@ use crate::f32::consts;
use crate::num::{FpCategory as Fp, *};
/// Smallest number
#[allow(dead_code)] // unused on x86
const TINY_BITS: u32 = 0x1;
/// Next smallest number
#[allow(dead_code)] // unused on x86
const TINY_UP_BITS: u32 = 0x2;
/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0
#[allow(dead_code)] // unused on x86
const MAX_DOWN_BITS: u32 = 0x7f7f_fffe;
/// Zeroed exponent, full significant
#[allow(dead_code)] // unused on x86
const LARGEST_SUBNORMAL_BITS: u32 = 0x007f_ffff;
/// Exponent = 0b1, zeroed significand
#[allow(dead_code)] // unused on x86
const SMALLEST_NORMAL_BITS: u32 = 0x0080_0000;
/// First pattern over the mantissa
#[allow(dead_code)] // unused on x86
const NAN_MASK1: u32 = 0x002a_aaaa;
/// Second pattern over the mantissa
#[allow(dead_code)] // unused on x86
const NAN_MASK2: u32 = 0x0055_5555;
#[allow(unused_macros)]
@ -353,9 +346,6 @@ fn test_is_sign_negative() {
assert!((-f32::NAN).is_sign_negative());
}
// Ignore test on x87 floating point, these platforms do not guarantee NaN
// payloads are preserved and flush denormals to zero, failing the tests.
#[cfg(not(target_arch = "x86"))]
#[test]
fn test_next_up() {
let tiny = f32::from_bits(TINY_BITS);
@ -386,9 +376,6 @@ fn test_next_up() {
assert_f32_biteq!(nan2.next_up(), nan2);
}
// Ignore test on x87 floating point, these platforms do not guarantee NaN
// payloads are preserved and flush denormals to zero, failing the tests.
#[cfg(not(target_arch = "x86"))]
#[test]
fn test_next_down() {
let tiny = f32::from_bits(TINY_BITS);

View file

@ -2,31 +2,24 @@ use crate::f64::consts;
use crate::num::{FpCategory as Fp, *};
/// Smallest number
#[allow(dead_code)] // unused on x86
const TINY_BITS: u64 = 0x1;
/// Next smallest number
#[allow(dead_code)] // unused on x86
const TINY_UP_BITS: u64 = 0x2;
/// Exponent = 0b11...10, Sifnificand 0b1111..10. Min val > 0
#[allow(dead_code)] // unused on x86
const MAX_DOWN_BITS: u64 = 0x7fef_ffff_ffff_fffe;
/// Zeroed exponent, full significant
#[allow(dead_code)] // unused on x86
const LARGEST_SUBNORMAL_BITS: u64 = 0x000f_ffff_ffff_ffff;
/// Exponent = 0b1, zeroed significand
#[allow(dead_code)] // unused on x86
const SMALLEST_NORMAL_BITS: u64 = 0x0010_0000_0000_0000;
/// First pattern over the mantissa
#[allow(dead_code)] // unused on x86
const NAN_MASK1: u64 = 0x000a_aaaa_aaaa_aaaa;
/// Second pattern over the mantissa
#[allow(dead_code)] // unused on x86
const NAN_MASK2: u64 = 0x0005_5555_5555_5555;
#[allow(unused_macros)]
@ -343,9 +336,6 @@ fn test_is_sign_negative() {
assert!((-f64::NAN).is_sign_negative());
}
// Ignore test on x87 floating point, these platforms do not guarantee NaN
// payloads are preserved and flush denormals to zero, failing the tests.
#[cfg(not(target_arch = "x86"))]
#[test]
fn test_next_up() {
let tiny = f64::from_bits(TINY_BITS);
@ -375,9 +365,6 @@ fn test_next_up() {
assert_f64_biteq!(nan2.next_up(), nan2);
}
// Ignore test on x87 floating point, these platforms do not guarantee NaN
// payloads are preserved and flush denormals to zero, failing the tests.
#[cfg(not(target_arch = "x86"))]
#[test]
fn test_next_down() {
let tiny = f64::from_bits(TINY_BITS);