Sort long error code explanation by error code

This commit is contained in:
Guillaume Gomez 2019-10-10 10:29:03 +02:00
parent d28a9c38fe
commit 307a3569c5

View file

@ -208,6 +208,124 @@ match x {
```
"##,
E0010: r##"
The value of statics and constants must be known at compile time, and they live
for the entire lifetime of a program. Creating a boxed value allocates memory on
the heap at runtime, and therefore cannot be done at compile time. Erroneous
code example:
```compile_fail,E0010
#![feature(box_syntax)]
const CON : Box<i32> = box 0;
```
"##,
E0013: r##"
Static and const variables can refer to other const variables. But a const
variable cannot refer to a static variable. For example, `Y` cannot refer to
`X` here:
```compile_fail,E0013
static X: i32 = 42;
const Y: i32 = X;
```
To fix this, the value can be extracted as a const and then used:
```
const A: i32 = 42;
static X: i32 = A;
const Y: i32 = A;
```
"##,
// FIXME(#57563) Change the language here when const fn stabilizes
E0015: r##"
The only functions that can be called in static or constant expressions are
`const` functions, and struct/enum constructors. `const` functions are only
available on a nightly compiler. Rust currently does not support more general
compile-time function execution.
```
const FOO: Option<u8> = Some(1); // enum constructor
struct Bar {x: u8}
const BAR: Bar = Bar {x: 1}; // struct constructor
```
See [RFC 911] for more details on the design of `const fn`s.
[RFC 911]: https://github.com/rust-lang/rfcs/blob/master/text/0911-const-fn.md
"##,
E0017: r##"
References in statics and constants may only refer to immutable values.
Erroneous code example:
```compile_fail,E0017
static X: i32 = 1;
const C: i32 = 2;
// these three are not allowed:
const CR: &mut i32 = &mut C;
static STATIC_REF: &'static mut i32 = &mut X;
static CONST_REF: &'static mut i32 = &mut C;
```
Statics are shared everywhere, and if they refer to mutable data one might
violate memory safety since holding multiple mutable references to shared data
is not allowed.
If you really want global mutable state, try using `static mut` or a global
`UnsafeCell`.
"##,
E0019: r##"
A function call isn't allowed in the const's initialization expression
because the expression's value must be known at compile-time. Erroneous code
example:
```compile_fail
enum Test {
V1
}
impl Test {
fn test(&self) -> i32 {
12
}
}
fn main() {
const FOO: Test = Test::V1;
const A: i32 = FOO.test(); // You can't call Test::func() here!
}
```
Remember: you can't use a function call inside a const's initialization
expression! However, you can totally use it anywhere else:
```
enum Test {
V1
}
impl Test {
fn func(&self) -> i32 {
12
}
}
fn main() {
const FOO: Test = Test::V1;
FOO.func(); // here is good
let x = FOO.func(); // or even here!
}
```
"##,
E0030: r##"
When matching against a range, the compiler verifies that the range is
non-empty. Range patterns include both end-points, so this is equivalent to
@ -226,6 +344,40 @@ match 5u32 {
```
"##,
E0133: r##"
Unsafe code was used outside of an unsafe function or block.
Erroneous code example:
```compile_fail,E0133
unsafe fn f() { return; } // This is the unsafe code
fn main() {
f(); // error: call to unsafe function requires unsafe function or block
}
```
Using unsafe functionality is potentially dangerous and disallowed by safety
checks. Examples:
* Dereferencing raw pointers
* Calling functions via FFI
* Calling functions marked unsafe
These safety checks can be relaxed for a section of the code by wrapping the
unsafe instructions with an `unsafe` block. For instance:
```
unsafe fn f() { return; }
fn main() {
unsafe { f(); } // ok!
}
```
See also https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
"##,
E0158: r##"
`const` and `static` mean different things. A `const` is a compile-time
constant, an alias for a literal value. This property means you can match it
@ -247,6 +399,39 @@ match Some(42) {
```
"##,
E0161: r##"
A value was moved. However, its size was not known at compile time, and only
values of a known size can be moved.
Erroneous code example:
```compile_fail
#![feature(box_syntax)]
fn main() {
let array: &[isize] = &[1, 2, 3];
let _x: Box<[isize]> = box *array;
// error: cannot move a value of type [isize]: the size of [isize] cannot
// be statically determined
}
```
In Rust, you can only move a value when its size is known at compile time.
To work around this restriction, consider "hiding" the value behind a reference:
either `&x` or `&mut x`. Since a reference has a fixed size, this lets you move
it around as usual. Example:
```
#![feature(box_syntax)]
fn main() {
let array: &[isize] = &[1, 2, 3];
let _x: Box<&[isize]> = box array; // ok!
}
```
"##,
E0162: r##"
#### Note: this error code is no longer emitted by the compiler.
@ -468,158 +653,6 @@ The `op_string_ref` binding has type `&Option<&String>` in both cases.
See also https://github.com/rust-lang/rust/issues/14587
"##,
E0010: r##"
The value of statics and constants must be known at compile time, and they live
for the entire lifetime of a program. Creating a boxed value allocates memory on
the heap at runtime, and therefore cannot be done at compile time. Erroneous
code example:
```compile_fail,E0010
#![feature(box_syntax)]
const CON : Box<i32> = box 0;
```
"##,
E0013: r##"
Static and const variables can refer to other const variables. But a const
variable cannot refer to a static variable. For example, `Y` cannot refer to
`X` here:
```compile_fail,E0013
static X: i32 = 42;
const Y: i32 = X;
```
To fix this, the value can be extracted as a const and then used:
```
const A: i32 = 42;
static X: i32 = A;
const Y: i32 = A;
```
"##,
// FIXME(#57563) Change the language here when const fn stabilizes
E0015: r##"
The only functions that can be called in static or constant expressions are
`const` functions, and struct/enum constructors. `const` functions are only
available on a nightly compiler. Rust currently does not support more general
compile-time function execution.
```
const FOO: Option<u8> = Some(1); // enum constructor
struct Bar {x: u8}
const BAR: Bar = Bar {x: 1}; // struct constructor
```
See [RFC 911] for more details on the design of `const fn`s.
[RFC 911]: https://github.com/rust-lang/rfcs/blob/master/text/0911-const-fn.md
"##,
E0017: r##"
References in statics and constants may only refer to immutable values.
Erroneous code example:
```compile_fail,E0017
static X: i32 = 1;
const C: i32 = 2;
// these three are not allowed:
const CR: &mut i32 = &mut C;
static STATIC_REF: &'static mut i32 = &mut X;
static CONST_REF: &'static mut i32 = &mut C;
```
Statics are shared everywhere, and if they refer to mutable data one might
violate memory safety since holding multiple mutable references to shared data
is not allowed.
If you really want global mutable state, try using `static mut` or a global
`UnsafeCell`.
"##,
E0019: r##"
A function call isn't allowed in the const's initialization expression
because the expression's value must be known at compile-time. Erroneous code
example:
```compile_fail
enum Test {
V1
}
impl Test {
fn test(&self) -> i32 {
12
}
}
fn main() {
const FOO: Test = Test::V1;
const A: i32 = FOO.test(); // You can't call Test::func() here!
}
```
Remember: you can't use a function call inside a const's initialization
expression! However, you can totally use it anywhere else:
```
enum Test {
V1
}
impl Test {
fn func(&self) -> i32 {
12
}
}
fn main() {
const FOO: Test = Test::V1;
FOO.func(); // here is good
let x = FOO.func(); // or even here!
}
```
"##,
E0133: r##"
Unsafe code was used outside of an unsafe function or block.
Erroneous code example:
```compile_fail,E0133
unsafe fn f() { return; } // This is the unsafe code
fn main() {
f(); // error: call to unsafe function requires unsafe function or block
}
```
Using unsafe functionality is potentially dangerous and disallowed by safety
checks. Examples:
* Dereferencing raw pointers
* Calling functions via FFI
* Calling functions marked unsafe
These safety checks can be relaxed for a section of the code by wrapping the
unsafe instructions with an `unsafe` block. For instance:
```
unsafe fn f() { return; }
fn main() {
unsafe { f(); } // ok!
}
```
See also https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
"##,
E0373: r##"
This error occurs when an attempt is made to use data captured by a closure,
when that data may no longer exist. It's most commonly seen when attempting to
@ -1022,39 +1055,6 @@ fn main() {
```
"##,
E0161: r##"
A value was moved. However, its size was not known at compile time, and only
values of a known size can be moved.
Erroneous code example:
```compile_fail
#![feature(box_syntax)]
fn main() {
let array: &[isize] = &[1, 2, 3];
let _x: Box<[isize]> = box *array;
// error: cannot move a value of type [isize]: the size of [isize] cannot
// be statically determined
}
```
In Rust, you can only move a value when its size is known at compile time.
To work around this restriction, consider "hiding" the value behind a reference:
either `&x` or `&mut x`. Since a reference has a fixed size, this lets you move
it around as usual. Example:
```
#![feature(box_syntax)]
fn main() {
let array: &[isize] = &[1, 2, 3];
let _x: Box<&[isize]> = box array; // ok!
}
```
"##,
E0492: r##"
A borrow of a constant containing interior mutability was attempted. Erroneous
code example:
@ -1982,24 +1982,6 @@ Here executing `x = None` would modify the value being matched and require us
to go "back in time" to the `None` arm.
"##,
E0579: r##"
When matching against an exclusive range, the compiler verifies that the range
is non-empty. Exclusive range patterns include the start point but not the end
point, so this is equivalent to requiring the start of the range to be less
than the end of the range.
For example:
```compile_fail
match 5u32 {
// This range is ok, albeit pointless.
1 .. 2 => {}
// This range is empty, and the compiler can tell.
5 .. 5 => {}
}
```
"##,
E0515: r##"
Cannot return value that references local variable
@ -2101,6 +2083,24 @@ fn dragoooon(x: &mut isize) {
```
"##,
E0579: r##"
When matching against an exclusive range, the compiler verifies that the range
is non-empty. Exclusive range patterns include the start point but not the end
point, so this is equivalent to requiring the start of the range to be less
than the end of the range.
For example:
```compile_fail
match 5u32 {
// This range is ok, albeit pointless.
1 .. 2 => {}
// This range is empty, and the compiler can tell.
5 .. 5 => {}
}
```
"##,
E0595: r##"
#### Note: this error code is no longer emitted by the compiler.