Rollup merge of #41438 - projektir:mpsc_docs, r=steveklabnik

Adding links and examples for various mspc pages #29377

Adding links and copying examples for the various Iterators; adding some extra stuff to `Sender`/`SyncSender`/`Receiver`.
This commit is contained in:
Corey Farwell 2017-04-27 19:59:13 -04:00 committed by GitHub
commit 35227db6e6

View file

@ -297,12 +297,14 @@ mod sync;
mod mpsc_queue;
mod spsc_queue;
/// The receiving-half of Rust's channel type. This half can only be owned by
/// one thread.
/// The receiving half of Rust's [`channel`][] (or [`sync_channel`]) type.
/// This half can only be owned by one thread.
///
/// Messages sent to the channel can be retrieved using [`recv`].
///
/// [`recv`]: ../../../std/sync/mpsc/struct.Receiver.html#method.recv
/// [`channel`]: fn.channel.html
/// [`sync_channel`]: fn.sync_channel.html
/// [`recv`]: struct.Receiver.html#method.recv
///
/// # Examples
///
@ -336,51 +338,128 @@ unsafe impl<T: Send> Send for Receiver<T> { }
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> !Sync for Receiver<T> { }
/// An iterator over messages on a receiver, this iterator will block whenever
/// [`next`] is called, waiting for a new message, and [`None`] will be returned
/// An iterator over messages on a [`Receiver`], created by [`iter`].
///
/// This iterator will block whenever [`next`] is called,
/// waiting for a new message, and [`None`] will be returned
/// when the corresponding channel has hung up.
///
/// [`iter`]: struct.Receiver.html#method.iter
/// [`Receiver`]: struct.Receiver.html
/// [`next`]: ../../../std/iter/trait.Iterator.html#tymethod.next
/// [`None`]: ../../../std/option/enum.Option.html#variant.None
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::channel;
/// use std::thread;
///
/// let (send, recv) = channel();
///
/// thread::spawn(move || {
/// send.send(1u8).unwrap();
/// send.send(2u8).unwrap();
/// send.send(3u8).unwrap();
/// });
///
/// for x in recv.iter() {
/// println!("Got: {}", x);
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Debug)]
pub struct Iter<'a, T: 'a> {
rx: &'a Receiver<T>
}
/// An iterator that attempts to yield all pending values for a receiver.
/// [`None`] will be returned when there are no pending values remaining or if
/// the corresponding channel has hung up.
/// An iterator that attempts to yield all pending values for a [`Receiver`],
/// created by [`try_iter`].
///
/// This Iterator will never block the caller in order to wait for data to
/// [`None`] will be returned when there are no pending values remaining or
/// if the corresponding channel has hung up.
///
/// This iterator will never block the caller in order to wait for data to
/// become available. Instead, it will return [`None`].
///
/// [`Receiver`]: struct.Receiver.html
/// [`try_iter`]: struct.Receiver.html#method.try_iter
/// [`None`]: ../../../std/option/enum.Option.html#variant.None
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::channel;
/// use std::thread;
/// use std::time::Duration;
///
/// let (sender, receiver) = channel();
///
/// // Nothing is in the buffer yet
/// assert!(receiver.try_iter().next().is_none());
/// println!("Nothing in the buffer...");
///
/// thread::spawn(move || {
/// sender.send(1).unwrap();
/// sender.send(2).unwrap();
/// sender.send(3).unwrap();
/// });
///
/// println!("Going to sleep...");
/// thread::sleep(Duration::from_secs(2)); // block for two seconds
///
/// for x in receiver.try_iter() {
/// println!("Got: {}", x);
/// }
/// ```
#[stable(feature = "receiver_try_iter", since = "1.15.0")]
#[derive(Debug)]
pub struct TryIter<'a, T: 'a> {
rx: &'a Receiver<T>
}
/// An owning iterator over messages on a receiver, this iterator will block
/// whenever [`next`] is called, waiting for a new message, and [`None`] will be
/// returned when the corresponding channel has hung up.
/// An owning iterator over messages on a [`Receiver`],
/// created by **Receiver::into_iter**.
///
/// This iterator will block whenever [`next`]
/// is called, waiting for a new message, and [`None`] will be
/// returned if the corresponding channel has hung up.
///
/// [`Receiver`]: struct.Receiver.html
/// [`next`]: ../../../std/iter/trait.Iterator.html#tymethod.next
/// [`None`]: ../../../std/option/enum.Option.html#variant.None
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::channel;
/// use std::thread;
///
/// let (send, recv) = channel();
///
/// thread::spawn(move || {
/// send.send(1u8).unwrap();
/// send.send(2u8).unwrap();
/// send.send(3u8).unwrap();
/// });
///
/// for x in recv.into_iter() {
/// println!("Got: {}", x);
/// }
/// ```
#[stable(feature = "receiver_into_iter", since = "1.1.0")]
#[derive(Debug)]
pub struct IntoIter<T> {
rx: Receiver<T>
}
/// The sending-half of Rust's asynchronous channel type. This half can only be
/// The sending-half of Rust's asynchronous [`channel`] type. This half can only be
/// owned by one thread, but it can be cloned to send to other threads.
///
/// Messages can be sent through this channel with [`send`].
///
/// [`send`]: ../../../std/sync/mpsc/struct.Sender.html#method.send
/// [`channel`]: fn.channel.html
/// [`send`]: struct.Sender.html#method.send
///
/// # Examples
///
@ -419,12 +498,55 @@ unsafe impl<T: Send> Send for Sender<T> { }
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> !Sync for Sender<T> { }
/// The sending-half of Rust's synchronous channel type. This half can only be
/// owned by one thread, but it can be cloned to send to other threads.
/// The sending-half of Rust's synchronous [`sync_channel`] type.
/// This half can only be owned by one thread, but it can be cloned
/// to send to other threads.
///
/// [`send`]: ../../../std/sync/mpsc/struct.Sender.html#method.send
/// [`SyncSender::send`]: ../../../std/sync/mpsc/struct.SyncSender.html#method.send
/// Messages can be sent through this channel with [`send`] or [`try_send`].
///
/// [`send`] will block if there is no space in the internal buffer.
///
/// [`sync_channel`]: fn.sync_channel.html
/// [`send`]: struct.SyncSender.html#method.send
/// [`try_send`]: struct.SyncSender.html#method.try_send
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::sync_channel;
/// use std::thread;
///
/// // Create a sync_channel with buffer size 2
/// let (sync_sender, receiver) = sync_channel(2);
/// let sync_sender2 = sync_sender.clone();
///
/// // First thread owns sync_sender
/// thread::spawn(move || {
/// sync_sender.send(1).unwrap();
/// sync_sender.send(2).unwrap();
/// });
///
/// // Second thread owns sync_sender2
/// thread::spawn(move || {
/// sync_sender2.send(3).unwrap();
/// // thread will now block since the buffer is full
/// println!("Thread unblocked!");
/// });
///
/// let mut msg;
///
/// msg = receiver.recv().unwrap();
/// println!("message {} received", msg);
///
/// // "Thread unblocked!" will be printed now
///
/// msg = receiver.recv().unwrap();
/// println!("message {} received", msg);
///
/// msg = receiver.recv().unwrap();
///
/// println!("message {} received", msg);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub struct SyncSender<T> {
inner: Arc<sync::Packet<T>>,
@ -823,8 +945,9 @@ impl<T> SyncSender<T> {
/// Note that a successful send does *not* guarantee that the receiver will
/// ever see the data if there is a buffer on this channel. Items may be
/// enqueued in the internal buffer for the receiver to receive at a later
/// time. If the buffer size is 0, however, it can be guaranteed that the
/// receiver has indeed received the data if this function returns success.
/// time. If the buffer size is 0, however, the channel becomes a rendezvous
/// channel and it guarantees that the receiver has indeed received
/// the data if this function returns success.
///
/// This function will never panic, but it may return [`Err`] if the
/// [`Receiver`] has disconnected and is no longer able to receive
@ -832,6 +955,27 @@ impl<T> SyncSender<T> {
///
/// [`Err`]: ../../../std/result/enum.Result.html#variant.Err
/// [`Receiver`]: ../../../std/sync/mpsc/struct.Receiver.html
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::sync_channel;
/// use std::thread;
///
/// // Create a rendezvous sync_channel with buffer size 0
/// let (sync_sender, receiver) = sync_channel(0);
///
/// thread::spawn(move || {
/// println!("sending message...");
/// sync_sender.send(1).unwrap();
/// // Thread is now blocked until the message is received
///
/// println!("...message received!");
/// });
///
/// let msg = receiver.recv().unwrap();
/// assert_eq!(1, msg);
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn send(&self, t: T) -> Result<(), SendError<T>> {
self.inner.send(t).map_err(SendError)
@ -844,11 +988,48 @@ impl<T> SyncSender<T> {
/// data. Compared with [`send`], this function has two failure cases
/// instead of one (one for disconnection, one for a full buffer).
///
/// See [`SyncSender::send`] for notes about guarantees of whether the
/// See [`send`] for notes about guarantees of whether the
/// receiver has received the data or not if this function is successful.
///
/// [`send`]: ../../../std/sync/mpsc/struct.Sender.html#method.send
/// [`SyncSender::send`]: ../../../std/sync/mpsc/struct.SyncSender.html#method.send
/// [`send`]: ../../../std/sync/mpsc/struct.SyncSender.html#method.send
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::sync_channel;
/// use std::thread;
///
/// // Create a sync_channel with buffer size 1
/// let (sync_sender, receiver) = sync_channel(1);
/// let sync_sender2 = sync_sender.clone();
///
/// // First thread owns sync_sender
/// thread::spawn(move || {
/// sync_sender.send(1).unwrap();
/// sync_sender.send(2).unwrap();
/// // Thread blocked
/// });
///
/// // Second thread owns sync_sender2
/// thread::spawn(move || {
/// // This will return an error and send
/// // no message if the buffer is full
/// sync_sender2.try_send(3).is_err();
/// });
///
/// let mut msg;
/// msg = receiver.recv().unwrap();
/// println!("message {} received", msg);
///
/// msg = receiver.recv().unwrap();
/// println!("message {} received", msg);
///
/// // Third message may have never been sent
/// match receiver.try_recv() {
/// Ok(msg) => println!("message {} received", msg),
/// Err(_) => println!("the third message was never sent"),
/// }
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn try_send(&self, t: T) -> Result<(), TrySendError<T>> {
self.inner.try_send(t)
@ -894,6 +1075,21 @@ impl<T> Receiver<T> {
///
/// This is useful for a flavor of "optimistic check" before deciding to
/// block on a receiver.
///
/// Compared with [`recv`], this function has two failure cases instead of one
/// (one for disconnection, one for an empty buffer).
///
/// [`recv`]: struct.Receiver.html#method.recv
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::{Receiver, channel};
///
/// let (_, receiver): (_, Receiver<i32>) = channel();
///
/// assert!(receiver.try_recv().is_err());
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
pub fn try_recv(&self) -> Result<T, TryRecvError> {
loop {
@ -949,8 +1145,8 @@ impl<T> Receiver<T> {
///
/// This function will always block the current thread if there is no data
/// available and it's possible for more data to be sent. Once a message is
/// sent to the corresponding [`Sender`], then this receiver will wake up and
/// return that message.
/// sent to the corresponding [`Sender`][] (or [`SyncSender`]), then this
/// receiver will wake up and return that message.
///
/// If the corresponding [`Sender`] has disconnected, or it disconnects while
/// this call is blocking, this call will wake up and return [`Err`] to
@ -958,7 +1154,8 @@ impl<T> Receiver<T> {
/// However, since channels are buffered, messages sent before the disconnect
/// will still be properly received.
///
/// [`Sender`]: ../../../std/sync/mpsc/struct.Sender.html
/// [`Sender`]: struct.Sender.html
/// [`SyncSender`]: struct.SyncSender.html
/// [`Err`]: ../../../std/result/enum.Result.html#variant.Err
///
/// # Examples
@ -1040,8 +1237,8 @@ impl<T> Receiver<T> {
///
/// This function will always block the current thread if there is no data
/// available and it's possible for more data to be sent. Once a message is
/// sent to the corresponding [`Sender`], then this receiver will wake up and
/// return that message.
/// sent to the corresponding [`Sender`][] (or [`SyncSender`]), then this
/// receiver will wake up and return that message.
///
/// If the corresponding [`Sender`] has disconnected, or it disconnects while
/// this call is blocking, this call will wake up and return [`Err`] to
@ -1049,7 +1246,8 @@ impl<T> Receiver<T> {
/// However, since channels are buffered, messages sent before the disconnect
/// will still be properly received.
///
/// [`Sender`]: ../../../std/sync/mpsc/struct.Sender.html
/// [`Sender`]: struct.Sender.html
/// [`SyncSender`]: struct.SyncSender.html
/// [`Err`]: ../../../std/result/enum.Result.html#variant.Err
///
/// # Examples
@ -1163,6 +1361,33 @@ impl<T> Receiver<T> {
/// user by waiting for values.
///
/// [`panic!`]: ../../../std/macro.panic.html
///
/// # Examples
///
/// ```rust
/// use std::sync::mpsc::channel;
/// use std::thread;
/// use std::time::Duration;
///
/// let (sender, receiver) = channel();
///
/// // Nothing is in the buffer yet
/// assert!(receiver.try_iter().next().is_none());
/// println!("Nothing in the buffer...");
///
/// thread::spawn(move || {
/// sender.send(1).unwrap();
/// sender.send(2).unwrap();
/// sender.send(3).unwrap();
/// });
///
/// println!("Going to sleep...");
/// thread::sleep(Duration::from_secs(2)); // block for two seconds
///
/// for x in receiver.try_iter() {
/// println!("Got: {}", x);
/// }
/// ```
#[stable(feature = "receiver_try_iter", since = "1.15.0")]
pub fn try_iter(&self) -> TryIter<T> {
TryIter { rx: self }