Introduce structurally_normalize_const, use it in hir_typeck
This commit is contained in:
parent
0af7f0f4c4
commit
3b8089a320
8 changed files with 122 additions and 39 deletions
|
@ -1668,10 +1668,17 @@ pub enum ArrayLen<'hir> {
|
|||
}
|
||||
|
||||
impl ArrayLen<'_> {
|
||||
pub fn hir_id(&self) -> HirId {
|
||||
pub fn span(self) -> Span {
|
||||
match self {
|
||||
ArrayLen::Infer(InferArg { hir_id, .. }) | ArrayLen::Body(ConstArg { hir_id, .. }) => {
|
||||
*hir_id
|
||||
ArrayLen::Infer(arg) => arg.span,
|
||||
ArrayLen::Body(body) => body.span(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn hir_id(self) -> HirId {
|
||||
match self {
|
||||
ArrayLen::Infer(InferArg { hir_id, .. }) | ArrayLen::Body(&ConstArg { hir_id, .. }) => {
|
||||
hir_id
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1491,8 +1491,10 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
|
|||
expr: &'tcx hir::Expr<'tcx>,
|
||||
) -> Ty<'tcx> {
|
||||
let tcx = self.tcx;
|
||||
let count = self.lower_array_length(count);
|
||||
if let Some(count) = count.try_eval_target_usize(tcx, self.param_env) {
|
||||
let count_span = count.span();
|
||||
let count = self.try_structurally_resolve_const(count_span, self.lower_array_length(count));
|
||||
|
||||
if let Some(count) = count.try_to_target_usize(tcx) {
|
||||
self.suggest_array_len(expr, count);
|
||||
}
|
||||
|
||||
|
@ -1520,19 +1522,24 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
|
|||
return Ty::new_error(tcx, guar);
|
||||
}
|
||||
|
||||
self.check_repeat_element_needs_copy_bound(element, count, element_ty);
|
||||
// If the length is 0, we don't create any elements, so we don't copy any.
|
||||
// If the length is 1, we don't copy that one element, we move it. Only check
|
||||
// for `Copy` if the length is larger, or unevaluated.
|
||||
// FIXME(min_const_generic_exprs): We could perhaps defer this check so that
|
||||
// we don't require `<?0t as Tr>::CONST` doesn't unnecessarily require `Copy`.
|
||||
if count.try_to_target_usize(tcx).is_none_or(|x| x > 1) {
|
||||
self.enforce_repeat_element_needs_copy_bound(element, element_ty);
|
||||
}
|
||||
|
||||
let ty = Ty::new_array_with_const_len(tcx, t, count);
|
||||
|
||||
self.register_wf_obligation(ty.into(), expr.span, ObligationCauseCode::WellFormed(None));
|
||||
|
||||
ty
|
||||
}
|
||||
|
||||
fn check_repeat_element_needs_copy_bound(
|
||||
/// Requires that `element_ty` is `Copy` (unless it's a const expression itself).
|
||||
fn enforce_repeat_element_needs_copy_bound(
|
||||
&self,
|
||||
element: &hir::Expr<'_>,
|
||||
count: ty::Const<'tcx>,
|
||||
element_ty: Ty<'tcx>,
|
||||
) {
|
||||
let tcx = self.tcx;
|
||||
|
@ -1565,27 +1572,23 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
|
|||
_ => traits::IsConstable::No,
|
||||
};
|
||||
|
||||
// If the length is 0, we don't create any elements, so we don't copy any. If the length is 1, we
|
||||
// don't copy that one element, we move it. Only check for Copy if the length is larger.
|
||||
if count.try_eval_target_usize(tcx, self.param_env).is_none_or(|len| len > 1) {
|
||||
let lang_item = self.tcx.require_lang_item(LangItem::Copy, None);
|
||||
let code = traits::ObligationCauseCode::RepeatElementCopy {
|
||||
is_constable,
|
||||
elt_type: element_ty,
|
||||
elt_span: element.span,
|
||||
elt_stmt_span: self
|
||||
.tcx
|
||||
.hir()
|
||||
.parent_iter(element.hir_id)
|
||||
.find_map(|(_, node)| match node {
|
||||
hir::Node::Item(it) => Some(it.span),
|
||||
hir::Node::Stmt(stmt) => Some(stmt.span),
|
||||
_ => None,
|
||||
})
|
||||
.expect("array repeat expressions must be inside an item or statement"),
|
||||
};
|
||||
self.require_type_meets(element_ty, element.span, code, lang_item);
|
||||
}
|
||||
let lang_item = self.tcx.require_lang_item(LangItem::Copy, None);
|
||||
let code = traits::ObligationCauseCode::RepeatElementCopy {
|
||||
is_constable,
|
||||
elt_type: element_ty,
|
||||
elt_span: element.span,
|
||||
elt_stmt_span: self
|
||||
.tcx
|
||||
.hir()
|
||||
.parent_iter(element.hir_id)
|
||||
.find_map(|(_, node)| match node {
|
||||
hir::Node::Item(it) => Some(it.span),
|
||||
hir::Node::Stmt(stmt) => Some(stmt.span),
|
||||
_ => None,
|
||||
})
|
||||
.expect("array repeat expressions must be inside an item or statement"),
|
||||
};
|
||||
self.require_type_meets(element_ty, element.span, code, lang_item);
|
||||
}
|
||||
|
||||
fn check_expr_tuple(
|
||||
|
@ -2800,9 +2803,10 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
|
|||
len: ty::Const<'tcx>,
|
||||
) {
|
||||
err.span_label(field.span, "unknown field");
|
||||
if let (Some(len), Ok(user_index)) =
|
||||
(len.try_eval_target_usize(self.tcx, self.param_env), field.as_str().parse::<u64>())
|
||||
{
|
||||
if let (Some(len), Ok(user_index)) = (
|
||||
self.try_structurally_resolve_const(base.span, len).try_to_target_usize(self.tcx),
|
||||
field.as_str().parse::<u64>(),
|
||||
) {
|
||||
let help = "instead of using tuple indexing, use array indexing";
|
||||
let applicability = if len < user_index {
|
||||
Applicability::MachineApplicable
|
||||
|
|
|
@ -1477,6 +1477,33 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
|
|||
}
|
||||
}
|
||||
|
||||
#[instrument(level = "debug", skip(self, sp), ret)]
|
||||
pub fn try_structurally_resolve_const(&self, sp: Span, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
|
||||
// FIXME(min_const_generic_exprs): We could process obligations here if `ct` is a var.
|
||||
|
||||
if self.next_trait_solver()
|
||||
&& let ty::ConstKind::Unevaluated(..) = ct.kind()
|
||||
{
|
||||
// We need to use a separate variable here as otherwise the temporary for
|
||||
// `self.fulfillment_cx.borrow_mut()` is alive in the `Err` branch, resulting
|
||||
// in a reentrant borrow, causing an ICE.
|
||||
let result = self
|
||||
.at(&self.misc(sp), self.param_env)
|
||||
.structurally_normalize_const(ct, &mut **self.fulfillment_cx.borrow_mut());
|
||||
match result {
|
||||
Ok(normalized_ct) => normalized_ct,
|
||||
Err(errors) => {
|
||||
let guar = self.err_ctxt().report_fulfillment_errors(errors);
|
||||
return ty::Const::new_error(self.tcx, guar);
|
||||
}
|
||||
}
|
||||
} else if self.tcx.features().generic_const_exprs {
|
||||
ct.normalize(self.tcx, self.param_env)
|
||||
} else {
|
||||
ct
|
||||
}
|
||||
}
|
||||
|
||||
/// Resolves `ty` by a single level if `ty` is a type variable.
|
||||
///
|
||||
/// When the new solver is enabled, this will also attempt to normalize
|
||||
|
|
|
@ -1502,7 +1502,10 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
|
|||
// Create an dummy type `&[_]` so that both &[] and `&Vec<T>` can coerce to it.
|
||||
let dummy_ty = if let ty::Array(elem_ty, size) = peeled.kind()
|
||||
&& let ty::Infer(_) = elem_ty.kind()
|
||||
&& size.try_eval_target_usize(self.tcx, self.param_env) == Some(0)
|
||||
&& self
|
||||
.try_structurally_resolve_const(provided_expr.span, *size)
|
||||
.try_to_target_usize(self.tcx)
|
||||
== Some(0)
|
||||
{
|
||||
let slice = Ty::new_slice(self.tcx, *elem_ty);
|
||||
Ty::new_imm_ref(self.tcx, self.tcx.lifetimes.re_static, slice)
|
||||
|
|
|
@ -101,7 +101,9 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
|
|||
}
|
||||
}
|
||||
Ok(SizeSkeleton::Generic(size)) => {
|
||||
if let Some(size) = size.try_eval_target_usize(tcx, self.param_env) {
|
||||
if let Some(size) =
|
||||
self.try_structurally_resolve_const(span, size).try_to_target_usize(tcx)
|
||||
{
|
||||
format!("{size} bytes")
|
||||
} else {
|
||||
format!("generic size {size}")
|
||||
|
|
|
@ -2412,7 +2412,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
|
|||
len: ty::Const<'tcx>,
|
||||
min_len: u64,
|
||||
) -> (Option<Ty<'tcx>>, Ty<'tcx>) {
|
||||
let len = len.try_eval_target_usize(self.tcx, self.param_env);
|
||||
let len = self.try_structurally_resolve_const(span, len).try_to_target_usize(self.tcx);
|
||||
|
||||
let guar = if let Some(len) = len {
|
||||
// Now we know the length...
|
||||
|
|
|
@ -46,4 +46,44 @@ impl<'tcx> At<'_, 'tcx> {
|
|||
Ok(self.normalize(ty).into_value_registering_obligations(self.infcx, fulfill_cx))
|
||||
}
|
||||
}
|
||||
|
||||
fn structurally_normalize_const<E: 'tcx>(
|
||||
&self,
|
||||
ct: ty::Const<'tcx>,
|
||||
fulfill_cx: &mut dyn TraitEngine<'tcx, E>,
|
||||
) -> Result<ty::Const<'tcx>, Vec<E>> {
|
||||
assert!(!ct.is_ct_infer(), "should have resolved vars before calling");
|
||||
|
||||
if self.infcx.next_trait_solver() {
|
||||
let ty::ConstKind::Unevaluated(..) = ct.kind() else {
|
||||
return Ok(ct);
|
||||
};
|
||||
|
||||
let new_infer_ct = self.infcx.next_const_var(self.cause.span);
|
||||
|
||||
// We simply emit an `alias-eq` goal here, since that will take care of
|
||||
// normalizing the LHS of the projection until it is a rigid projection
|
||||
// (or a not-yet-defined opaque in scope).
|
||||
let obligation = Obligation::new(
|
||||
self.infcx.tcx,
|
||||
self.cause.clone(),
|
||||
self.param_env,
|
||||
ty::PredicateKind::AliasRelate(
|
||||
ct.into(),
|
||||
new_infer_ct.into(),
|
||||
ty::AliasRelationDirection::Equate,
|
||||
),
|
||||
);
|
||||
|
||||
fulfill_cx.register_predicate_obligation(self.infcx, obligation);
|
||||
let errors = fulfill_cx.select_where_possible(self.infcx);
|
||||
if !errors.is_empty() {
|
||||
return Err(errors);
|
||||
}
|
||||
|
||||
Ok(self.infcx.resolve_vars_if_possible(new_infer_ct))
|
||||
} else {
|
||||
Ok(self.normalize(ct).into_value_registering_obligations(self.infcx, fulfill_cx))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -2,10 +2,10 @@ error[E0308]: mismatched types
|
|||
--> $DIR/different-fn.rs:10:5
|
||||
|
|
||||
LL | [0; size_of::<Foo<T>>()]
|
||||
| ^^^^^^^^^^^^^^^^^^^^^^^^ expected `size_of::<T>()`, found `size_of::<Foo<T>>()`
|
||||
| ^^^^^^^^^^^^^^^^^^^^^^^^ expected `size_of::<T>()`, found `0`
|
||||
|
|
||||
= note: expected constant `size_of::<T>()`
|
||||
found constant `size_of::<Foo<T>>()`
|
||||
found constant `0`
|
||||
|
||||
error: unconstrained generic constant
|
||||
--> $DIR/different-fn.rs:10:9
|
||||
|
|
Loading…
Add table
Reference in a new issue