Auto merge of #116640 - matthiaskrgr:rollup-xt9r5ir, r=matthiaskrgr

Rollup of 5 pull requests

Successful merges:

 - #116219 (Relate alias ty with variance)
 - #116315 (Do not check for impossible predicates in const-prop lint.)
 - #116436 (Structurally normalize for closure)
 - #116597 (Prevent showing methods from blanket impls of not available foreign traits to show up in the search results)
 - #116627 (small cleanup)

r? `@ghost`
`@rustbot` modify labels: rollup
This commit is contained in:
bors 2023-10-11 19:02:49 +00:00
commit 475c71da07
14 changed files with 132 additions and 108 deletions

View file

@ -1623,12 +1623,10 @@ impl<'hir> LoweringContext<'_, 'hir> {
.lower_generic_params(bound_generic_params, hir::GenericParamSource::Binder),
bounded_ty: self
.lower_ty(bounded_ty, &ImplTraitContext::Disallowed(ImplTraitPosition::Bound)),
bounds: self.arena.alloc_from_iter(bounds.iter().map(|bound| {
self.lower_param_bound(
bound,
&ImplTraitContext::Disallowed(ImplTraitPosition::Bound),
)
})),
bounds: self.lower_param_bounds(
bounds,
&ImplTraitContext::Disallowed(ImplTraitPosition::Bound),
),
span: self.lower_span(*span),
origin: PredicateOrigin::WhereClause,
}),

View file

@ -56,7 +56,9 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// closure sooner rather than later, so first examine the expected
// type, and see if can glean a closure kind from there.
let (expected_sig, expected_kind) = match expected.to_option(self) {
Some(ty) => self.deduce_closure_signature(ty),
Some(ty) => {
self.deduce_closure_signature(self.try_structurally_resolve_type(expr_span, ty))
}
None => (None, None),
};
let body = self.tcx.hir().body(closure.body);
@ -688,8 +690,9 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
span_bug!(self.tcx.def_span(expr_def_id), "async fn generator outside of a fn")
});
let closure_span = self.tcx.def_span(expr_def_id);
let ret_ty = ret_coercion.borrow().expected_ty();
let ret_ty = self.inh.infcx.shallow_resolve(ret_ty);
let ret_ty = self.try_structurally_resolve_type(closure_span, ret_ty);
let get_future_output = |predicate: ty::Predicate<'tcx>, span| {
// Search for a pending obligation like
@ -711,8 +714,6 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}
};
let span = self.tcx.def_span(expr_def_id);
let output_ty = match *ret_ty.kind() {
ty::Infer(ty::TyVar(ret_vid)) => {
self.obligations_for_self_ty(ret_vid).find_map(|obligation| {
@ -726,17 +727,22 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
.find_map(|(p, s)| get_future_output(p.as_predicate(), s))?,
ty::Error(_) => return None,
_ => span_bug!(
span,
closure_span,
"async fn generator return type not an inference variable: {ret_ty}"
),
};
let output_ty = self.normalize(span, output_ty);
let output_ty = self.normalize(closure_span, output_ty);
// async fn that have opaque types in their return type need to redo the conversion to inference variables
// as they fetch the still opaque version from the signature.
let InferOk { value: output_ty, obligations } = self
.replace_opaque_types_with_inference_vars(output_ty, body_def_id, span, self.param_env);
.replace_opaque_types_with_inference_vars(
output_ty,
body_def_id,
closure_span,
self.param_env,
);
self.register_predicates(obligations);
Some(output_ty)

View file

@ -56,7 +56,7 @@ impl<'tcx> TypeRelation<'tcx> for Equate<'_, '_, 'tcx> {
// performing trait matching (which then performs equality
// unification).
relate::relate_args(self, a_arg, b_arg)
relate::relate_args_invariantly(self, a_arg, b_arg)
}
fn relate_with_variance<T: Relate<'tcx>>(

View file

@ -183,7 +183,7 @@ where
// Avoid fetching the variance if we are in an invariant
// context; no need, and it can induce dependency cycles
// (e.g., #41849).
relate::relate_args(self, a_subst, b_subst)
relate::relate_args_invariantly(self, a_subst, b_subst)
} else {
let tcx = self.tcx();
let opt_variances = tcx.variances_of(item_def_id);

View file

@ -8,6 +8,7 @@ use crate::ty::error::{ExpectedFound, TypeError};
use crate::ty::{self, Expr, ImplSubject, Term, TermKind, Ty, TyCtxt, TypeFoldable};
use crate::ty::{GenericArg, GenericArgKind, GenericArgsRef};
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::DefId;
use rustc_target::spec::abi;
use std::iter;
@ -134,7 +135,7 @@ pub fn relate_type_and_mut<'tcx, R: TypeRelation<'tcx>>(
}
#[inline]
pub fn relate_args<'tcx, R: TypeRelation<'tcx>>(
pub fn relate_args_invariantly<'tcx, R: TypeRelation<'tcx>>(
relation: &mut R,
a_arg: GenericArgsRef<'tcx>,
b_arg: GenericArgsRef<'tcx>,
@ -273,7 +274,20 @@ impl<'tcx> Relate<'tcx> for ty::AliasTy<'tcx> {
if a.def_id != b.def_id {
Err(TypeError::ProjectionMismatched(expected_found(relation, a.def_id, b.def_id)))
} else {
let args = relation.relate(a.args, b.args)?;
let args = match relation.tcx().def_kind(a.def_id) {
DefKind::OpaqueTy => relate_args_with_variances(
relation,
a.def_id,
relation.tcx().variances_of(a.def_id),
a.args,
b.args,
false, // do not fetch `type_of(a_def_id)`, as it will cause a cycle
)?,
DefKind::AssocTy | DefKind::AssocConst | DefKind::TyAlias => {
relate_args_invariantly(relation, a.args, b.args)?
}
def => bug!("unknown alias DefKind: {def:?}"),
};
Ok(relation.tcx().mk_alias_ty(a.def_id, args))
}
}
@ -315,7 +329,7 @@ impl<'tcx> Relate<'tcx> for ty::TraitRef<'tcx> {
if a.def_id != b.def_id {
Err(TypeError::Traits(expected_found(relation, a.def_id, b.def_id)))
} else {
let args = relate_args(relation, a.args, b.args)?;
let args = relate_args_invariantly(relation, a.args, b.args)?;
Ok(ty::TraitRef::new(relation.tcx(), a.def_id, args))
}
}
@ -331,7 +345,7 @@ impl<'tcx> Relate<'tcx> for ty::ExistentialTraitRef<'tcx> {
if a.def_id != b.def_id {
Err(TypeError::Traits(expected_found(relation, a.def_id, b.def_id)))
} else {
let args = relate_args(relation, a.args, b.args)?;
let args = relate_args_invariantly(relation, a.args, b.args)?;
Ok(ty::ExistentialTraitRef { def_id: a.def_id, args })
}
}
@ -449,7 +463,7 @@ pub fn structurally_relate_tys<'tcx, R: TypeRelation<'tcx>>(
// All Generator types with the same id represent
// the (anonymous) type of the same generator expression. So
// all of their regions should be equated.
let args = relation.relate(a_args, b_args)?;
let args = relate_args_invariantly(relation, a_args, b_args)?;
Ok(Ty::new_generator(tcx, a_id, args, movability))
}
@ -459,7 +473,7 @@ pub fn structurally_relate_tys<'tcx, R: TypeRelation<'tcx>>(
// All GeneratorWitness types with the same id represent
// the (anonymous) type of the same generator expression. So
// all of their regions should be equated.
let args = relation.relate(a_args, b_args)?;
let args = relate_args_invariantly(relation, a_args, b_args)?;
Ok(Ty::new_generator_witness(tcx, a_id, args))
}
@ -467,7 +481,7 @@ pub fn structurally_relate_tys<'tcx, R: TypeRelation<'tcx>>(
// All Closure types with the same id represent
// the (anonymous) type of the same closure expression. So
// all of their regions should be equated.
let args = relation.relate(a_args, b_args)?;
let args = relate_args_invariantly(relation, a_args, b_args)?;
Ok(Ty::new_closure(tcx, a_id, &args))
}
@ -536,24 +550,6 @@ pub fn structurally_relate_tys<'tcx, R: TypeRelation<'tcx>>(
Ok(Ty::new_fn_ptr(tcx, fty))
}
// The args of opaque types may not all be invariant, so we have
// to treat them separately from other aliases.
(
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: a_def_id, args: a_args, .. }),
&ty::Alias(ty::Opaque, ty::AliasTy { def_id: b_def_id, args: b_args, .. }),
) if a_def_id == b_def_id => {
let opt_variances = tcx.variances_of(a_def_id);
let args = relate_args_with_variances(
relation,
a_def_id,
opt_variances,
a_args,
b_args,
false, // do not fetch `type_of(a_def_id)`, as it will cause a cycle
)?;
Ok(Ty::new_opaque(tcx, a_def_id, args))
}
// Alias tend to mostly already be handled downstream due to normalization.
(&ty::Alias(a_kind, a_data), &ty::Alias(b_kind, b_data)) => {
let alias_ty = relation.relate(a_data, b_data)?;
@ -709,7 +705,7 @@ impl<'tcx> Relate<'tcx> for ty::ClosureArgs<'tcx> {
a: ty::ClosureArgs<'tcx>,
b: ty::ClosureArgs<'tcx>,
) -> RelateResult<'tcx, ty::ClosureArgs<'tcx>> {
let args = relate_args(relation, a.args, b.args)?;
let args = relate_args_invariantly(relation, a.args, b.args)?;
Ok(ty::ClosureArgs { args })
}
}
@ -720,7 +716,7 @@ impl<'tcx> Relate<'tcx> for ty::GeneratorArgs<'tcx> {
a: ty::GeneratorArgs<'tcx>,
b: ty::GeneratorArgs<'tcx>,
) -> RelateResult<'tcx, ty::GeneratorArgs<'tcx>> {
let args = relate_args(relation, a.args, b.args)?;
let args = relate_args_invariantly(relation, a.args, b.args)?;
Ok(ty::GeneratorArgs { args })
}
}
@ -731,7 +727,7 @@ impl<'tcx> Relate<'tcx> for GenericArgsRef<'tcx> {
a: GenericArgsRef<'tcx>,
b: GenericArgsRef<'tcx>,
) -> RelateResult<'tcx, GenericArgsRef<'tcx>> {
relate_args(relation, a, b)
relate_args_invariantly(relation, a, b)
}
}
@ -835,19 +831,6 @@ impl<'tcx> Relate<'tcx> for Term<'tcx> {
}
}
impl<'tcx> Relate<'tcx> for ty::ProjectionPredicate<'tcx> {
fn relate<R: TypeRelation<'tcx>>(
relation: &mut R,
a: ty::ProjectionPredicate<'tcx>,
b: ty::ProjectionPredicate<'tcx>,
) -> RelateResult<'tcx, ty::ProjectionPredicate<'tcx>> {
Ok(ty::ProjectionPredicate {
projection_ty: relation.relate(a.projection_ty, b.projection_ty)?,
term: relation.relate(a.term, b.term)?,
})
}
}
///////////////////////////////////////////////////////////////////////////
// Error handling

View file

@ -22,7 +22,6 @@ use rustc_middle::ty::{
};
use rustc_span::Span;
use rustc_target::abi::{HasDataLayout, Size, TargetDataLayout};
use rustc_trait_selection::traits;
use crate::const_prop::CanConstProp;
use crate::const_prop::ConstPropMachine;
@ -35,9 +34,9 @@ use crate::MirLint;
/// Severely regress performance.
const MAX_ALLOC_LIMIT: u64 = 1024;
pub struct ConstProp;
pub struct ConstPropLint;
impl<'tcx> MirLint<'tcx> for ConstProp {
impl<'tcx> MirLint<'tcx> for ConstPropLint {
fn run_lint(&self, tcx: TyCtxt<'tcx>, body: &Body<'tcx>) {
if body.tainted_by_errors.is_some() {
return;
@ -49,61 +48,25 @@ impl<'tcx> MirLint<'tcx> for ConstProp {
}
let def_id = body.source.def_id().expect_local();
let is_fn_like = tcx.def_kind(def_id).is_fn_like();
let is_assoc_const = tcx.def_kind(def_id) == DefKind::AssocConst;
let def_kind = tcx.def_kind(def_id);
let is_fn_like = def_kind.is_fn_like();
let is_assoc_const = def_kind == DefKind::AssocConst;
// Only run const prop on functions, methods, closures and associated constants
if !is_fn_like && !is_assoc_const {
// skip anon_const/statics/consts because they'll be evaluated by miri anyway
trace!("ConstProp skipped for {:?}", def_id);
trace!("ConstPropLint skipped for {:?}", def_id);
return;
}
let is_generator = tcx.type_of(def_id.to_def_id()).instantiate_identity().is_generator();
// FIXME(welseywiser) const prop doesn't work on generators because of query cycles
// computing their layout.
if is_generator {
trace!("ConstProp skipped for generator {:?}", def_id);
if let DefKind::Generator = def_kind {
trace!("ConstPropLint skipped for generator {:?}", def_id);
return;
}
// Check if it's even possible to satisfy the 'where' clauses
// for this item.
// This branch will never be taken for any normal function.
// However, it's possible to `#!feature(trivial_bounds)]` to write
// a function with impossible to satisfy clauses, e.g.:
// `fn foo() where String: Copy {}`
//
// We don't usually need to worry about this kind of case,
// since we would get a compilation error if the user tried
// to call it. However, since we can do const propagation
// even without any calls to the function, we need to make
// sure that it even makes sense to try to evaluate the body.
// If there are unsatisfiable where clauses, then all bets are
// off, and we just give up.
//
// We manually filter the predicates, skipping anything that's not
// "global". We are in a potentially generic context
// (e.g. we are evaluating a function without substituting generic
// parameters, so this filtering serves two purposes:
//
// 1. We skip evaluating any predicates that we would
// never be able prove are unsatisfiable (e.g. `<T as Foo>`
// 2. We avoid trying to normalize predicates involving generic
// parameters (e.g. `<T as Foo>::MyItem`). This can confuse
// the normalization code (leading to cycle errors), since
// it's usually never invoked in this way.
let predicates = tcx
.predicates_of(def_id.to_def_id())
.predicates
.iter()
.filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None });
if traits::impossible_predicates(tcx, traits::elaborate(tcx, predicates).collect()) {
trace!("ConstProp skipped for {:?}: found unsatisfiable predicates", def_id);
return;
}
trace!("ConstProp starting for {:?}", def_id);
trace!("ConstPropLint starting for {:?}", def_id);
// FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold
// constants, instead of just checking for const-folding succeeding.
@ -112,7 +75,7 @@ impl<'tcx> MirLint<'tcx> for ConstProp {
let mut linter = ConstPropagator::new(body, tcx);
linter.visit_body(body);
trace!("ConstProp done for {:?}", def_id);
trace!("ConstPropLint done for {:?}", def_id);
}
}

View file

@ -496,7 +496,7 @@ fn run_runtime_lowering_passes<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
&elaborate_box_derefs::ElaborateBoxDerefs,
&generator::StateTransform,
&add_retag::AddRetag,
&Lint(const_prop_lint::ConstProp),
&Lint(const_prop_lint::ConstPropLint),
];
pm::run_passes_no_validate(tcx, body, passes, Some(MirPhase::Runtime(RuntimePhase::Initial)));
}
@ -554,8 +554,6 @@ fn run_optimization_passes<'tcx>(tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
&const_prop::ConstProp,
&gvn::GVN,
&dataflow_const_prop::DataflowConstProp,
//
// Const-prop runs unconditionally, but doesn't mutate the MIR at mir-opt-level=0.
&const_debuginfo::ConstDebugInfo,
&o1(simplify_branches::SimplifyConstCondition::AfterConstProp),
&early_otherwise_branch::EarlyOtherwiseBranch,

View file

@ -221,16 +221,23 @@ impl<'a, 'tcx> DocFolder for CacheBuilder<'a, 'tcx> {
_ => self.cache.stripped_mod,
};
#[inline]
fn is_from_private_dep(tcx: TyCtxt<'_>, cache: &Cache, def_id: DefId) -> bool {
let krate = def_id.krate;
cache.masked_crates.contains(&krate) || tcx.is_private_dep(krate)
}
// If the impl is from a masked crate or references something from a
// masked crate then remove it completely.
if let clean::ImplItem(ref i) = *item.kind &&
(self.cache.masked_crates.contains(&item.item_id.krate())
|| i.trait_
.as_ref()
.map_or(false, |t| self.cache.masked_crates.contains(&t.def_id().krate))
.map_or(false, |t| is_from_private_dep(self.tcx, self.cache, t.def_id()))
|| i.for_
.def_id(self.cache)
.map_or(false, |d| self.cache.masked_crates.contains(&d.krate)))
.map_or(false, |d| is_from_private_dep(self.tcx, self.cache, d)))
{
return None;
}

View file

@ -0,0 +1,15 @@
use std::borrow::Borrow;
pub trait Equivalent<K: ?Sized> {
fn equivalent(&self, key: &K) -> bool;
}
impl<Q: ?Sized, K: ?Sized> Equivalent<K> for Q
where
Q: Eq,
K: Borrow<Q>,
{
fn equivalent(&self, key: &K) -> bool {
PartialEq::eq(self, key.borrow())
}
}

View file

@ -0,0 +1,9 @@
// exact-check
// This test ensures that methods from blanket impls of not available foreign traits
// don't show up in the search results.
const EXPECTED = {
'query': 'equivalent',
'others': [],
};

View file

@ -0,0 +1,8 @@
// aux-crate:priv:equivalent=equivalent.rs
// compile-flags: -Zunstable-options --extern equivalent
// edition:2018
extern crate equivalent;
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct LayoutError;

View file

@ -0,0 +1,14 @@
// check-pass
// compile-flags: -Ztrait-solver=next
fn foo<'a: 'a>(x: &'a Vec<i32>) -> impl Sized {
()
}
fn main() {
// in NLL, we want to make sure that the `'a` subst of `foo` does not get
// related between `x` and the RHS of the assignment. That would require
// that the temp is live for the lifetime of the variable `x`, which of
// course is not necessary since `'a` is not captured by the RPIT.
let x = foo(&Vec::new());
}

View file

@ -0,0 +1,12 @@
// compile-flags: -Ztrait-solver=next
// check-pass
#![feature(return_position_impl_trait_in_trait)]
trait Foo {
fn test() -> impl Fn(u32) -> u32 {
|x| x.count_ones()
}
}
fn main() {}

View file

@ -0,0 +1,11 @@
// compile-flags: -Ztrait-solver=next
// check-pass
// edition:2021
#![feature(async_fn_in_trait)]
trait Foo {
async fn bar() {}
}
fn main() {}