Auto merge of #101483 - oli-obk:guaranteed_opt, r=fee1-dead
The `<*const T>::guaranteed_*` methods now return an option for the unknown case cc https://github.com/rust-lang/rust/issues/53020#issuecomment-1236932443 I chose `0` for "not equal" and `1` for "equal" and left `2` for the unknown case so backends can just forward to raw pointer equality and it works ✨ r? `@fee1-dead` or `@lcnr` cc `@rust-lang/wg-const-eval`
This commit is contained in:
commit
5197c96c49
12 changed files with 119 additions and 138 deletions
|
@ -816,20 +816,13 @@ fn codegen_regular_intrinsic_call<'tcx>(
|
|||
ret.write_cvalue(fx, val);
|
||||
}
|
||||
|
||||
sym::ptr_guaranteed_eq => {
|
||||
sym::ptr_guaranteed_cmp => {
|
||||
intrinsic_args!(fx, args => (a, b); intrinsic);
|
||||
|
||||
let val = crate::num::codegen_ptr_binop(fx, BinOp::Eq, a, b);
|
||||
ret.write_cvalue(fx, val);
|
||||
}
|
||||
|
||||
sym::ptr_guaranteed_ne => {
|
||||
intrinsic_args!(fx, args => (a, b); intrinsic);
|
||||
|
||||
let val = crate::num::codegen_ptr_binop(fx, BinOp::Ne, a, b);
|
||||
ret.write_cvalue(fx, val);
|
||||
}
|
||||
|
||||
sym::caller_location => {
|
||||
intrinsic_args!(fx, args => (); intrinsic);
|
||||
|
||||
|
|
|
@ -551,14 +551,10 @@ impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
|
|||
return;
|
||||
}
|
||||
|
||||
sym::ptr_guaranteed_eq | sym::ptr_guaranteed_ne => {
|
||||
sym::ptr_guaranteed_cmp => {
|
||||
let a = args[0].immediate();
|
||||
let b = args[1].immediate();
|
||||
if name == sym::ptr_guaranteed_eq {
|
||||
bx.icmp(IntPredicate::IntEQ, a, b)
|
||||
} else {
|
||||
bx.icmp(IntPredicate::IntNE, a, b)
|
||||
}
|
||||
bx.icmp(IntPredicate::IntEQ, a, b)
|
||||
}
|
||||
|
||||
sym::ptr_offset_from | sym::ptr_offset_from_unsigned => {
|
||||
|
|
|
@ -191,34 +191,35 @@ impl interpret::MayLeak for ! {
|
|||
}
|
||||
|
||||
impl<'mir, 'tcx: 'mir> CompileTimeEvalContext<'mir, 'tcx> {
|
||||
fn guaranteed_eq(&mut self, a: Scalar, b: Scalar) -> InterpResult<'tcx, bool> {
|
||||
/// See documentation on the `ptr_guaranteed_cmp` intrinsic.
|
||||
fn guaranteed_cmp(&mut self, a: Scalar, b: Scalar) -> InterpResult<'tcx, u8> {
|
||||
Ok(match (a, b) {
|
||||
// Comparisons between integers are always known.
|
||||
(Scalar::Int { .. }, Scalar::Int { .. }) => a == b,
|
||||
// Equality with integers can never be known for sure.
|
||||
(Scalar::Int { .. }, Scalar::Ptr(..)) | (Scalar::Ptr(..), Scalar::Int { .. }) => false,
|
||||
// FIXME: return `true` for when both sides are the same pointer, *except* that
|
||||
// some things (like functions and vtables) do not have stable addresses
|
||||
// so we need to be careful around them (see e.g. #73722).
|
||||
(Scalar::Ptr(..), Scalar::Ptr(..)) => false,
|
||||
})
|
||||
}
|
||||
|
||||
fn guaranteed_ne(&mut self, a: Scalar, b: Scalar) -> InterpResult<'tcx, bool> {
|
||||
Ok(match (a, b) {
|
||||
// Comparisons between integers are always known.
|
||||
(Scalar::Int(_), Scalar::Int(_)) => a != b,
|
||||
(Scalar::Int { .. }, Scalar::Int { .. }) => {
|
||||
if a == b {
|
||||
1
|
||||
} else {
|
||||
0
|
||||
}
|
||||
}
|
||||
// Comparisons of abstract pointers with null pointers are known if the pointer
|
||||
// is in bounds, because if they are in bounds, the pointer can't be null.
|
||||
// Inequality with integers other than null can never be known for sure.
|
||||
(Scalar::Int(int), ptr @ Scalar::Ptr(..))
|
||||
| (ptr @ Scalar::Ptr(..), Scalar::Int(int)) => {
|
||||
int.is_null() && !self.scalar_may_be_null(ptr)?
|
||||
| (ptr @ Scalar::Ptr(..), Scalar::Int(int))
|
||||
if int.is_null() && !self.scalar_may_be_null(ptr)? =>
|
||||
{
|
||||
0
|
||||
}
|
||||
// FIXME: return `true` for at least some comparisons where we can reliably
|
||||
// Equality with integers can never be known for sure.
|
||||
(Scalar::Int { .. }, Scalar::Ptr(..)) | (Scalar::Ptr(..), Scalar::Int { .. }) => 2,
|
||||
// FIXME: return a `1` for when both sides are the same pointer, *except* that
|
||||
// some things (like functions and vtables) do not have stable addresses
|
||||
// so we need to be careful around them (see e.g. #73722).
|
||||
// FIXME: return `0` for at least some comparisons where we can reliably
|
||||
// determine the result of runtime inequality tests at compile-time.
|
||||
// Examples include comparison of addresses in different static items.
|
||||
(Scalar::Ptr(..), Scalar::Ptr(..)) => false,
|
||||
(Scalar::Ptr(..), Scalar::Ptr(..)) => 2,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
@ -329,15 +330,11 @@ impl<'mir, 'tcx> interpret::Machine<'mir, 'tcx> for CompileTimeInterpreter<'mir,
|
|||
throw_unsup_format!("intrinsic `{intrinsic_name}` is not supported at compile-time");
|
||||
};
|
||||
match intrinsic_name {
|
||||
sym::ptr_guaranteed_eq | sym::ptr_guaranteed_ne => {
|
||||
sym::ptr_guaranteed_cmp => {
|
||||
let a = ecx.read_scalar(&args[0])?;
|
||||
let b = ecx.read_scalar(&args[1])?;
|
||||
let cmp = if intrinsic_name == sym::ptr_guaranteed_eq {
|
||||
ecx.guaranteed_eq(a, b)?
|
||||
} else {
|
||||
ecx.guaranteed_ne(a, b)?
|
||||
};
|
||||
ecx.write_scalar(Scalar::from_bool(cmp), dest)?;
|
||||
let cmp = ecx.guaranteed_cmp(a, b)?;
|
||||
ecx.write_scalar(Scalar::from_u8(cmp), dest)?;
|
||||
}
|
||||
sym::const_allocate => {
|
||||
let size = ecx.read_scalar(&args[0])?.to_machine_usize(ecx)?;
|
||||
|
|
|
@ -97,7 +97,7 @@ pub(crate) fn const_to_valtree_inner<'tcx>(
|
|||
}
|
||||
|
||||
// Raw pointers are not allowed in type level constants, as we cannot properly test them for
|
||||
// equality at compile-time (see `ptr_guaranteed_eq`/`_ne`).
|
||||
// equality at compile-time (see `ptr_guaranteed_cmp`).
|
||||
// Technically we could allow function pointers (represented as `ty::Instance`), but this is not guaranteed to
|
||||
// agree with runtime equality tests.
|
||||
ty::FnPtr(_) | ty::RawPtr(_) => Err(ValTreeCreationError::NonSupportedType),
|
||||
|
|
|
@ -1117,8 +1117,7 @@ symbols! {
|
|||
profiler_builtins,
|
||||
profiler_runtime,
|
||||
ptr,
|
||||
ptr_guaranteed_eq,
|
||||
ptr_guaranteed_ne,
|
||||
ptr_guaranteed_cmp,
|
||||
ptr_mask,
|
||||
ptr_null,
|
||||
ptr_null_mut,
|
||||
|
|
|
@ -95,8 +95,7 @@ pub fn intrinsic_operation_unsafety(intrinsic: Symbol) -> hir::Unsafety {
|
|||
| sym::type_id
|
||||
| sym::likely
|
||||
| sym::unlikely
|
||||
| sym::ptr_guaranteed_eq
|
||||
| sym::ptr_guaranteed_ne
|
||||
| sym::ptr_guaranteed_cmp
|
||||
| sym::minnumf32
|
||||
| sym::minnumf64
|
||||
| sym::maxnumf32
|
||||
|
@ -302,8 +301,8 @@ pub fn check_intrinsic_type(tcx: TyCtxt<'_>, it: &hir::ForeignItem<'_>) {
|
|||
(1, vec![param(0), param(0)], tcx.intern_tup(&[param(0), tcx.types.bool]))
|
||||
}
|
||||
|
||||
sym::ptr_guaranteed_eq | sym::ptr_guaranteed_ne => {
|
||||
(1, vec![tcx.mk_imm_ptr(param(0)), tcx.mk_imm_ptr(param(0))], tcx.types.bool)
|
||||
sym::ptr_guaranteed_cmp => {
|
||||
(1, vec![tcx.mk_imm_ptr(param(0)), tcx.mk_imm_ptr(param(0))], tcx.types.u8)
|
||||
}
|
||||
|
||||
sym::const_allocate => {
|
||||
|
|
|
@ -2013,21 +2013,24 @@ extern "rust-intrinsic" {
|
|||
pub fn ptr_offset_from_unsigned<T>(ptr: *const T, base: *const T) -> usize;
|
||||
|
||||
/// See documentation of `<*const T>::guaranteed_eq` for details.
|
||||
/// Returns `2` if the result is unknown.
|
||||
/// Returns `1` if the pointers are guaranteed equal
|
||||
/// Returns `0` if the pointers are guaranteed inequal
|
||||
///
|
||||
/// Note that, unlike most intrinsics, this is safe to call;
|
||||
/// it does not require an `unsafe` block.
|
||||
/// Therefore, implementations must not require the user to uphold
|
||||
/// any safety invariants.
|
||||
#[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
|
||||
#[cfg(not(bootstrap))]
|
||||
pub fn ptr_guaranteed_cmp<T>(ptr: *const T, other: *const T) -> u8;
|
||||
|
||||
#[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
|
||||
#[cfg(bootstrap)]
|
||||
pub fn ptr_guaranteed_eq<T>(ptr: *const T, other: *const T) -> bool;
|
||||
|
||||
/// See documentation of `<*const T>::guaranteed_ne` for details.
|
||||
///
|
||||
/// Note that, unlike most intrinsics, this is safe to call;
|
||||
/// it does not require an `unsafe` block.
|
||||
/// Therefore, implementations must not require the user to uphold
|
||||
/// any safety invariants.
|
||||
#[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
|
||||
#[cfg(bootstrap)]
|
||||
pub fn ptr_guaranteed_ne<T>(ptr: *const T, other: *const T) -> bool;
|
||||
|
||||
/// Allocates a block of memory at compile time.
|
||||
|
@ -2213,6 +2216,16 @@ pub(crate) fn is_nonoverlapping<T>(src: *const T, dst: *const T, count: usize) -
|
|||
diff >= size
|
||||
}
|
||||
|
||||
#[cfg(bootstrap)]
|
||||
pub const fn ptr_guaranteed_cmp(a: *const (), b: *const ()) -> u8 {
|
||||
match (ptr_guaranteed_eq(a, b), ptr_guaranteed_ne(a, b)) {
|
||||
(false, false) => 2,
|
||||
(true, false) => 1,
|
||||
(false, true) => 0,
|
||||
(true, true) => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Copies `count * size_of::<T>()` bytes from `src` to `dst`. The source
|
||||
/// and destination must *not* overlap.
|
||||
///
|
||||
|
|
|
@ -36,7 +36,10 @@ impl<T: ?Sized> *const T {
|
|||
pub const fn is_null(self) -> bool {
|
||||
// Compare via a cast to a thin pointer, so fat pointers are only
|
||||
// considering their "data" part for null-ness.
|
||||
(self as *const u8).guaranteed_eq(null())
|
||||
match (self as *const u8).guaranteed_eq(null()) {
|
||||
None => false,
|
||||
Some(res) => res,
|
||||
}
|
||||
}
|
||||
|
||||
/// Casts to a pointer of another type.
|
||||
|
@ -770,20 +773,16 @@ impl<T: ?Sized> *const T {
|
|||
|
||||
/// Returns whether two pointers are guaranteed to be equal.
|
||||
///
|
||||
/// At runtime this function behaves like `self == other`.
|
||||
/// At runtime this function behaves like `Some(self == other)`.
|
||||
/// However, in some contexts (e.g., compile-time evaluation),
|
||||
/// it is not always possible to determine equality of two pointers, so this function may
|
||||
/// spuriously return `false` for pointers that later actually turn out to be equal.
|
||||
/// But when it returns `true`, the pointers are guaranteed to be equal.
|
||||
/// spuriously return `None` for pointers that later actually turn out to have its equality known.
|
||||
/// But when it returns `Some`, the pointers' equality is guaranteed to be known.
|
||||
///
|
||||
/// This function is the mirror of [`guaranteed_ne`], but not its inverse. There are pointer
|
||||
/// comparisons for which both functions return `false`.
|
||||
///
|
||||
/// [`guaranteed_ne`]: #method.guaranteed_ne
|
||||
///
|
||||
/// The return value may change depending on the compiler version and unsafe code must not
|
||||
/// The return value may change from `Some` to `None` and vice versa depending on the compiler
|
||||
/// version and unsafe code must not
|
||||
/// rely on the result of this function for soundness. It is suggested to only use this function
|
||||
/// for performance optimizations where spurious `false` return values by this function do not
|
||||
/// for performance optimizations where spurious `None` return values by this function do not
|
||||
/// affect the outcome, but just the performance.
|
||||
/// The consequences of using this method to make runtime and compile-time code behave
|
||||
/// differently have not been explored. This method should not be used to introduce such
|
||||
|
@ -792,29 +791,28 @@ impl<T: ?Sized> *const T {
|
|||
#[unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
|
||||
#[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
|
||||
#[inline]
|
||||
pub const fn guaranteed_eq(self, other: *const T) -> bool
|
||||
pub const fn guaranteed_eq(self, other: *const T) -> Option<bool>
|
||||
where
|
||||
T: Sized,
|
||||
{
|
||||
intrinsics::ptr_guaranteed_eq(self, other)
|
||||
match intrinsics::ptr_guaranteed_cmp(self as _, other as _) {
|
||||
2 => None,
|
||||
other => Some(other == 1),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns whether two pointers are guaranteed to be unequal.
|
||||
/// Returns whether two pointers are guaranteed to be inequal.
|
||||
///
|
||||
/// At runtime this function behaves like `self != other`.
|
||||
/// At runtime this function behaves like `Some(self == other)`.
|
||||
/// However, in some contexts (e.g., compile-time evaluation),
|
||||
/// it is not always possible to determine the inequality of two pointers, so this function may
|
||||
/// spuriously return `false` for pointers that later actually turn out to be unequal.
|
||||
/// But when it returns `true`, the pointers are guaranteed to be unequal.
|
||||
/// it is not always possible to determine inequality of two pointers, so this function may
|
||||
/// spuriously return `None` for pointers that later actually turn out to have its inequality known.
|
||||
/// But when it returns `Some`, the pointers' inequality is guaranteed to be known.
|
||||
///
|
||||
/// This function is the mirror of [`guaranteed_eq`], but not its inverse. There are pointer
|
||||
/// comparisons for which both functions return `false`.
|
||||
///
|
||||
/// [`guaranteed_eq`]: #method.guaranteed_eq
|
||||
///
|
||||
/// The return value may change depending on the compiler version and unsafe code must not
|
||||
/// The return value may change from `Some` to `None` and vice versa depending on the compiler
|
||||
/// version and unsafe code must not
|
||||
/// rely on the result of this function for soundness. It is suggested to only use this function
|
||||
/// for performance optimizations where spurious `false` return values by this function do not
|
||||
/// for performance optimizations where spurious `None` return values by this function do not
|
||||
/// affect the outcome, but just the performance.
|
||||
/// The consequences of using this method to make runtime and compile-time code behave
|
||||
/// differently have not been explored. This method should not be used to introduce such
|
||||
|
@ -823,11 +821,14 @@ impl<T: ?Sized> *const T {
|
|||
#[unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
|
||||
#[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
|
||||
#[inline]
|
||||
pub const fn guaranteed_ne(self, other: *const T) -> bool
|
||||
pub const fn guaranteed_ne(self, other: *const T) -> Option<bool>
|
||||
where
|
||||
T: Sized,
|
||||
{
|
||||
intrinsics::ptr_guaranteed_ne(self, other)
|
||||
match self.guaranteed_eq(other) {
|
||||
None => None,
|
||||
Some(eq) => Some(!eq),
|
||||
}
|
||||
}
|
||||
|
||||
/// Calculates the offset from a pointer (convenience for `.offset(count as isize)`).
|
||||
|
|
|
@ -35,7 +35,10 @@ impl<T: ?Sized> *mut T {
|
|||
pub const fn is_null(self) -> bool {
|
||||
// Compare via a cast to a thin pointer, so fat pointers are only
|
||||
// considering their "data" part for null-ness.
|
||||
(self as *mut u8).guaranteed_eq(null_mut())
|
||||
match (self as *mut u8).guaranteed_eq(null_mut()) {
|
||||
None => false,
|
||||
Some(res) => res,
|
||||
}
|
||||
}
|
||||
|
||||
/// Casts to a pointer of another type.
|
||||
|
@ -697,20 +700,16 @@ impl<T: ?Sized> *mut T {
|
|||
|
||||
/// Returns whether two pointers are guaranteed to be equal.
|
||||
///
|
||||
/// At runtime this function behaves like `self == other`.
|
||||
/// At runtime this function behaves like `Some(self == other)`.
|
||||
/// However, in some contexts (e.g., compile-time evaluation),
|
||||
/// it is not always possible to determine equality of two pointers, so this function may
|
||||
/// spuriously return `false` for pointers that later actually turn out to be equal.
|
||||
/// But when it returns `true`, the pointers are guaranteed to be equal.
|
||||
/// spuriously return `None` for pointers that later actually turn out to have its equality known.
|
||||
/// But when it returns `Some`, the pointers' equality is guaranteed to be known.
|
||||
///
|
||||
/// This function is the mirror of [`guaranteed_ne`], but not its inverse. There are pointer
|
||||
/// comparisons for which both functions return `false`.
|
||||
///
|
||||
/// [`guaranteed_ne`]: #method.guaranteed_ne
|
||||
///
|
||||
/// The return value may change depending on the compiler version and unsafe code might not
|
||||
/// The return value may change from `Some` to `None` and vice versa depending on the compiler
|
||||
/// version and unsafe code must not
|
||||
/// rely on the result of this function for soundness. It is suggested to only use this function
|
||||
/// for performance optimizations where spurious `false` return values by this function do not
|
||||
/// for performance optimizations where spurious `None` return values by this function do not
|
||||
/// affect the outcome, but just the performance.
|
||||
/// The consequences of using this method to make runtime and compile-time code behave
|
||||
/// differently have not been explored. This method should not be used to introduce such
|
||||
|
@ -719,29 +718,25 @@ impl<T: ?Sized> *mut T {
|
|||
#[unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
|
||||
#[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
|
||||
#[inline]
|
||||
pub const fn guaranteed_eq(self, other: *mut T) -> bool
|
||||
pub const fn guaranteed_eq(self, other: *mut T) -> Option<bool>
|
||||
where
|
||||
T: Sized,
|
||||
{
|
||||
intrinsics::ptr_guaranteed_eq(self as *const _, other as *const _)
|
||||
(self as *const T).guaranteed_eq(other as _)
|
||||
}
|
||||
|
||||
/// Returns whether two pointers are guaranteed to be unequal.
|
||||
/// Returns whether two pointers are guaranteed to be inequal.
|
||||
///
|
||||
/// At runtime this function behaves like `self != other`.
|
||||
/// At runtime this function behaves like `Some(self == other)`.
|
||||
/// However, in some contexts (e.g., compile-time evaluation),
|
||||
/// it is not always possible to determine the inequality of two pointers, so this function may
|
||||
/// spuriously return `false` for pointers that later actually turn out to be unequal.
|
||||
/// But when it returns `true`, the pointers are guaranteed to be unequal.
|
||||
/// it is not always possible to determine inequality of two pointers, so this function may
|
||||
/// spuriously return `None` for pointers that later actually turn out to have its inequality known.
|
||||
/// But when it returns `Some`, the pointers' inequality is guaranteed to be known.
|
||||
///
|
||||
/// This function is the mirror of [`guaranteed_eq`], but not its inverse. There are pointer
|
||||
/// comparisons for which both functions return `false`.
|
||||
///
|
||||
/// [`guaranteed_eq`]: #method.guaranteed_eq
|
||||
///
|
||||
/// The return value may change depending on the compiler version and unsafe code might not
|
||||
/// The return value may change from `Some` to `None` and vice versa depending on the compiler
|
||||
/// version and unsafe code must not
|
||||
/// rely on the result of this function for soundness. It is suggested to only use this function
|
||||
/// for performance optimizations where spurious `false` return values by this function do not
|
||||
/// for performance optimizations where spurious `None` return values by this function do not
|
||||
/// affect the outcome, but just the performance.
|
||||
/// The consequences of using this method to make runtime and compile-time code behave
|
||||
/// differently have not been explored. This method should not be used to introduce such
|
||||
|
@ -750,11 +745,11 @@ impl<T: ?Sized> *mut T {
|
|||
#[unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
|
||||
#[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
|
||||
#[inline]
|
||||
pub const unsafe fn guaranteed_ne(self, other: *mut T) -> bool
|
||||
pub const fn guaranteed_ne(self, other: *mut T) -> Option<bool>
|
||||
where
|
||||
T: Sized,
|
||||
{
|
||||
intrinsics::ptr_guaranteed_ne(self as *const _, other as *const _)
|
||||
(self as *const T).guaranteed_ne(other as _)
|
||||
}
|
||||
|
||||
/// Calculates the distance between two pointers. The returned value is in
|
||||
|
|
|
@ -4,14 +4,10 @@
|
|||
#![feature(const_raw_ptr_comparison)]
|
||||
|
||||
const EMPTY_SLICE: &[i32] = &[];
|
||||
const EMPTY_EQ: bool = EMPTY_SLICE.as_ptr().guaranteed_eq(&[] as *const _);
|
||||
const EMPTY_EQ2: bool = EMPTY_SLICE.as_ptr().guaranteed_ne(&[] as *const _);
|
||||
const EMPTY_NE: bool = EMPTY_SLICE.as_ptr().guaranteed_ne(&[1] as *const _);
|
||||
const EMPTY_NE2: bool = EMPTY_SLICE.as_ptr().guaranteed_eq(&[1] as *const _);
|
||||
const EMPTY_EQ: Option<bool> = EMPTY_SLICE.as_ptr().guaranteed_eq(&[] as *const _);
|
||||
const EMPTY_EQ2: Option<bool> = EMPTY_SLICE.as_ptr().guaranteed_eq(&[1] as *const _);
|
||||
|
||||
fn main() {
|
||||
assert!(!EMPTY_EQ);
|
||||
assert!(!EMPTY_EQ2);
|
||||
assert!(!EMPTY_NE);
|
||||
assert!(!EMPTY_NE2);
|
||||
assert!(EMPTY_EQ.is_none());
|
||||
assert!(EMPTY_EQ2.is_none());
|
||||
}
|
||||
|
|
|
@ -14,38 +14,30 @@ const FOO: &usize = &42;
|
|||
macro_rules! check {
|
||||
(eq, $a:expr, $b:expr) => {
|
||||
pub const _: () =
|
||||
assert!(std::intrinsics::ptr_guaranteed_eq($a as *const u8, $b as *const u8));
|
||||
assert!(std::intrinsics::ptr_guaranteed_cmp($a as *const u8, $b as *const u8) == 1);
|
||||
};
|
||||
(ne, $a:expr, $b:expr) => {
|
||||
pub const _: () =
|
||||
assert!(std::intrinsics::ptr_guaranteed_ne($a as *const u8, $b as *const u8));
|
||||
assert!(std::intrinsics::ptr_guaranteed_cmp($a as *const u8, $b as *const u8) == 0);
|
||||
};
|
||||
(!eq, $a:expr, $b:expr) => {
|
||||
(!, $a:expr, $b:expr) => {
|
||||
pub const _: () =
|
||||
assert!(!std::intrinsics::ptr_guaranteed_eq($a as *const u8, $b as *const u8));
|
||||
};
|
||||
(!ne, $a:expr, $b:expr) => {
|
||||
pub const _: () =
|
||||
assert!(!std::intrinsics::ptr_guaranteed_ne($a as *const u8, $b as *const u8));
|
||||
assert!(std::intrinsics::ptr_guaranteed_cmp($a as *const u8, $b as *const u8) == 2);
|
||||
};
|
||||
}
|
||||
|
||||
check!(eq, 0, 0);
|
||||
check!(ne, 0, 1);
|
||||
check!(!eq, 0, 1);
|
||||
check!(!ne, 0, 0);
|
||||
check!(ne, FOO as *const _, 0);
|
||||
check!(!eq, FOO as *const _, 0);
|
||||
check!(ne, unsafe { (FOO as *const usize).offset(1) }, 0);
|
||||
check!(ne, unsafe { (FOO as *const usize as *const u8).offset(3) }, 0);
|
||||
|
||||
// We want pointers to be equal to themselves, but aren't checking this yet because
|
||||
// there are some open questions (e.g. whether function pointers to the same function
|
||||
// compare equal, they don't necessarily at runtime).
|
||||
// The case tested here should work eventually, but does not work yet.
|
||||
check!(!eq, FOO as *const _, FOO as *const _);
|
||||
check!(ne, unsafe { (FOO as *const usize).offset(1) }, 0);
|
||||
check!(!eq, unsafe { (FOO as *const usize).offset(1) }, 0);
|
||||
check!(!, FOO as *const _, FOO as *const _);
|
||||
|
||||
check!(ne, unsafe { (FOO as *const usize as *const u8).offset(3) }, 0);
|
||||
check!(!eq, unsafe { (FOO as *const usize as *const u8).offset(3) }, 0);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// If any of the below start compiling, make sure to add a `check` test for it.
|
||||
|
|
|
@ -7,19 +7,19 @@ LL | unsafe { intrinsics::offset(self, count) }
|
|||
| out-of-bounds pointer arithmetic: alloc3 has size $WORD, so pointer to $TWO_WORDS bytes starting at offset 0 is out-of-bounds
|
||||
| inside `ptr::const_ptr::<impl *const usize>::offset` at $SRC_DIR/core/src/ptr/const_ptr.rs:LL:COL
|
||||
|
|
||||
::: $DIR/ptr_comparisons.rs:58:34
|
||||
::: $DIR/ptr_comparisons.rs:50:34
|
||||
|
|
||||
LL | const _: *const usize = unsafe { (FOO as *const usize).offset(2) };
|
||||
| ------------------------------- inside `_` at $DIR/ptr_comparisons.rs:58:34
|
||||
| ------------------------------- inside `_` at $DIR/ptr_comparisons.rs:50:34
|
||||
|
||||
error[E0080]: evaluation of constant value failed
|
||||
--> $DIR/ptr_comparisons.rs:61:33
|
||||
--> $DIR/ptr_comparisons.rs:53:33
|
||||
|
|
||||
LL | unsafe { std::ptr::addr_of!((*(FOO as *const usize as *const [u8; 1000]))[999]) };
|
||||
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ dereferencing pointer failed: alloc3 has size $WORD, so pointer to 1000 bytes starting at offset 0 is out-of-bounds
|
||||
|
||||
error: any use of this value will cause an error
|
||||
--> $DIR/ptr_comparisons.rs:65:27
|
||||
--> $DIR/ptr_comparisons.rs:57:27
|
||||
|
|
||||
LL | const _: usize = unsafe { std::mem::transmute::<*const usize, usize>(FOO) + 4 };
|
||||
| -------------- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ unable to turn pointer into raw bytes
|
||||
|
@ -31,7 +31,7 @@ LL | const _: usize = unsafe { std::mem::transmute::<*const usize, usize>(FOO) +
|
|||
= help: the absolute address of a pointer is not known at compile-time, so such operations are not supported
|
||||
|
||||
error: any use of this value will cause an error
|
||||
--> $DIR/ptr_comparisons.rs:70:27
|
||||
--> $DIR/ptr_comparisons.rs:62:27
|
||||
|
|
||||
LL | const _: usize = unsafe { *std::mem::transmute::<&&usize, &usize>(&FOO) + 4 };
|
||||
| -------------- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ unable to turn pointer into raw bytes
|
||||
|
@ -46,7 +46,7 @@ error: aborting due to 4 previous errors
|
|||
For more information about this error, try `rustc --explain E0080`.
|
||||
Future incompatibility report: Future breakage diagnostic:
|
||||
error: any use of this value will cause an error
|
||||
--> $DIR/ptr_comparisons.rs:65:27
|
||||
--> $DIR/ptr_comparisons.rs:57:27
|
||||
|
|
||||
LL | const _: usize = unsafe { std::mem::transmute::<*const usize, usize>(FOO) + 4 };
|
||||
| -------------- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ unable to turn pointer into raw bytes
|
||||
|
@ -59,7 +59,7 @@ LL | const _: usize = unsafe { std::mem::transmute::<*const usize, usize>(FOO) +
|
|||
|
||||
Future breakage diagnostic:
|
||||
error: any use of this value will cause an error
|
||||
--> $DIR/ptr_comparisons.rs:70:27
|
||||
--> $DIR/ptr_comparisons.rs:62:27
|
||||
|
|
||||
LL | const _: usize = unsafe { *std::mem::transmute::<&&usize, &usize>(&FOO) + 4 };
|
||||
| -------------- ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ unable to turn pointer into raw bytes
|
||||
|
|
Loading…
Add table
Reference in a new issue