Make saturating u128 -> f32 casts the default behavior

... rather than being gated by -Z saturating-float-casts.
There are several reasons for this:

1. Const eval already implements this behavior.
2. Unlike with float->int casts, this behavior is uncontroversially the
right behavior and it is not as performance critical. Thus there is no
particular need to make the bug fix for u128->f32 casts opt-in.
3. Having two orthogonal features under one flag is silly, and never
should have happened in the first place.
4. Benchmarking float->int casts with the -Z flag should not pick up
performance changes due to the u128->f32 casts (assuming there are any).

Fixes #41799
This commit is contained in:
Robin Kruppe 2017-11-10 00:24:05 +01:00
parent f1ea23e2cc
commit 59524410a7
5 changed files with 64 additions and 45 deletions

View file

@ -1138,8 +1138,8 @@ options! {DebuggingOptions, DebuggingSetter, basic_debugging_options,
tls_model: Option<String> = (None, parse_opt_string, [TRACKED],
"choose the TLS model to use (rustc --print tls-models for details)"),
saturating_float_casts: bool = (false, parse_bool, [TRACKED],
"make casts between integers and floats safe: clip out-of-range inputs to the min/max \
integer or to infinity respectively, and turn `NAN` into 0 when casting to integers"),
"make float->int casts UB-free: numbers outside the integer type's range are clipped to \
the max/min integer respectively, and NaN is mapped to 0"),
}
pub fn default_lib_output() -> CrateType {

View file

@ -827,7 +827,7 @@ fn cast_int_to_float(bcx: &Builder,
// It's only u128 -> f32 that can cause overflows (i.e., should yield infinity).
// LLVM's uitofp produces undef in those cases, so we manually check for that case.
let is_u128_to_f32 = !signed && int_ty.int_width() == 128 && float_ty.float_width() == 32;
if is_u128_to_f32 && bcx.sess().opts.debugging_opts.saturating_float_casts {
if is_u128_to_f32 {
// All inputs greater or equal to (f32::MAX + 0.5 ULP) are rounded to infinity,
// and for everything else LLVM's uitofp works just fine.
let max = C_big_integral(int_ty, MAX_F32_PLUS_HALF_ULP);

View file

@ -37,29 +37,10 @@ pub fn f32_to_i32(x: f32) -> i32 {
}
#[no_mangle]
pub fn f64_to_u8(x: f32) -> u16 {
pub fn f64_to_u16(x: f64) -> u16 {
// CHECK: fptoui
// CHECK-NOT: fcmp
// CHECK-NOT: icmp
// CHECK-NOT: select
x as u16
}
// CHECK-LABEL: @i32_to_f64
#[no_mangle]
pub fn i32_to_f64(x: i32) -> f64 {
// CHECK: sitofp
// CHECK-NOT: fcmp
// CHECK-NOT: icmp
// CHECK-NOT: select
x as f64
}
// CHECK-LABEL: @u128_to_f32
#[no_mangle]
pub fn u128_to_f32(x: u128) -> f32 {
// CHECK: uitofp
// CHECK-NOT: fcmp
// CHECK-NOT: icmp
// CHECK-NOT: select
x as f32
}

View file

@ -8,6 +8,7 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Tests saturating float->int casts. See u128-as-f32.rs for the opposite direction.
// compile-flags: -Z saturating-float-casts
#![feature(test, i128, i128_type, stmt_expr_attributes)]
@ -139,26 +140,5 @@ pub fn main() {
// nextDown(f32::MAX) = 2^128 - 2 * 2^104
const SECOND_LARGEST_F32: f32 = 340282326356119256160033759537265639424.;
test_c!(SECOND_LARGEST_F32, f32 -> u128, 0xfffffe00000000000000000000000000);
// int->float:
// f32::MAX - 0.5 ULP and smaller should be rounded down
test_c!(0xfffffe00000000000000000000000000, u128 -> f32, SECOND_LARGEST_F32);
test_c!(0xfffffe7fffffffffffffffffffffffff, u128 -> f32, SECOND_LARGEST_F32);
test_c!(0xfffffe80000000000000000000000000, u128 -> f32, SECOND_LARGEST_F32);
// numbers within < 0.5 ULP of f32::MAX it should be rounded to f32::MAX
test_c!(0xfffffe80000000000000000000000001, u128 -> f32, f32::MAX);
test_c!(0xfffffeffffffffffffffffffffffffff, u128 -> f32, f32::MAX);
test_c!(0xffffff00000000000000000000000000, u128 -> f32, f32::MAX);
test_c!(0xffffff00000000000000000000000001, u128 -> f32, f32::MAX);
test_c!(0xffffff7fffffffffffffffffffffffff, u128 -> f32, f32::MAX);
// f32::MAX + 0.5 ULP and greater should be rounded to infinity
test_c!(0xffffff80000000000000000000000000, u128 -> f32, f32::INFINITY);
test_c!(0xffffff80000000f00000000000000000, u128 -> f32, f32::INFINITY);
test_c!(0xffffff87ffffffffffffffff00000001, u128 -> f32, f32::INFINITY);
// u128->f64 should not be affected by the u128->f32 checks
test_c!(0xffffff80000000000000000000000000, u128 -> f64,
340282356779733661637539395458142568448.0);
test_c!(u128::MAX, u128 -> f64, 340282366920938463463374607431768211455.0);
}
}

View file

@ -0,0 +1,58 @@
// Copyright 2017 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// ignore-emscripten u128 not supported
#![feature(test, i128, i128_type)]
#![deny(overflowing_literals)]
extern crate test;
use std::f32;
use std::u128;
use test::black_box;
macro_rules! test {
($val:expr, $src_ty:ident -> $dest_ty:ident, $expected:expr) => ({
{
const X: $src_ty = $val;
const Y: $dest_ty = X as $dest_ty;
assert_eq!(Y, $expected,
"const eval {} -> {}", stringify!($src_ty), stringify!($dest_ty));
}
// black_box disables constant evaluation to test run-time conversions:
assert_eq!(black_box::<$src_ty>($val) as $dest_ty, $expected,
"run-time {} -> {}", stringify!($src_ty), stringify!($dest_ty));
});
}
pub fn main() {
// nextDown(f32::MAX) = 2^128 - 2 * 2^104
const SECOND_LARGEST_F32: f32 = 340282326356119256160033759537265639424.;
// f32::MAX - 0.5 ULP and smaller should be rounded down
test!(0xfffffe00000000000000000000000000, u128 -> f32, SECOND_LARGEST_F32);
test!(0xfffffe7fffffffffffffffffffffffff, u128 -> f32, SECOND_LARGEST_F32);
test!(0xfffffe80000000000000000000000000, u128 -> f32, SECOND_LARGEST_F32);
// numbers within < 0.5 ULP of f32::MAX it should be rounded to f32::MAX
test!(0xfffffe80000000000000000000000001, u128 -> f32, f32::MAX);
test!(0xfffffeffffffffffffffffffffffffff, u128 -> f32, f32::MAX);
test!(0xffffff00000000000000000000000000, u128 -> f32, f32::MAX);
test!(0xffffff00000000000000000000000001, u128 -> f32, f32::MAX);
test!(0xffffff7fffffffffffffffffffffffff, u128 -> f32, f32::MAX);
// f32::MAX + 0.5 ULP and greater should be rounded to infinity
test!(0xffffff80000000000000000000000000, u128 -> f32, f32::INFINITY);
test!(0xffffff80000000f00000000000000000, u128 -> f32, f32::INFINITY);
test!(0xffffff87ffffffffffffffff00000001, u128 -> f32, f32::INFINITY);
// u128->f64 should not be affected by the u128->f32 checks
test!(0xffffff80000000000000000000000000, u128 -> f64,
340282356779733661637539395458142568448.0);
test!(u128::MAX, u128 -> f64, 340282366920938463463374607431768211455.0);
}