Rollup merge of #107245 - compiler-errors:new-solver-unsizing, r=lcnr

Implement unsizing in the new trait solver

This makes hello world compile! Ignore the first commit, that's just #107146 which is waiting on merge.

I'll leave some comments inline about design choices that might be debatable.

r? `@lcnr` (until we have a new trait solver reviewer group...)
This commit is contained in:
Yuki Okushi 2023-01-31 11:46:22 +09:00 committed by GitHub
commit 6eeb981a58
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 307 additions and 5 deletions

View file

@ -173,6 +173,21 @@ pub(super) trait GoalKind<'tcx>: TypeFoldable<'tcx> + Copy + Eq {
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// The most common forms of unsizing are array to slice, and concrete (Sized)
// type into a `dyn Trait`. ADTs and Tuples can also have their final field
// unsized if it's generic.
fn consider_builtin_unsize_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx>;
// `dyn Trait1` can be unsized to `dyn Trait2` if they are the same trait, or
// if `Trait2` is a (transitive) supertrait of `Trait2`.
fn consider_builtin_dyn_upcast_candidates(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> Vec<CanonicalResponse<'tcx>>;
}
impl<'tcx> EvalCtxt<'_, 'tcx> {
@ -303,6 +318,8 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
G::consider_builtin_future_candidate(self, goal)
} else if lang_items.gen_trait() == Some(trait_def_id) {
G::consider_builtin_generator_candidate(self, goal)
} else if lang_items.unsize_trait() == Some(trait_def_id) {
G::consider_builtin_unsize_candidate(self, goal)
} else {
Err(NoSolution)
};
@ -313,6 +330,14 @@ impl<'tcx> EvalCtxt<'_, 'tcx> {
}
Err(NoSolution) => (),
}
// There may be multiple unsize candidates for a trait with several supertraits:
// `trait Foo: Bar<A> + Bar<B>` and `dyn Foo: Unsize<dyn Bar<_>>`
if lang_items.unsize_trait() == Some(trait_def_id) {
for result in G::consider_builtin_dyn_upcast_candidates(self, goal) {
candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result });
}
}
}
fn assemble_param_env_candidates<G: GoalKind<'tcx>>(

View file

@ -554,6 +554,20 @@ impl<'tcx> assembly::GoalKind<'tcx> for ProjectionPredicate<'tcx> {
.to_predicate(tcx),
)
}
fn consider_builtin_unsize_candidate(
_ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
bug!("`Unsize` does not have an associated type: {:?}", goal);
}
fn consider_builtin_dyn_upcast_candidates(
_ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> Vec<super::CanonicalResponse<'tcx>> {
bug!("`Unsize` does not have an associated type: {:?}", goal);
}
}
/// This behavior is also implemented in `rustc_ty_utils` and in the old `project` code.

View file

@ -4,10 +4,11 @@ use std::iter;
use super::assembly::{self, Candidate, CandidateSource};
use super::infcx_ext::InferCtxtExt;
use super::{Certainty, EvalCtxt, Goal, QueryResult};
use super::{CanonicalResponse, Certainty, EvalCtxt, Goal, QueryResult};
use rustc_hir::def_id::DefId;
use rustc_infer::infer::InferCtxt;
use rustc_infer::traits::query::NoSolution;
use rustc_infer::traits::util::supertraits;
use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
use rustc_middle::ty::{self, ToPredicate, Ty, TyCtxt};
use rustc_middle::ty::{TraitPredicate, TypeVisitable};
@ -238,6 +239,206 @@ impl<'tcx> assembly::GoalKind<'tcx> for TraitPredicate<'tcx> {
.to_predicate(tcx),
)
}
fn consider_builtin_unsize_candidate(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> QueryResult<'tcx> {
let tcx = ecx.tcx();
let a_ty = goal.predicate.self_ty();
let b_ty = goal.predicate.trait_ref.substs.type_at(1);
if b_ty.is_ty_var() {
return ecx.make_canonical_response(Certainty::AMBIGUOUS);
}
ecx.infcx.probe(|_| {
match (a_ty.kind(), b_ty.kind()) {
// Trait upcasting, or `dyn Trait + Auto + 'a` -> `dyn Trait + 'b`
(&ty::Dynamic(_, _, ty::Dyn), &ty::Dynamic(_, _, ty::Dyn)) => {
// Dyn upcasting is handled separately, since due to upcasting,
// when there are two supertraits that differ by substs, we
// may return more than one query response.
return Err(NoSolution);
}
// `T` -> `dyn Trait` unsizing
(_, &ty::Dynamic(data, region, ty::Dyn)) => {
// Can only unsize to an object-safe type
if data
.principal_def_id()
.map_or(false, |def_id| !tcx.check_is_object_safe(def_id))
{
return Err(NoSolution);
}
let Some(sized_def_id) = tcx.lang_items().sized_trait() else {
return Err(NoSolution);
};
let nested_goals: Vec<_> = data
.iter()
// Check that the type implements all of the predicates of the def-id.
// (i.e. the principal, all of the associated types match, and any auto traits)
.map(|pred| goal.with(tcx, pred.with_self_ty(tcx, a_ty)))
.chain([
// The type must be Sized to be unsized.
goal.with(
tcx,
ty::Binder::dummy(tcx.mk_trait_ref(sized_def_id, [a_ty])),
),
// The type must outlive the lifetime of the `dyn` we're unsizing into.
goal.with(tcx, ty::Binder::dummy(ty::OutlivesPredicate(a_ty, region))),
])
.collect();
ecx.evaluate_all_and_make_canonical_response(nested_goals)
}
// `[T; n]` -> `[T]` unsizing
(&ty::Array(a_elem_ty, ..), &ty::Slice(b_elem_ty)) => {
// We just require that the element type stays the same
let nested_goals = ecx.infcx.eq(goal.param_env, a_elem_ty, b_elem_ty)?;
ecx.evaluate_all_and_make_canonical_response(nested_goals)
}
// Struct unsizing `Struct<T>` -> `Struct<U>` where `T: Unsize<U>`
(&ty::Adt(a_def, a_substs), &ty::Adt(b_def, b_substs))
if a_def.is_struct() && a_def.did() == b_def.did() =>
{
let unsizing_params = tcx.unsizing_params_for_adt(a_def.did());
// We must be unsizing some type parameters. This also implies
// that the struct has a tail field.
if unsizing_params.is_empty() {
return Err(NoSolution);
}
let tail_field = a_def
.non_enum_variant()
.fields
.last()
.expect("expected unsized ADT to have a tail field");
let tail_field_ty = tcx.bound_type_of(tail_field.did);
let a_tail_ty = tail_field_ty.subst(tcx, a_substs);
let b_tail_ty = tail_field_ty.subst(tcx, b_substs);
// Substitute just the unsizing params from B into A. The type after
// this substitution must be equal to B. This is so we don't unsize
// unrelated type parameters.
let new_a_substs = tcx.mk_substs(a_substs.iter().enumerate().map(|(i, a)| {
if unsizing_params.contains(i as u32) { b_substs[i] } else { a }
}));
let unsized_a_ty = tcx.mk_adt(a_def, new_a_substs);
// Finally, we require that `TailA: Unsize<TailB>` for the tail field
// types.
let mut nested_goals = ecx.infcx.eq(goal.param_env, unsized_a_ty, b_ty)?;
nested_goals.push(goal.with(
tcx,
ty::Binder::dummy(
tcx.mk_trait_ref(goal.predicate.def_id(), [a_tail_ty, b_tail_ty]),
),
));
ecx.evaluate_all_and_make_canonical_response(nested_goals)
}
// Tuple unsizing `(.., T)` -> `(.., U)` where `T: Unsize<U>`
(&ty::Tuple(a_tys), &ty::Tuple(b_tys))
if a_tys.len() == b_tys.len() && !a_tys.is_empty() =>
{
let (a_last_ty, a_rest_tys) = a_tys.split_last().unwrap();
let b_last_ty = b_tys.last().unwrap();
// Substitute just the tail field of B., and require that they're equal.
let unsized_a_ty = tcx.mk_tup(a_rest_tys.iter().chain([b_last_ty]));
let mut nested_goals = ecx.infcx.eq(goal.param_env, unsized_a_ty, b_ty)?;
// Similar to ADTs, require that the rest of the fields are equal.
nested_goals.push(goal.with(
tcx,
ty::Binder::dummy(
tcx.mk_trait_ref(goal.predicate.def_id(), [*a_last_ty, *b_last_ty]),
),
));
ecx.evaluate_all_and_make_canonical_response(nested_goals)
}
_ => Err(NoSolution),
}
})
}
fn consider_builtin_dyn_upcast_candidates(
ecx: &mut EvalCtxt<'_, 'tcx>,
goal: Goal<'tcx, Self>,
) -> Vec<CanonicalResponse<'tcx>> {
let tcx = ecx.tcx();
let a_ty = goal.predicate.self_ty();
let b_ty = goal.predicate.trait_ref.substs.type_at(1);
let ty::Dynamic(a_data, a_region, ty::Dyn) = *a_ty.kind() else {
return vec![];
};
let ty::Dynamic(b_data, b_region, ty::Dyn) = *b_ty.kind() else {
return vec![];
};
// All of a's auto traits need to be in b's auto traits.
let auto_traits_compatible =
b_data.auto_traits().all(|b| a_data.auto_traits().any(|a| a == b));
if !auto_traits_compatible {
return vec![];
}
let mut unsize_dyn_to_principal = |principal: Option<ty::PolyExistentialTraitRef<'tcx>>| {
ecx.infcx.probe(|_| -> Result<_, NoSolution> {
// Require that all of the trait predicates from A match B, except for
// the auto traits. We do this by constructing a new A type with B's
// auto traits, and equating these types.
let new_a_data = principal
.into_iter()
.map(|trait_ref| trait_ref.map_bound(ty::ExistentialPredicate::Trait))
.chain(a_data.iter().filter(|a| {
matches!(a.skip_binder(), ty::ExistentialPredicate::Projection(_))
}))
.chain(
b_data
.auto_traits()
.map(ty::ExistentialPredicate::AutoTrait)
.map(ty::Binder::dummy),
);
let new_a_data = tcx.mk_poly_existential_predicates(new_a_data);
let new_a_ty = tcx.mk_dynamic(new_a_data, b_region, ty::Dyn);
// We also require that A's lifetime outlives B's lifetime.
let mut nested_obligations = ecx.infcx.eq(goal.param_env, new_a_ty, b_ty)?;
nested_obligations.push(
goal.with(tcx, ty::Binder::dummy(ty::OutlivesPredicate(a_region, b_region))),
);
ecx.evaluate_all_and_make_canonical_response(nested_obligations)
})
};
let mut responses = vec![];
// If the principal def ids match (or are both none), then we're not doing
// trait upcasting. We're just removing auto traits (or shortening the lifetime).
if a_data.principal_def_id() == b_data.principal_def_id() {
if let Ok(response) = unsize_dyn_to_principal(a_data.principal()) {
responses.push(response);
}
} else if let Some(a_principal) = a_data.principal()
&& let Some(b_principal) = b_data.principal()
{
for super_trait_ref in supertraits(tcx, a_principal.with_self_ty(tcx, a_ty)) {
if super_trait_ref.def_id() != b_principal.def_id() {
continue;
}
let erased_trait_ref = super_trait_ref
.map_bound(|trait_ref| ty::ExistentialTraitRef::erase_self_ty(tcx, trait_ref));
if let Ok(response) = unsize_dyn_to_principal(Some(erased_trait_ref)) {
responses.push(response);
}
}
}
responses
}
}
impl<'tcx> EvalCtxt<'_, 'tcx> {

View file

@ -426,10 +426,6 @@ fn unsizing_params_for_adt<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> BitSet<u32
},
};
// FIXME(eddyb) cache this (including computing `unsizing_params`)
// by putting it in a query; it would only need the `DefId` as it
// looks at declared field types, not anything substituted.
// The last field of the structure has to exist and contain type/const parameters.
let Some((tail_field, prefix_fields)) =
def.non_enum_variant().fields.split_last() else

View file

@ -0,0 +1,25 @@
// compile-flags: -Ztrait-solver=next
// check-pass
#![feature(unsized_tuple_coercion)]
trait Foo {}
impl Foo for i32 {}
fn main() {
// Unsizing via struct
let _: Box<dyn Foo> = Box::new(1i32);
// Slice unsizing
let y = [1, 2, 3];
let _: &[i32] = &y;
// Tuple unsizing
let hi = (1i32,);
let _: &(dyn Foo,) = &hi;
// Dropping auto traits
let a: &(dyn Foo + Send) = &1;
let _: &dyn Foo = a;
}

View file

@ -0,0 +1,14 @@
// compile-flags: -Ztrait-solver=next
// check-pass
#![feature(trait_upcasting)]
trait Foo: Bar<i32> + Bar<u32> {}
trait Bar<T> {}
fn main() {
let x: &dyn Foo = todo!();
let y: &dyn Bar<i32> = x;
let z: &dyn Bar<u32> = x;
}

View file

@ -0,0 +1,13 @@
// compile-flags: -Ztrait-solver=next
#![feature(trait_upcasting)]
trait Foo: Bar<i32> + Bar<u32> {}
trait Bar<T> {}
fn main() {
let x: &dyn Foo = todo!();
let y: &dyn Bar<usize> = x;
//~^ ERROR mismatched types
}

View file

@ -0,0 +1,14 @@
error[E0308]: mismatched types
--> $DIR/upcast-wrong-substs.rs:11:30
|
LL | let y: &dyn Bar<usize> = x;
| --------------- ^ expected trait `Bar`, found trait `Foo`
| |
| expected due to this
|
= note: expected reference `&dyn Bar<usize>`
found reference `&dyn Foo`
error: aborting due to previous error
For more information about this error, try `rustc --explain E0308`.