1823: Support type coercion r=flodiebold a=uHOOCCOOHu



Co-authored-by: uHOOCCOOHu <hooccooh1896@gmail.com>
This commit is contained in:
bors[bot] 2019-09-26 08:19:18 +00:00 committed by GitHub
commit 79376abb43
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
6 changed files with 1219 additions and 258 deletions

View file

@ -13,4 +13,5 @@ test_utils::marks!(
infer_while_let
macro_rules_from_other_crates_are_visible_with_macro_use
prelude_is_macro_use
coerce_merge_fail_fallback
);

View file

@ -14,7 +14,7 @@
//! the `ena` crate, which is extracted from rustc.
use std::borrow::Cow;
use std::iter::repeat;
use std::iter::{repeat, repeat_with};
use std::mem;
use std::ops::Index;
use std::sync::Arc;
@ -42,6 +42,7 @@ use crate::{
RecordFieldPat, Statement, UnaryOp,
},
generics::{GenericParams, HasGenericParams},
lang_item::LangItemTarget,
name,
nameres::Namespace,
path::{known, GenericArg, GenericArgs},
@ -188,6 +189,21 @@ struct InferenceContext<'a, D: HirDatabase> {
result: InferenceResult,
/// The return type of the function being inferred.
return_ty: Ty,
/// Impls of `CoerceUnsized` used in coercion.
/// (from_ty_ctor, to_ty_ctor) => coerce_generic_index
// FIXME: Use trait solver for this.
// Chalk seems unable to work well with builtin impl of `Unsize` now.
coerce_unsized_map: FxHashMap<(TypeCtor, TypeCtor), usize>,
}
macro_rules! ty_app {
($ctor:pat, $param:pat) => {
Ty::Apply(ApplicationTy { ctor: $ctor, parameters: $param })
};
($ctor:pat) => {
ty_app!($ctor, _)
};
}
impl<'a, D: HirDatabase> InferenceContext<'a, D> {
@ -198,12 +214,52 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
obligations: Vec::default(),
return_ty: Ty::Unknown, // set in collect_fn_signature
trait_env: lower::trait_env(db, &resolver),
coerce_unsized_map: Self::init_coerce_unsized_map(db, &resolver),
db,
body,
resolver,
}
}
fn init_coerce_unsized_map(
db: &'a D,
resolver: &Resolver,
) -> FxHashMap<(TypeCtor, TypeCtor), usize> {
let krate = resolver.krate().unwrap();
let impls = match db.lang_item(krate, "coerce_unsized".into()) {
Some(LangItemTarget::Trait(trait_)) => db.impls_for_trait(krate, trait_),
_ => return FxHashMap::default(),
};
impls
.iter()
.filter_map(|impl_block| {
// `CoerseUnsized` has one generic parameter for the target type.
let trait_ref = impl_block.target_trait_ref(db)?;
let cur_from_ty = trait_ref.substs.0.get(0)?;
let cur_to_ty = trait_ref.substs.0.get(1)?;
match (&cur_from_ty, cur_to_ty) {
(ty_app!(ctor1, st1), ty_app!(ctor2, st2)) => {
// FIXME: We return the first non-equal bound as the type parameter to coerce to unsized type.
// This works for smart-pointer-like coercion, which covers all impls from std.
st1.iter().zip(st2.iter()).enumerate().find_map(|(i, (ty1, ty2))| {
match (ty1, ty2) {
(Ty::Param { idx: p1, .. }, Ty::Param { idx: p2, .. })
if p1 != p2 =>
{
Some(((*ctor1, *ctor2), i))
}
_ => None,
}
})
}
_ => None,
}
})
.collect()
}
fn resolve_all(mut self) -> InferenceResult {
// FIXME resolve obligations as well (use Guidance if necessary)
let mut result = mem::replace(&mut self.result, InferenceResult::default());
@ -278,27 +334,45 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
let ty1 = self.resolve_ty_shallow(ty1);
let ty2 = self.resolve_ty_shallow(ty2);
match (&*ty1, &*ty2) {
(Ty::Unknown, _) | (_, Ty::Unknown) => true,
(Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => {
self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1)
}
_ => self.unify_inner_trivial(&ty1, &ty2),
}
}
fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
match (ty1, ty2) {
(Ty::Unknown, _) | (_, Ty::Unknown) => true,
(Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
| (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
| (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2))) => {
| (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2)))
| (
Ty::Infer(InferTy::MaybeNeverTypeVar(tv1)),
Ty::Infer(InferTy::MaybeNeverTypeVar(tv2)),
) => {
// both type vars are unknown since we tried to resolve them
self.var_unification_table.union(*tv1, *tv2);
true
}
// The order of MaybeNeverTypeVar matters here.
// Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar.
// Unifying MaybeNeverTypeVar and other concrete type will let the former become it.
(Ty::Infer(InferTy::TypeVar(tv)), other)
| (other, Ty::Infer(InferTy::TypeVar(tv)))
| (Ty::Infer(InferTy::IntVar(tv)), other)
| (other, Ty::Infer(InferTy::IntVar(tv)))
| (Ty::Infer(InferTy::FloatVar(tv)), other)
| (other, Ty::Infer(InferTy::FloatVar(tv))) => {
| (Ty::Infer(InferTy::MaybeNeverTypeVar(tv)), other)
| (other, Ty::Infer(InferTy::MaybeNeverTypeVar(tv)))
| (Ty::Infer(InferTy::IntVar(tv)), other @ ty_app!(TypeCtor::Int(_)))
| (other @ ty_app!(TypeCtor::Int(_)), Ty::Infer(InferTy::IntVar(tv)))
| (Ty::Infer(InferTy::FloatVar(tv)), other @ ty_app!(TypeCtor::Float(_)))
| (other @ ty_app!(TypeCtor::Float(_)), Ty::Infer(InferTy::FloatVar(tv))) => {
// the type var is unknown since we tried to resolve it
self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
true
}
_ => false,
}
}
@ -315,6 +389,12 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
fn new_maybe_never_type_var(&mut self) -> Ty {
Ty::Infer(InferTy::MaybeNeverTypeVar(
self.var_unification_table.new_key(TypeVarValue::Unknown),
))
}
/// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
match ty {
@ -795,15 +875,302 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
ret_ty
}
/// This is similar to unify, but it makes the first type coerce to the
/// second one.
fn coerce(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
if is_never(from_ty) {
// ! coerces to any type
true
/// Infer type of expression with possibly implicit coerce to the expected type.
/// Return the type after possible coercion.
fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
let ty = self.infer_expr_inner(expr, &expected);
let ty = if !self.coerce(&ty, &expected.ty) {
self.result
.type_mismatches
.insert(expr, TypeMismatch { expected: expected.ty.clone(), actual: ty.clone() });
// Return actual type when type mismatch.
// This is needed for diagnostic when return type mismatch.
ty
} else if expected.ty == Ty::Unknown {
ty
} else {
self.unify(from_ty, to_ty)
expected.ty.clone()
};
self.resolve_ty_as_possible(&mut vec![], ty)
}
/// Merge two types from different branches, with possible implicit coerce.
///
/// Note that it is only possible that one type are coerced to another.
/// Coercing both types to another least upper bound type is not possible in rustc,
/// which will simply result in "incompatible types" error.
fn coerce_merge_branch<'t>(&mut self, ty1: &Ty, ty2: &Ty) -> Ty {
if self.coerce(ty1, ty2) {
ty2.clone()
} else if self.coerce(ty2, ty1) {
ty1.clone()
} else {
tested_by!(coerce_merge_fail_fallback);
// For incompatible types, we use the latter one as result
// to be better recovery for `if` without `else`.
ty2.clone()
}
}
/// Unify two types, but may coerce the first one to the second one
/// using "implicit coercion rules" if needed.
///
/// See: https://doc.rust-lang.org/nomicon/coercions.html
fn coerce(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
let from_ty = self.resolve_ty_shallow(from_ty).into_owned();
let to_ty = self.resolve_ty_shallow(to_ty);
self.coerce_inner(from_ty, &to_ty)
}
fn coerce_inner(&mut self, mut from_ty: Ty, to_ty: &Ty) -> bool {
match (&from_ty, to_ty) {
// Never type will make type variable to fallback to Never Type instead of Unknown.
(ty_app!(TypeCtor::Never), Ty::Infer(InferTy::TypeVar(tv))) => {
let var = self.new_maybe_never_type_var();
self.var_unification_table.union_value(*tv, TypeVarValue::Known(var));
return true;
}
(ty_app!(TypeCtor::Never), _) => return true,
// Trivial cases, this should go after `never` check to
// avoid infer result type to be never
_ => {
if self.unify_inner_trivial(&from_ty, &to_ty) {
return true;
}
}
}
// Pointer weakening and function to pointer
match (&mut from_ty, to_ty) {
// `*mut T`, `&mut T, `&T`` -> `*const T`
// `&mut T` -> `&T`
// `&mut T` -> `*mut T`
(ty_app!(c1@TypeCtor::RawPtr(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared)))
| (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::RawPtr(Mutability::Shared)))
| (ty_app!(c1@TypeCtor::Ref(_)), ty_app!(c2@TypeCtor::Ref(Mutability::Shared)))
| (ty_app!(c1@TypeCtor::Ref(Mutability::Mut)), ty_app!(c2@TypeCtor::RawPtr(_))) => {
*c1 = *c2;
}
// Illegal mutablity conversion
(
ty_app!(TypeCtor::RawPtr(Mutability::Shared)),
ty_app!(TypeCtor::RawPtr(Mutability::Mut)),
)
| (
ty_app!(TypeCtor::Ref(Mutability::Shared)),
ty_app!(TypeCtor::Ref(Mutability::Mut)),
) => return false,
// `{function_type}` -> `fn()`
(ty_app!(TypeCtor::FnDef(_)), ty_app!(TypeCtor::FnPtr { .. })) => {
match from_ty.callable_sig(self.db) {
None => return false,
Some(sig) => {
let num_args = sig.params_and_return.len() as u16 - 1;
from_ty =
Ty::apply(TypeCtor::FnPtr { num_args }, Substs(sig.params_and_return));
}
}
}
_ => {}
}
if let Some(ret) = self.try_coerce_unsized(&from_ty, &to_ty) {
return ret;
}
// Auto Deref if cannot coerce
match (&from_ty, to_ty) {
// FIXME: DerefMut
(ty_app!(TypeCtor::Ref(_), st1), ty_app!(TypeCtor::Ref(_), st2)) => {
self.unify_autoderef_behind_ref(&st1[0], &st2[0])
}
// Otherwise, normal unify
_ => self.unify(&from_ty, to_ty),
}
}
/// Coerce a type using `from_ty: CoerceUnsized<ty_ty>`
///
/// See: https://doc.rust-lang.org/nightly/std/marker/trait.CoerceUnsized.html
fn try_coerce_unsized(&mut self, from_ty: &Ty, to_ty: &Ty) -> Option<bool> {
let (ctor1, st1, ctor2, st2) = match (from_ty, to_ty) {
(ty_app!(ctor1, st1), ty_app!(ctor2, st2)) => (ctor1, st1, ctor2, st2),
_ => return None,
};
let coerce_generic_index = *self.coerce_unsized_map.get(&(*ctor1, *ctor2))?;
// Check `Unsize` first
match self.check_unsize_and_coerce(
st1.0.get(coerce_generic_index)?,
st2.0.get(coerce_generic_index)?,
0,
) {
Some(true) => {}
ret => return ret,
}
let ret = st1
.iter()
.zip(st2.iter())
.enumerate()
.filter(|&(idx, _)| idx != coerce_generic_index)
.all(|(_, (ty1, ty2))| self.unify(ty1, ty2));
Some(ret)
}
/// Check if `from_ty: Unsize<to_ty>`, and coerce to `to_ty` if it holds.
///
/// It should not be directly called. It is only used by `try_coerce_unsized`.
///
/// See: https://doc.rust-lang.org/nightly/std/marker/trait.Unsize.html
fn check_unsize_and_coerce(&mut self, from_ty: &Ty, to_ty: &Ty, depth: usize) -> Option<bool> {
if depth > 1000 {
panic!("Infinite recursion in coercion");
}
match (&from_ty, &to_ty) {
// `[T; N]` -> `[T]`
(ty_app!(TypeCtor::Array, st1), ty_app!(TypeCtor::Slice, st2)) => {
Some(self.unify(&st1[0], &st2[0]))
}
// `T` -> `dyn Trait` when `T: Trait`
(_, Ty::Dyn(_)) => {
// FIXME: Check predicates
Some(true)
}
// `(..., T)` -> `(..., U)` when `T: Unsize<U>`
(
ty_app!(TypeCtor::Tuple { cardinality: len1 }, st1),
ty_app!(TypeCtor::Tuple { cardinality: len2 }, st2),
) => {
if len1 != len2 || *len1 == 0 {
return None;
}
match self.check_unsize_and_coerce(
st1.last().unwrap(),
st2.last().unwrap(),
depth + 1,
) {
Some(true) => {}
ret => return ret,
}
let ret = st1[..st1.len() - 1]
.iter()
.zip(&st2[..st2.len() - 1])
.all(|(ty1, ty2)| self.unify(ty1, ty2));
Some(ret)
}
// Foo<..., T, ...> is Unsize<Foo<..., U, ...>> if:
// - T: Unsize<U>
// - Foo is a struct
// - Only the last field of Foo has a type involving T
// - T is not part of the type of any other fields
// - Bar<T>: Unsize<Bar<U>>, if the last field of Foo has type Bar<T>
(
ty_app!(TypeCtor::Adt(Adt::Struct(struct1)), st1),
ty_app!(TypeCtor::Adt(Adt::Struct(struct2)), st2),
) if struct1 == struct2 => {
let fields = struct1.fields(self.db);
let (last_field, prev_fields) = fields.split_last()?;
// Get the generic parameter involved in the last field.
let unsize_generic_index = {
let mut index = None;
let mut multiple_param = false;
last_field.ty(self.db).walk(&mut |ty| match ty {
&Ty::Param { idx, .. } => {
if index.is_none() {
index = Some(idx);
} else if Some(idx) != index {
multiple_param = true;
}
}
_ => {}
});
if multiple_param {
return None;
}
index?
};
// Check other fields do not involve it.
let mut multiple_used = false;
prev_fields.iter().for_each(|field| {
field.ty(self.db).walk(&mut |ty| match ty {
&Ty::Param { idx, .. } if idx == unsize_generic_index => {
multiple_used = true
}
_ => {}
})
});
if multiple_used {
return None;
}
let unsize_generic_index = unsize_generic_index as usize;
// Check `Unsize` first
match self.check_unsize_and_coerce(
st1.get(unsize_generic_index)?,
st2.get(unsize_generic_index)?,
depth + 1,
) {
Some(true) => {}
ret => return ret,
}
// Then unify other parameters
let ret = st1
.iter()
.zip(st2.iter())
.enumerate()
.filter(|&(idx, _)| idx != unsize_generic_index)
.all(|(_, (ty1, ty2))| self.unify(ty1, ty2));
Some(ret)
}
_ => None,
}
}
/// Unify `from_ty` to `to_ty` with optional auto Deref
///
/// Note that the parameters are already stripped the outer reference.
fn unify_autoderef_behind_ref(&mut self, from_ty: &Ty, to_ty: &Ty) -> bool {
let canonicalized = self.canonicalizer().canonicalize_ty(from_ty.clone());
let to_ty = self.resolve_ty_shallow(&to_ty);
// FIXME: Auto DerefMut
for derefed_ty in
autoderef::autoderef(self.db, &self.resolver.clone(), canonicalized.value.clone())
{
let derefed_ty = canonicalized.decanonicalize_ty(derefed_ty.value);
match (&*self.resolve_ty_shallow(&derefed_ty), &*to_ty) {
// Stop when constructor matches.
(ty_app!(from_ctor, st1), ty_app!(to_ctor, st2)) if from_ctor == to_ctor => {
// It will not recurse to `coerce`.
return self.unify_substs(st1, st2, 0);
}
_ => {}
}
}
false
}
fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
@ -828,15 +1195,12 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
let then_ty = self.infer_expr_inner(*then_branch, &expected);
self.coerce(&then_ty, &expected.ty);
let else_ty = match else_branch {
Some(else_branch) => self.infer_expr_inner(*else_branch, &expected),
None => Ty::unit(),
};
self.coerce(&else_ty, &expected.ty);
expected.ty.clone()
self.coerce_merge_branch(&then_ty, &else_ty)
}
Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected),
Expr::TryBlock { body } => {
@ -932,13 +1296,8 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
.infer_method_call(tgt_expr, *receiver, &args, &method_name, generic_args.as_ref()),
Expr::Match { expr, arms } => {
let input_ty = self.infer_expr(*expr, &Expectation::none());
let expected = if expected.ty == Ty::Unknown {
Expectation::has_type(self.new_type_var())
} else {
expected.clone()
};
let mut arm_tys = Vec::with_capacity(arms.len());
let mut result_ty = self.new_maybe_never_type_var();
for arm in arms {
for &pat in &arm.pats {
@ -950,16 +1309,12 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
&Expectation::has_type(Ty::simple(TypeCtor::Bool)),
);
}
arm_tys.push(self.infer_expr_inner(arm.expr, &expected));
let arm_ty = self.infer_expr_inner(arm.expr, &expected);
result_ty = self.coerce_merge_branch(&result_ty, &arm_ty);
}
let lub_ty = calculate_least_upper_bound(expected.ty, &arm_tys);
for arm_ty in &arm_tys {
self.coerce(arm_ty, &lub_ty);
}
lub_ty
result_ty
}
Expr::Path(p) => {
// FIXME this could be more efficient...
@ -986,6 +1341,8 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
self.write_variant_resolution(tgt_expr.into(), variant);
}
self.unify(&ty, &expected.ty);
let substs = ty.substs().unwrap_or_else(Substs::empty);
for (field_idx, field) in fields.iter().enumerate() {
let field_ty = def_id
@ -1001,7 +1358,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
})
.map_or(Ty::Unknown, |field| field.ty(self.db))
.subst(&substs);
self.infer_expr(field.expr, &Expectation::has_type(field_ty));
self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
}
if let Some(expr) = spread {
self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
@ -1171,35 +1528,41 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
Ty::Unknown
}
Expr::Tuple { exprs } => {
let mut ty_vec = Vec::with_capacity(exprs.len());
for arg in exprs.iter() {
ty_vec.push(self.infer_expr(*arg, &Expectation::none()));
let mut tys = match &expected.ty {
ty_app!(TypeCtor::Tuple { .. }, st) => st
.iter()
.cloned()
.chain(repeat_with(|| self.new_type_var()))
.take(exprs.len())
.collect::<Vec<_>>(),
_ => (0..exprs.len()).map(|_| self.new_type_var()).collect(),
};
for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
}
Ty::apply(
TypeCtor::Tuple { cardinality: ty_vec.len() as u16 },
Substs(ty_vec.into()),
)
Ty::apply(TypeCtor::Tuple { cardinality: tys.len() as u16 }, Substs(tys.into()))
}
Expr::Array(array) => {
let elem_ty = match &expected.ty {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::Slice | TypeCtor::Array => {
Ty::clone(&a_ty.parameters.as_single())
ty_app!(TypeCtor::Array, st) | ty_app!(TypeCtor::Slice, st) => {
st.as_single().clone()
}
_ => self.new_type_var(),
},
_ => self.new_type_var(),
};
match array {
Array::ElementList(items) => {
for expr in items.iter() {
self.infer_expr(*expr, &Expectation::has_type(elem_ty.clone()));
self.infer_expr_coerce(*expr, &Expectation::has_type(elem_ty.clone()));
}
}
Array::Repeat { initializer, repeat } => {
self.infer_expr(*initializer, &Expectation::has_type(elem_ty.clone()));
self.infer_expr_coerce(
*initializer,
&Expectation::has_type(elem_ty.clone()),
);
self.infer_expr(
*repeat,
&Expectation::has_type(Ty::simple(TypeCtor::Int(
@ -1246,14 +1609,19 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
Statement::Let { pat, type_ref, initializer } => {
let decl_ty =
type_ref.as_ref().map(|tr| self.make_ty(tr)).unwrap_or(Ty::Unknown);
let decl_ty = self.insert_type_vars(decl_ty);
let ty = if let Some(expr) = initializer {
let expr_ty = self.infer_expr(*expr, &Expectation::has_type(decl_ty));
expr_ty
} else {
decl_ty
};
// Always use the declared type when specified
let mut ty = decl_ty.clone();
if let Some(expr) = initializer {
let actual_ty =
self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()));
if decl_ty == Ty::Unknown {
ty = actual_ty;
}
}
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
self.infer_pat(*pat, &ty, BindingMode::default());
}
Statement::Expr(expr) => {
@ -1261,9 +1629,13 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
}
}
}
let ty =
if let Some(expr) = tail { self.infer_expr_inner(expr, expected) } else { Ty::unit() };
ty
if let Some(expr) = tail {
self.infer_expr_coerce(expr, expected)
} else {
self.coerce(&Ty::unit(), &expected.ty);
Ty::unit()
}
}
fn check_call_arguments(&mut self, args: &[ExprId], param_tys: &[Ty]) {
@ -1285,7 +1657,7 @@ impl<'a, D: HirDatabase> InferenceContext<'a, D> {
}
let param_ty = self.normalize_associated_types_in(param_ty);
self.infer_expr(arg, &Expectation::has_type(param_ty));
self.infer_expr_coerce(arg, &Expectation::has_type(param_ty.clone()));
}
}
}
@ -1400,12 +1772,16 @@ pub enum InferTy {
TypeVar(TypeVarId),
IntVar(TypeVarId),
FloatVar(TypeVarId),
MaybeNeverTypeVar(TypeVarId),
}
impl InferTy {
fn to_inner(self) -> TypeVarId {
match self {
InferTy::TypeVar(ty) | InferTy::IntVar(ty) | InferTy::FloatVar(ty) => ty,
InferTy::TypeVar(ty)
| InferTy::IntVar(ty)
| InferTy::FloatVar(ty)
| InferTy::MaybeNeverTypeVar(ty) => ty,
}
}
@ -1418,6 +1794,7 @@ impl InferTy {
InferTy::FloatVar(..) => Ty::simple(TypeCtor::Float(
primitive::UncertainFloatTy::Known(primitive::FloatTy::f64()),
)),
InferTy::MaybeNeverTypeVar(..) => Ty::simple(TypeCtor::Never),
}
}
}
@ -1475,37 +1852,3 @@ mod diagnostics {
}
}
}
fn is_never(ty: &Ty) -> bool {
if let Ty::Apply(ApplicationTy { ctor: TypeCtor::Never, .. }) = ty {
true
} else {
false
}
}
fn calculate_least_upper_bound(expected_ty: Ty, actual_tys: &[Ty]) -> Ty {
let mut all_never = true;
let mut last_never_ty = None;
let mut least_upper_bound = expected_ty;
for actual_ty in actual_tys {
if is_never(actual_ty) {
last_never_ty = Some(actual_ty.clone());
} else {
all_never = false;
least_upper_bound = match (actual_ty, &least_upper_bound) {
(_, Ty::Unknown)
| (Ty::Infer(_), Ty::Infer(InferTy::TypeVar(_)))
| (Ty::Apply(_), _) => actual_ty.clone(),
_ => least_upper_bound,
}
}
}
if all_never && last_never_ty.is_some() {
last_never_ty.unwrap()
} else {
least_upper_bound
}
}

View file

@ -63,6 +63,7 @@ where
InferTy::TypeVar(_) => InferTy::TypeVar(root),
InferTy::IntVar(_) => InferTy::IntVar(root),
InferTy::FloatVar(_) => InferTy::FloatVar(root),
InferTy::MaybeNeverTypeVar(_) => InferTy::MaybeNeverTypeVar(root),
};
let position = self.add(free_var);
Ty::Bound(position as u32)

View file

@ -20,6 +20,9 @@ use crate::{
// against snapshots of the expected results using insta. Use cargo-insta to
// update the snapshots.
mod never_type;
mod coercion;
#[test]
fn infer_await() {
let (mut db, pos) = MockDatabase::with_position(
@ -236,17 +239,23 @@ fn test() {
let a = 1isize;
let b: usize = 1;
let c = b;
let d: u32;
let e;
let f: i32 = e;
}
"#),
@r###"
[11; 71) '{ ...= b; }': ()
[11; 118) '{ ...= e; }': ()
[21; 22) 'a': isize
[25; 31) '1isize': isize
[41; 42) 'b': usize
[52; 53) '1': usize
[63; 64) 'c': usize
[67; 68) 'b': usize
[78; 79) 'd': u32
[94; 95) 'e': i32
[105; 106) 'f': i32
[114; 115) 'e': i32
"###
);
}
@ -328,7 +337,7 @@ fn test() {
"#),
@r###"
[45; 49) 'self': &[T]
[56; 79) '{ ... }': !
[56; 79) '{ ... }': T
[66; 73) 'loop {}': !
[71; 73) '{}': ()
[133; 160) '{ ...o"); }': ()
@ -800,6 +809,130 @@ fn test2(a1: *const A, a2: *mut A) {
);
}
#[test]
fn infer_argument_autoderef() {
assert_snapshot!(
infer(r#"
#[lang = "deref"]
pub trait Deref {
type Target;
fn deref(&self) -> &Self::Target;
}
struct A<T>(T);
impl<T> A<T> {
fn foo(&self) -> &T {
&self.0
}
}
struct B<T>(T);
impl<T> Deref for B<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
&self.0
}
}
fn test() {
let t = A::foo(&&B(B(A(42))));
}
"#),
@r###"
[68; 72) 'self': &Self
[139; 143) 'self': &A<T>
[151; 174) '{ ... }': &T
[161; 168) '&self.0': &T
[162; 166) 'self': &A<T>
[162; 168) 'self.0': T
[255; 259) 'self': &B<T>
[278; 301) '{ ... }': &T
[288; 295) '&self.0': &T
[289; 293) 'self': &B<T>
[289; 295) 'self.0': T
[315; 353) '{ ...))); }': ()
[325; 326) 't': &i32
[329; 335) 'A::foo': fn foo<i32>(&A<T>) -> &T
[329; 350) 'A::foo...42))))': &i32
[336; 349) '&&B(B(A(42)))': &&B<B<A<i32>>>
[337; 349) '&B(B(A(42)))': &B<B<A<i32>>>
[338; 339) 'B': B<B<A<i32>>>(T) -> B<T>
[338; 349) 'B(B(A(42)))': B<B<A<i32>>>
[340; 341) 'B': B<A<i32>>(T) -> B<T>
[340; 348) 'B(A(42))': B<A<i32>>
[342; 343) 'A': A<i32>(T) -> A<T>
[342; 347) 'A(42)': A<i32>
[344; 346) '42': i32
"###
);
}
#[test]
fn infer_method_argument_autoderef() {
assert_snapshot!(
infer(r#"
#[lang = "deref"]
pub trait Deref {
type Target;
fn deref(&self) -> &Self::Target;
}
struct A<T>(*mut T);
impl<T> A<T> {
fn foo(&self, x: &A<T>) -> &T {
&*x.0
}
}
struct B<T>(T);
impl<T> Deref for B<T> {
type Target = T;
fn deref(&self) -> &Self::Target {
&self.0
}
}
fn test(a: A<i32>) {
let t = A(0 as *mut _).foo(&&B(B(a)));
}
"#),
@r###"
[68; 72) 'self': &Self
[144; 148) 'self': &A<T>
[150; 151) 'x': &A<T>
[166; 187) '{ ... }': &T
[176; 181) '&*x.0': &T
[177; 181) '*x.0': T
[178; 179) 'x': &A<T>
[178; 181) 'x.0': *mut T
[268; 272) 'self': &B<T>
[291; 314) '{ ... }': &T
[301; 308) '&self.0': &T
[302; 306) 'self': &B<T>
[302; 308) 'self.0': T
[326; 327) 'a': A<i32>
[337; 383) '{ ...))); }': ()
[347; 348) 't': &i32
[351; 352) 'A': A<i32>(*mut T) -> A<T>
[351; 365) 'A(0 as *mut _)': A<i32>
[351; 380) 'A(0 as...B(a)))': &i32
[353; 354) '0': i32
[353; 364) '0 as *mut _': *mut i32
[370; 379) '&&B(B(a))': &&B<B<A<i32>>>
[371; 379) '&B(B(a))': &B<B<A<i32>>>
[372; 373) 'B': B<B<A<i32>>>(T) -> B<T>
[372; 379) 'B(B(a))': B<B<A<i32>>>
[374; 375) 'B': B<A<i32>>(T) -> B<T>
[374; 378) 'B(a)': B<A<i32>>
[376; 377) 'a': A<i32>
"###
);
}
#[test]
fn bug_484() {
assert_snapshot!(
@ -983,14 +1116,12 @@ fn test(x: &str, y: isize) {
let b = [a, ["b"]];
let x: [u8; 0] = [];
let z: &[u8] = &[1, 2, 3];
}
"#),
@r###"
[9; 10) 'x': &str
[18; 19) 'y': isize
[28; 324) '{ ... 3]; }': ()
[28; 293) '{ ... []; }': ()
[38; 39) 'a': [&str;_]
[42; 45) '[x]': [&str;_]
[43; 44) 'x': &str
@ -1040,12 +1171,6 @@ fn test(x: &str, y: isize) {
[260; 263) '"b"': &str
[275; 276) 'x': [u8;_]
[288; 290) '[]': [u8;_]
[300; 301) 'z': &[u8;_]
[311; 321) '&[1, 2, 3]': &[u8;_]
[312; 321) '[1, 2, 3]': [u8;_]
[313; 314) '1': u8
[316; 317) '2': u8
[319; 320) '3': u8
"###
);
}
@ -1767,8 +1892,7 @@ fn test() {
}
"#),
@r###"
[80; 104) '{ ... }': !
[80; 104) '{ ... }': Gen<T>
[90; 98) 'loop { }': !
[95; 98) '{ }': ()
[118; 146) '{ ...e(); }': ()
@ -1798,8 +1922,7 @@ fn test() {
}
"#),
@r###"
[76; 100) '{ ... }': !
[76; 100) '{ ... }': Gen<T>
[86; 94) 'loop { }': !
[91; 94) '{ }': ()
[114; 149) '{ ...e(); }': ()
@ -1830,8 +1953,7 @@ fn test() {
}
"#),
@r###"
[102; 126) '{ ... }': !
[102; 126) '{ ... }': Gen<u32, T>
[112; 120) 'loop { }': !
[117; 120) '{ }': ()
[140; 180) '{ ...e(); }': ()
@ -1973,7 +2095,6 @@ fn test() {
}
"#),
@r###"
[11; 48) '{ ...&y]; }': ()
[21; 22) 'y': &{unknown}
[25; 32) 'unknown': &{unknown}
@ -1998,14 +2119,13 @@ fn test() {
}
"#),
@r###"
[11; 80) '{ ...x)]; }': ()
[21; 22) 'x': &&{unknown}
[25; 32) 'unknown': &&{unknown}
[42; 43) 'y': &&{unknown}
[46; 53) 'unknown': &&{unknown}
[59; 77) '[(x, y..., &x)]': [(&&{unknown}, &&{unknown});_]
[60; 66) '(x, y)': (&&{unknown}, &&{unknown})
[59; 77) '[(x, y..., &x)]': [(&&&{unknown}, &&&{unknown});_]
[60; 66) '(x, y)': (&&&{unknown}, &&&{unknown})
[61; 62) 'x': &&{unknown}
[64; 65) 'y': &&{unknown}
[68; 76) '(&y, &x)': (&&&{unknown}, &&&{unknown})
@ -2026,7 +2146,7 @@ fn id<T>(x: T) -> T {
}
fn clone<T>(x: &T) -> T {
x
*x
}
fn test() {
@ -2037,26 +2157,26 @@ fn test() {
}
"#),
@r###"
[10; 11) 'x': T
[21; 30) '{ x }': T
[27; 28) 'x': T
[44; 45) 'x': &T
[56; 65) '{ x }': &T
[62; 63) 'x': &T
[77; 157) '{ ...(1); }': ()
[87; 88) 'y': u32
[91; 96) '10u32': u32
[102; 104) 'id': fn id<u32>(T) -> T
[102; 107) 'id(y)': u32
[105; 106) 'y': u32
[117; 118) 'x': bool
[127; 132) 'clone': fn clone<bool>(&T) -> T
[127; 135) 'clone(z)': bool
[133; 134) 'z': &bool
[141; 151) 'id::<i128>': fn id<i128>(T) -> T
[141; 154) 'id::<i128>(1)': i128
[152; 153) '1': i128
[56; 66) '{ *x }': T
[62; 64) '*x': T
[63; 64) 'x': &T
[78; 158) '{ ...(1); }': ()
[88; 89) 'y': u32
[92; 97) '10u32': u32
[103; 105) 'id': fn id<u32>(T) -> T
[103; 108) 'id(y)': u32
[106; 107) 'y': u32
[118; 119) 'x': bool
[128; 133) 'clone': fn clone<bool>(&T) -> T
[128; 136) 'clone(z)': bool
[134; 135) 'z': &bool
[142; 152) 'id::<i128>': fn id<i128>(T) -> T
[142; 155) 'id::<i128>(1)': i128
[153; 154) '1': i128
"###
);
}
@ -2181,7 +2301,6 @@ fn extra_compiler_flags() {
}
"#),
@r###"
[27; 323) '{ ... } }': ()
[33; 321) 'for co... }': ()
[37; 44) 'content': &{unknown}
@ -2195,8 +2314,8 @@ fn extra_compiler_flags() {
[135; 167) '{ ... }': &&{unknown}
[149; 157) '&content': &&{unknown}
[150; 157) 'content': &{unknown}
[182; 189) 'content': &&{unknown}
[192; 314) 'if ICE... }': &&{unknown}
[182; 189) 'content': &{unknown}
[192; 314) 'if ICE... }': &{unknown}
[195; 232) 'ICE_RE..._VALUE': {unknown}
[195; 248) 'ICE_RE...&name)': bool
[242; 247) '&name': &&&{unknown}
@ -3282,7 +3401,7 @@ impl S {
}
fn test(s: Arc<S>) {
(*s, s.foo())<|>
(*s, s.foo())<|>;
}
"#,
);
@ -3356,7 +3475,7 @@ trait Deref {
}
struct Arc<T>;
impl<T: ?Sized> Deref for Arc<T> {
impl<T> Deref for Arc<T> {
type Target = T;
}
@ -3366,7 +3485,7 @@ impl S {
}
fn test(s: Arc<S>) {
(*s, s.foo())<|>
(*s, s.foo())<|>;
}
"#,
);
@ -4406,121 +4525,3 @@ fn no_such_field_diagnostics() {
"###
);
}
mod branching_with_never_tests {
use super::type_at;
#[test]
fn if_never() {
let t = type_at(
r#"
//- /main.rs
fn test() {
let i = if true {
loop {}
} else {
3.0
};
i<|>
()
}
"#,
);
assert_eq!(t, "f64");
}
#[test]
fn if_else_never() {
let t = type_at(
r#"
//- /main.rs
fn test(input: bool) {
let i = if input {
2.0
} else {
return
};
i<|>
()
}
"#,
);
assert_eq!(t, "f64");
}
#[test]
fn match_first_arm_never() {
let t = type_at(
r#"
//- /main.rs
fn test(a: i32) {
let i = match a {
1 => return,
2 => 2.0,
3 => loop {},
_ => 3.0,
};
i<|>
()
}
"#,
);
assert_eq!(t, "f64");
}
#[test]
fn match_second_arm_never() {
let t = type_at(
r#"
//- /main.rs
fn test(a: i32) {
let i = match a {
1 => 3.0,
2 => loop {},
3 => 3.0,
_ => return,
};
i<|>
()
}
"#,
);
assert_eq!(t, "f64");
}
#[test]
fn match_all_arms_never() {
let t = type_at(
r#"
//- /main.rs
fn test(a: i32) {
let i = match a {
2 => return,
_ => loop {},
};
i<|>
()
}
"#,
);
assert_eq!(t, "!");
}
#[test]
fn match_no_never_arms() {
let t = type_at(
r#"
//- /main.rs
fn test(a: i32) {
let i = match a {
2 => 2.0,
_ => 3.0,
};
i<|>
()
}
"#,
);
assert_eq!(t, "f64");
}
}

View file

@ -0,0 +1,369 @@
use insta::assert_snapshot;
use test_utils::covers;
// Infer with some common definitions and impls.
fn infer(source: &str) -> String {
let defs = r#"
#[lang = "sized"]
pub trait Sized {}
#[lang = "unsize"]
pub trait Unsize<T: ?Sized> {}
#[lang = "coerce_unsized"]
pub trait CoerceUnsized<T> {}
impl<'a, 'b: 'a, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<&'a U> for &'b T {}
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<*mut U> for *mut T {}
"#;
// Append to the end to keep positions unchanged.
super::infer(&format!("{}{}", source, defs))
}
#[test]
fn infer_block_expr_type_mismatch() {
assert_snapshot!(
infer(r#"
fn test() {
let a: i32 = { 1i64 };
}
"#),
@r###"
[11; 41) '{ ...4 }; }': ()
[21; 22) 'a': i32
[30; 38) '{ 1i64 }': i64
[32; 36) '1i64': i64
"###);
}
#[test]
fn coerce_places() {
assert_snapshot!(
infer(r#"
struct S<T> { a: T }
fn f<T>(_: &[T]) -> T { loop {} }
fn g<T>(_: S<&[T]>) -> T { loop {} }
fn gen<T>() -> *mut [T; 2] { loop {} }
fn test1<U>() -> *mut [U] {
gen()
}
fn test2() {
let arr: &[u8; 1] = &[1];
let a: &[_] = arr;
let b = f(arr);
let c: &[_] = { arr };
let d = g(S { a: arr });
let e: [&[_]; 1] = [arr];
let f: [&[_]; 2] = [arr; 2];
let g: (&[_], &[_]) = (arr, arr);
}
"#),
@r###"
[31; 32) '_': &[T]
[45; 56) '{ loop {} }': T
[47; 54) 'loop {}': !
[52; 54) '{}': ()
[65; 66) '_': S<&[T]>
[82; 93) '{ loop {} }': T
[84; 91) 'loop {}': !
[89; 91) '{}': ()
[122; 133) '{ loop {} }': *mut [T;_]
[124; 131) 'loop {}': !
[129; 131) '{}': ()
[160; 173) '{ gen() }': *mut [U]
[166; 169) 'gen': fn gen<U>() -> *mut [T;_]
[166; 171) 'gen()': *mut [U;_]
[186; 420) '{ ...rr); }': ()
[196; 199) 'arr': &[u8;_]
[212; 216) '&[1]': &[u8;_]
[213; 216) '[1]': [u8;_]
[214; 215) '1': u8
[227; 228) 'a': &[u8]
[237; 240) 'arr': &[u8;_]
[250; 251) 'b': u8
[254; 255) 'f': fn f<u8>(&[T]) -> T
[254; 260) 'f(arr)': u8
[256; 259) 'arr': &[u8;_]
[270; 271) 'c': &[u8]
[280; 287) '{ arr }': &[u8]
[282; 285) 'arr': &[u8;_]
[297; 298) 'd': u8
[301; 302) 'g': fn g<u8>(S<&[T]>) -> T
[301; 316) 'g(S { a: arr })': u8
[303; 315) 'S { a: arr }': S<&[u8]>
[310; 313) 'arr': &[u8;_]
[326; 327) 'e': [&[u8];_]
[341; 346) '[arr]': [&[u8];_]
[342; 345) 'arr': &[u8;_]
[356; 357) 'f': [&[u8];_]
[371; 379) '[arr; 2]': [&[u8];_]
[372; 375) 'arr': &[u8;_]
[377; 378) '2': usize
[389; 390) 'g': (&[u8], &[u8])
[407; 417) '(arr, arr)': (&[u8], &[u8])
[408; 411) 'arr': &[u8;_]
[413; 416) 'arr': &[u8;_]
"###
);
}
#[test]
fn infer_let_stmt_coerce() {
assert_snapshot!(
infer(r#"
fn test() {
let x: &[i32] = &[1];
}
"#),
@r###"
[11; 40) '{ ...[1]; }': ()
[21; 22) 'x': &[i32]
[33; 37) '&[1]': &[i32;_]
[34; 37) '[1]': [i32;_]
[35; 36) '1': i32
"###);
}
#[test]
fn infer_custom_coerce_unsized() {
assert_snapshot!(
infer(r#"
struct A<T: ?Sized>(*const T);
struct B<T: ?Sized>(*const T);
struct C<T: ?Sized> { inner: *const T }
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<B<U>> for B<T> {}
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<C<U>> for C<T> {}
fn foo1<T>(x: A<[T]>) -> A<[T]> { x }
fn foo2<T>(x: B<[T]>) -> B<[T]> { x }
fn foo3<T>(x: C<[T]>) -> C<[T]> { x }
fn test(a: A<[u8; 2]>, b: B<[u8; 2]>, c: C<[u8; 2]>) {
let d = foo1(a);
let e = foo2(b);
let f = foo3(c);
}
"#),
@r###"
[258; 259) 'x': A<[T]>
[279; 284) '{ x }': A<[T]>
[281; 282) 'x': A<[T]>
[296; 297) 'x': B<[T]>
[317; 322) '{ x }': B<[T]>
[319; 320) 'x': B<[T]>
[334; 335) 'x': C<[T]>
[355; 360) '{ x }': C<[T]>
[357; 358) 'x': C<[T]>
[370; 371) 'a': A<[u8;_]>
[385; 386) 'b': B<[u8;_]>
[400; 401) 'c': C<[u8;_]>
[415; 481) '{ ...(c); }': ()
[425; 426) 'd': A<[{unknown}]>
[429; 433) 'foo1': fn foo1<{unknown}>(A<[T]>) -> A<[T]>
[429; 436) 'foo1(a)': A<[{unknown}]>
[434; 435) 'a': A<[u8;_]>
[446; 447) 'e': B<[u8]>
[450; 454) 'foo2': fn foo2<u8>(B<[T]>) -> B<[T]>
[450; 457) 'foo2(b)': B<[u8]>
[455; 456) 'b': B<[u8;_]>
[467; 468) 'f': C<[u8]>
[471; 475) 'foo3': fn foo3<u8>(C<[T]>) -> C<[T]>
[471; 478) 'foo3(c)': C<[u8]>
[476; 477) 'c': C<[u8;_]>
"###
);
}
#[test]
fn infer_if_coerce() {
assert_snapshot!(
infer(r#"
fn foo<T>(x: &[T]) -> &[T] { loop {} }
fn test() {
let x = if true {
foo(&[1])
} else {
&[1]
};
}
"#),
@r###"
[11; 12) 'x': &[T]
[28; 39) '{ loop {} }': &[T]
[30; 37) 'loop {}': !
[35; 37) '{}': ()
[50; 126) '{ ... }; }': ()
[60; 61) 'x': &[i32]
[64; 123) 'if tru... }': &[i32]
[67; 71) 'true': bool
[72; 97) '{ ... }': &[i32]
[82; 85) 'foo': fn foo<i32>(&[T]) -> &[T]
[82; 91) 'foo(&[1])': &[i32]
[86; 90) '&[1]': &[i32;_]
[87; 90) '[1]': [i32;_]
[88; 89) '1': i32
[103; 123) '{ ... }': &[i32;_]
[113; 117) '&[1]': &[i32;_]
[114; 117) '[1]': [i32;_]
[115; 116) '1': i32
"###
);
}
#[test]
fn infer_if_else_coerce() {
assert_snapshot!(
infer(r#"
fn foo<T>(x: &[T]) -> &[T] { loop {} }
fn test() {
let x = if true {
&[1]
} else {
foo(&[1])
};
}
"#),
@r###"
[11; 12) 'x': &[T]
[28; 39) '{ loop {} }': &[T]
[30; 37) 'loop {}': !
[35; 37) '{}': ()
[50; 126) '{ ... }; }': ()
[60; 61) 'x': &[i32]
[64; 123) 'if tru... }': &[i32]
[67; 71) 'true': bool
[72; 92) '{ ... }': &[i32;_]
[82; 86) '&[1]': &[i32;_]
[83; 86) '[1]': [i32;_]
[84; 85) '1': i32
[98; 123) '{ ... }': &[i32]
[108; 111) 'foo': fn foo<i32>(&[T]) -> &[T]
[108; 117) 'foo(&[1])': &[i32]
[112; 116) '&[1]': &[i32;_]
[113; 116) '[1]': [i32;_]
[114; 115) '1': i32
"###
);
}
#[test]
fn infer_match_first_coerce() {
assert_snapshot!(
infer(r#"
fn foo<T>(x: &[T]) -> &[T] { loop {} }
fn test(i: i32) {
let x = match i {
2 => foo(&[2]),
1 => &[1],
_ => &[3],
};
}
"#),
@r###"
[11; 12) 'x': &[T]
[28; 39) '{ loop {} }': &[T]
[30; 37) 'loop {}': !
[35; 37) '{}': ()
[48; 49) 'i': i32
[56; 150) '{ ... }; }': ()
[66; 67) 'x': &[i32]
[70; 147) 'match ... }': &[i32]
[76; 77) 'i': i32
[88; 89) '2': i32
[93; 96) 'foo': fn foo<i32>(&[T]) -> &[T]
[93; 102) 'foo(&[2])': &[i32]
[97; 101) '&[2]': &[i32;_]
[98; 101) '[2]': [i32;_]
[99; 100) '2': i32
[112; 113) '1': i32
[117; 121) '&[1]': &[i32;_]
[118; 121) '[1]': [i32;_]
[119; 120) '1': i32
[131; 132) '_': i32
[136; 140) '&[3]': &[i32;_]
[137; 140) '[3]': [i32;_]
[138; 139) '3': i32
"###
);
}
#[test]
fn infer_match_second_coerce() {
assert_snapshot!(
infer(r#"
fn foo<T>(x: &[T]) -> &[T] { loop {} }
fn test(i: i32) {
let x = match i {
1 => &[1],
2 => foo(&[2]),
_ => &[3],
};
}
"#),
@r###"
[11; 12) 'x': &[T]
[28; 39) '{ loop {} }': &[T]
[30; 37) 'loop {}': !
[35; 37) '{}': ()
[48; 49) 'i': i32
[56; 150) '{ ... }; }': ()
[66; 67) 'x': &[i32]
[70; 147) 'match ... }': &[i32]
[76; 77) 'i': i32
[88; 89) '1': i32
[93; 97) '&[1]': &[i32;_]
[94; 97) '[1]': [i32;_]
[95; 96) '1': i32
[107; 108) '2': i32
[112; 115) 'foo': fn foo<i32>(&[T]) -> &[T]
[112; 121) 'foo(&[2])': &[i32]
[116; 120) '&[2]': &[i32;_]
[117; 120) '[2]': [i32;_]
[118; 119) '2': i32
[131; 132) '_': i32
[136; 140) '&[3]': &[i32;_]
[137; 140) '[3]': [i32;_]
[138; 139) '3': i32
"###
);
}
#[test]
fn coerce_merge_one_by_one1() {
covers!(coerce_merge_fail_fallback);
assert_snapshot!(
infer(r#"
fn test() {
let t = &mut 1;
let x = match 1 {
1 => t as *mut i32,
2 => t as &i32,
_ => t as *const i32,
};
}
"#),
@r###"
[11; 145) '{ ... }; }': ()
[21; 22) 't': &mut i32
[25; 31) '&mut 1': &mut i32
[30; 31) '1': i32
[41; 42) 'x': *const i32
[45; 142) 'match ... }': *const i32
[51; 52) '1': i32
[63; 64) '1': i32
[68; 69) 't': &mut i32
[68; 81) 't as *mut i32': *mut i32
[91; 92) '2': i32
[96; 97) 't': &mut i32
[96; 105) 't as &i32': &i32
[115; 116) '_': i32
[120; 121) 't': &mut i32
[120; 135) 't as *const i32': *const i32
"###
);
}

View file

@ -0,0 +1,246 @@
use super::type_at;
#[test]
fn infer_never1() {
let t = type_at(
r#"
//- /main.rs
fn test() {
let t = return;
t<|>;
}
"#,
);
assert_eq!(t, "!");
}
#[test]
fn infer_never2() {
let t = type_at(
r#"
//- /main.rs
fn gen<T>() -> T { loop {} }
fn test() {
let a = gen();
if false { a } else { loop {} };
a<|>;
}
"#,
);
assert_eq!(t, "!");
}
#[test]
fn infer_never3() {
let t = type_at(
r#"
//- /main.rs
fn gen<T>() -> T { loop {} }
fn test() {
let a = gen();
if false { loop {} } else { a };
a<|>;
}
"#,
);
assert_eq!(t, "!");
}
#[test]
fn never_type_in_generic_args() {
let t = type_at(
r#"
//- /main.rs
enum Option<T> { None, Some(T) }
fn test() {
let a = if true { Option::None } else { Option::Some(return) };
a<|>;
}
"#,
);
assert_eq!(t, "Option<!>");
}
#[test]
fn never_type_can_be_reinferred1() {
let t = type_at(
r#"
//- /main.rs
fn gen<T>() -> T { loop {} }
fn test() {
let a = gen();
if false { loop {} } else { a };
a<|>;
if false { a };
}
"#,
);
assert_eq!(t, "()");
}
#[test]
fn never_type_can_be_reinferred2() {
let t = type_at(
r#"
//- /main.rs
enum Option<T> { None, Some(T) }
fn test() {
let a = if true { Option::None } else { Option::Some(return) };
a<|>;
match 42 {
42 => a,
_ => Option::Some(42),
};
}
"#,
);
assert_eq!(t, "Option<i32>");
}
#[test]
fn never_type_can_be_reinferred3() {
let t = type_at(
r#"
//- /main.rs
enum Option<T> { None, Some(T) }
fn test() {
let a = if true { Option::None } else { Option::Some(return) };
a<|>;
match 42 {
42 => a,
_ => Option::Some("str"),
};
}
"#,
);
assert_eq!(t, "Option<&str>");
}
#[test]
fn match_no_arm() {
let t = type_at(
r#"
//- /main.rs
enum Void {}
fn test(a: Void) {
let t = match a {};
t<|>;
}
"#,
);
assert_eq!(t, "!");
}
#[test]
fn if_never() {
let t = type_at(
r#"
//- /main.rs
fn test() {
let i = if true {
loop {}
} else {
3.0
};
i<|>;
}
"#,
);
assert_eq!(t, "f64");
}
#[test]
fn if_else_never() {
let t = type_at(
r#"
//- /main.rs
fn test(input: bool) {
let i = if input {
2.0
} else {
return
};
i<|>;
}
"#,
);
assert_eq!(t, "f64");
}
#[test]
fn match_first_arm_never() {
let t = type_at(
r#"
//- /main.rs
fn test(a: i32) {
let i = match a {
1 => return,
2 => 2.0,
3 => loop {},
_ => 3.0,
};
i<|>;
}
"#,
);
assert_eq!(t, "f64");
}
#[test]
fn match_second_arm_never() {
let t = type_at(
r#"
//- /main.rs
fn test(a: i32) {
let i = match a {
1 => 3.0,
2 => loop {},
3 => 3.0,
_ => return,
};
i<|>;
}
"#,
);
assert_eq!(t, "f64");
}
#[test]
fn match_all_arms_never() {
let t = type_at(
r#"
//- /main.rs
fn test(a: i32) {
let i = match a {
2 => return,
_ => loop {},
};
i<|>;
}
"#,
);
assert_eq!(t, "!");
}
#[test]
fn match_no_never_arms() {
let t = type_at(
r#"
//- /main.rs
fn test(a: i32) {
let i = match a {
2 => 2.0,
_ => 3.0,
};
i<|>;
}
"#,
);
assert_eq!(t, "f64");
}