Remove IdFunctor trait.

It's defined in `rustc_data_structures` but is only used in
`rustc_type_ir`. The code is shorter and easier to read if we remove
this layer of abstraction and just do the things directly where they are
needed.
This commit is contained in:
Nicholas Nethercote 2023-10-16 16:50:25 +11:00
parent 4175c9b595
commit 847c8ba70d
4 changed files with 48 additions and 125 deletions

View file

@ -1,116 +0,0 @@
use rustc_index::{Idx, IndexVec};
use std::{mem, rc::Rc, sync::Arc};
pub trait IdFunctor: Sized {
type Inner;
fn try_map_id<F, E>(self, f: F) -> Result<Self, E>
where
F: FnMut(Self::Inner) -> Result<Self::Inner, E>;
}
impl<T> IdFunctor for Box<T> {
type Inner = T;
#[inline]
fn try_map_id<F, E>(self, mut f: F) -> Result<Self, E>
where
F: FnMut(Self::Inner) -> Result<Self::Inner, E>,
{
let raw = Box::into_raw(self);
Ok(unsafe {
// SAFETY: The raw pointer points to a valid value of type `T`.
let value = raw.read();
// SAFETY: Converts `Box<T>` to `Box<MaybeUninit<T>>` which is the
// inverse of `Box::assume_init()` and should be safe.
let raw: Box<mem::MaybeUninit<T>> = Box::from_raw(raw.cast());
// SAFETY: Write the mapped value back into the `Box`.
Box::write(raw, f(value)?)
})
}
}
impl<T> IdFunctor for Vec<T> {
type Inner = T;
#[inline]
fn try_map_id<F, E>(self, f: F) -> Result<Self, E>
where
F: FnMut(Self::Inner) -> Result<Self::Inner, E>,
{
self.into_iter().map(f).collect()
}
}
impl<T> IdFunctor for Box<[T]> {
type Inner = T;
#[inline]
fn try_map_id<F, E>(self, f: F) -> Result<Self, E>
where
F: FnMut(Self::Inner) -> Result<Self::Inner, E>,
{
Vec::from(self).try_map_id(f).map(Into::into)
}
}
impl<I: Idx, T> IdFunctor for IndexVec<I, T> {
type Inner = T;
#[inline]
fn try_map_id<F, E>(self, f: F) -> Result<Self, E>
where
F: FnMut(Self::Inner) -> Result<Self::Inner, E>,
{
self.raw.try_map_id(f).map(IndexVec::from_raw)
}
}
macro_rules! rc {
($($rc:ident),+) => {$(
impl<T: Clone> IdFunctor for $rc<T> {
type Inner = T;
#[inline]
fn try_map_id<F, E>(mut self, mut f: F) -> Result<Self, E>
where
F: FnMut(Self::Inner) -> Result<Self::Inner, E>,
{
// We merely want to replace the contained `T`, if at all possible,
// so that we don't needlessly allocate a new `$rc` or indeed clone
// the contained type.
unsafe {
// First step is to ensure that we have a unique reference to
// the contained type, which `$rc::make_mut` will accomplish (by
// allocating a new `$rc` and cloning the `T` only if required).
// This is done *before* casting to `$rc<ManuallyDrop<T>>` so that
// panicking during `make_mut` does not leak the `T`.
$rc::make_mut(&mut self);
// Casting to `$rc<ManuallyDrop<T>>` is safe because `ManuallyDrop`
// is `repr(transparent)`.
let ptr = $rc::into_raw(self).cast::<mem::ManuallyDrop<T>>();
let mut unique = $rc::from_raw(ptr);
// Call to `$rc::make_mut` above guarantees that `unique` is the
// sole reference to the contained value, so we can avoid doing
// a checked `get_mut` here.
let slot = $rc::get_mut_unchecked(&mut unique);
// Semantically move the contained type out from `unique`, fold
// it, then move the folded value back into `unique`. Should
// folding fail, `ManuallyDrop` ensures that the "moved-out"
// value is not re-dropped.
let owned = mem::ManuallyDrop::take(slot);
let folded = f(owned)?;
*slot = mem::ManuallyDrop::new(folded);
// Cast back to `$rc<T>`.
Ok($rc::from_raw($rc::into_raw(unique).cast()))
}
}
}
)+};
}
rc! { Rc, Arc }

View file

@ -18,14 +18,12 @@
#![feature(min_specialization)]
#![feature(never_type)]
#![feature(type_alias_impl_trait)]
#![feature(new_uninit)]
#![feature(lazy_cell)]
#![feature(rustc_attrs)]
#![feature(negative_impls)]
#![feature(test)]
#![feature(thread_id_value)]
#![feature(allocator_api)]
#![feature(get_mut_unchecked)]
#![feature(lint_reasons)]
#![feature(unwrap_infallible)]
#![feature(strict_provenance)]
@ -61,7 +59,6 @@ pub mod binary_search_util;
pub mod captures;
pub mod flat_map_in_place;
pub mod flock;
pub mod functor;
pub mod fx;
pub mod graph;
pub mod intern;

View file

@ -1,7 +1,9 @@
#![feature(associated_type_defaults)]
#![feature(fmt_helpers_for_derive)]
#![feature(get_mut_unchecked)]
#![feature(min_specialization)]
#![feature(never_type)]
#![feature(new_uninit)]
#![feature(rustc_attrs)]
#![feature(unwrap_infallible)]
#![deny(rustc::untranslatable_diagnostic)]

View file

@ -5,12 +5,12 @@
use crate::fold::{FallibleTypeFolder, TypeFoldable};
use crate::visit::{TypeVisitable, TypeVisitor};
use crate::{ConstKind, FloatTy, InferTy, IntTy, Interner, UintTy, UniverseIndex};
use rustc_data_structures::functor::IdFunctor;
use rustc_data_structures::sync::Lrc;
use rustc_index::{Idx, IndexVec};
use core::fmt;
use std::marker::PhantomData;
use std::mem;
use std::ops::ControlFlow;
///////////////////////////////////////////////////////////////////////////
@ -108,8 +108,39 @@ impl<I: Interner, T: TypeVisitable<I>, E: TypeVisitable<I>> TypeVisitable<I> for
}
impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Lrc<T> {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|value| value.try_fold_with(folder))
fn try_fold_with<F: FallibleTypeFolder<I>>(mut self, folder: &mut F) -> Result<Self, F::Error> {
// We merely want to replace the contained `T`, if at all possible,
// so that we don't needlessly allocate a new `Lrc` or indeed clone
// the contained type.
unsafe {
// First step is to ensure that we have a unique reference to
// the contained type, which `Lrc::make_mut` will accomplish (by
// allocating a new `Lrc` and cloning the `T` only if required).
// This is done *before* casting to `Lrc<ManuallyDrop<T>>` so that
// panicking during `make_mut` does not leak the `T`.
Lrc::make_mut(&mut self);
// Casting to `Lrc<ManuallyDrop<T>>` is safe because `ManuallyDrop`
// is `repr(transparent)`.
let ptr = Lrc::into_raw(self).cast::<mem::ManuallyDrop<T>>();
let mut unique = Lrc::from_raw(ptr);
// Call to `Lrc::make_mut` above guarantees that `unique` is the
// sole reference to the contained value, so we can avoid doing
// a checked `get_mut` here.
let slot = Lrc::get_mut_unchecked(&mut unique);
// Semantically move the contained type out from `unique`, fold
// it, then move the folded value back into `unique`. Should
// folding fail, `ManuallyDrop` ensures that the "moved-out"
// value is not re-dropped.
let owned = mem::ManuallyDrop::take(slot);
let folded = owned.try_fold_with(folder)?;
*slot = mem::ManuallyDrop::new(folded);
// Cast back to `Lrc<T>`.
Ok(Lrc::from_raw(Lrc::into_raw(unique).cast()))
}
}
}
@ -121,7 +152,16 @@ impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Lrc<T> {
impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Box<T> {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|value| value.try_fold_with(folder))
let raw = Box::into_raw(self);
Ok(unsafe {
// SAFETY: The raw pointer points to a valid value of type `T`.
let value = raw.read();
// SAFETY: Converts `Box<T>` to `Box<MaybeUninit<T>>` which is the
// inverse of `Box::assume_init()` and should be safe.
let raw: Box<mem::MaybeUninit<T>> = Box::from_raw(raw.cast());
// SAFETY: Write the mapped value back into the `Box`.
Box::write(raw, value.try_fold_with(folder)?)
})
}
}
@ -133,7 +173,7 @@ impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Box<T> {
impl<I: Interner, T: TypeFoldable<I>> TypeFoldable<I> for Vec<T> {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|t| t.try_fold_with(folder))
self.into_iter().map(|t| t.try_fold_with(folder)).collect()
}
}
@ -161,7 +201,7 @@ impl<I: Interner, T: TypeVisitable<I>> TypeVisitable<I> for Box<[T]> {
impl<I: Interner, T: TypeFoldable<I>, Ix: Idx> TypeFoldable<I> for IndexVec<Ix, T> {
fn try_fold_with<F: FallibleTypeFolder<I>>(self, folder: &mut F) -> Result<Self, F::Error> {
self.try_map_id(|x| x.try_fold_with(folder))
self.raw.try_fold_with(folder).map(IndexVec::from_raw)
}
}