Auto merge of #123351 - beetrees:x86-ret-snan-rust, r=nikic,workingjubilee

Ensure floats are returned losslessly by the Rust ABI on 32-bit x86

Solves #115567 for the (default) `"Rust"` ABI. When compiling for 32-bit x86, this PR changes the `"Rust"` ABI to return floats indirectly instead of in x87 registers (with the exception of single `f32`s, which this PR returns in general purpose registers as they are small enough to fit in one). No change is made to the `"C"` ABI as that ABI requires x87 register usage and therefore will need a different solution.
This commit is contained in:
bors 2024-07-12 20:36:43 +00:00
commit c6727fc9b5
8 changed files with 461 additions and 10 deletions

View file

@ -743,6 +743,40 @@ fn fn_abi_adjust_for_abi<'tcx>(
return;
}
// Avoid returning floats in x87 registers on x86 as loading and storing from x87
// registers will quiet signalling NaNs.
if cx.tcx.sess.target.arch == "x86"
&& arg_idx.is_none()
// Intrinsics themselves are not actual "real" functions, so theres no need to
// change their ABIs.
&& abi != SpecAbi::RustIntrinsic
{
match arg.layout.abi {
// Handle similar to the way arguments with an `Abi::Aggregate` abi are handled
// below, by returning arguments up to the size of a pointer (32 bits on x86)
// cast to an appropriately sized integer.
Abi::Scalar(s) if s.primitive() == Float(F32) => {
// Same size as a pointer, return in a register.
arg.cast_to(Reg::i32());
return;
}
Abi::Scalar(s) if s.primitive() == Float(F64) => {
// Larger than a pointer, return indirectly.
arg.make_indirect();
return;
}
Abi::ScalarPair(s1, s2)
if matches!(s1.primitive(), Float(F32 | F64))
|| matches!(s2.primitive(), Float(F32 | F64)) =>
{
// Larger than a pointer, return indirectly.
arg.make_indirect();
return;
}
_ => {}
};
}
match arg.layout.abi {
Abi::Aggregate { .. } => {}

View file

@ -41,10 +41,10 @@ target | notes
`x86_64-pc-windows-msvc` | 64-bit MSVC (Windows 10+, Windows Server 2016+)
`x86_64-unknown-linux-gnu` | 64-bit Linux (kernel 3.2+, glibc 2.17+)
[^x86_32-floats-return-ABI]: Due to limitations of the C ABI, floating-point support on `i686` targets is non-compliant: floating-point return values are passed via an x87 register, so NaN payload bits can be lost. See [issue #114479][x86-32-float-issue].
[^x86_32-floats-return-ABI]: Due to limitations of the C ABI, floating-point support on `i686` targets is non-compliant: floating-point return values are passed via an x87 register, so NaN payload bits can be lost. Functions with the default Rust ABI are not affected. See [issue #115567][x86-32-float-return-issue].
[77071]: https://github.com/rust-lang/rust/issues/77071
[x86-32-float-issue]: https://github.com/rust-lang/rust/issues/114479
[x86-32-float-return-issue]: https://github.com/rust-lang/rust/issues/115567
## Tier 1
@ -209,6 +209,8 @@ target | std | notes
[^x86_32-floats-x87]: Floating-point support on `i586` targets is non-compliant: the `x87` registers and instructions used for these targets do not provide IEEE-754-compliant behavior, in particular when it comes to rounding and NaN payload bits. See [issue #114479][x86-32-float-issue].
[x86-32-float-issue]: https://github.com/rust-lang/rust/issues/114479
[wasi-rename]: https://github.com/rust-lang/compiler-team/issues/607
[Fortanix ABI]: https://edp.fortanix.com/

View file

@ -0,0 +1,328 @@
//@ assembly-output: emit-asm
//@ only-x86
// FIXME(#114479): LLVM miscompiles loading and storing `f32` and `f64` when SSE is disabled.
// There's no compiletest directive to ignore a test on i586 only, so just always explicitly enable
// SSE2.
// Use the same target CPU as `i686` so that LLVM orders the instructions in the same order.
//@ compile-flags: -Ctarget-feature=+sse2 -Ctarget-cpu=pentium4
// Force frame pointers to make ASM more consistent between targets
//@ compile-flags: -O -C force-frame-pointers
//@ filecheck-flags: --implicit-check-not fld --implicit-check-not fst
//@ revisions: unix windows
//@[unix] ignore-windows
//@[windows] only-windows
#![crate_type = "lib"]
#![feature(f16, f128)]
// Tests that returning `f32` and `f64` with the "Rust" ABI on 32-bit x86 doesn't use the x87
// floating point stack, as loading and storing `f32`s and `f64`s to and from the x87 stack quietens
// signalling NaNs.
// Returning individual floats
// CHECK-LABEL: return_f32:
#[no_mangle]
pub fn return_f32(x: f32) -> f32 {
// CHECK: movl {{.*}}(%ebp), %eax
// CHECK-NOT: ax
// CHECK: retl
x
}
// CHECK-LABEL: return_f64:
#[no_mangle]
pub fn return_f64(x: f64) -> f64 {
// CHECK: movl [[#%d,OFFSET:]](%ebp), %[[PTR:.*]]
// CHECK-NEXT: movsd [[#%d,OFFSET+4]](%ebp), %[[VAL:.*]]
// CHECK-NEXT: movsd %[[VAL]], (%[[PTR]])
// CHECK: retl
x
}
// Returning scalar pairs containing floats
// CHECK-LABEL: return_f32_f32:
#[no_mangle]
pub fn return_f32_f32(x: (f32, f32)) -> (f32, f32) {
// CHECK: movl [[#%d,OFFSET:]](%ebp), %[[PTR:.*]]
// CHECK-NEXT: movss [[#%d,OFFSET+4]](%ebp), %[[VAL1:.*]]
// CHECK-NEXT: movss [[#%d,OFFSET+8]](%ebp), %[[VAL2:.*]]
// CHECK-NEXT: movss %[[VAL1]], (%[[PTR]])
// CHECK-NEXT: movss %[[VAL2]], 4(%[[PTR]])
// CHECK: retl
x
}
// CHECK-LABEL: return_f64_f64:
#[no_mangle]
pub fn return_f64_f64(x: (f64, f64)) -> (f64, f64) {
// CHECK: movl [[#%d,OFFSET:]](%ebp), %[[PTR:.*]]
// CHECK-NEXT: movsd [[#%d,OFFSET+4]](%ebp), %[[VAL1:.*]]
// CHECK-NEXT: movsd [[#%d,OFFSET+12]](%ebp), %[[VAL2:.*]]
// CHECK-NEXT: movsd %[[VAL1]], (%[[PTR]])
// CHECK-NEXT: movsd %[[VAL2]], 8(%[[PTR]])
// CHECK: retl
x
}
// CHECK-LABEL: return_f32_f64:
#[no_mangle]
pub fn return_f32_f64(x: (f32, f64)) -> (f32, f64) {
// CHECK: movl [[#%d,OFFSET:]](%ebp), %[[PTR:.*]]
// CHECK-NEXT: movss [[#%d,OFFSET+4]](%ebp), %[[VAL1:.*]]
// CHECK-NEXT: movsd [[#%d,OFFSET+8]](%ebp), %[[VAL2:.*]]
// CHECK-NEXT: movss %[[VAL1]], (%[[PTR]])
// CHECK-NEXT: movsd %[[VAL2]], {{4|8}}(%[[PTR]])
// CHECK: retl
x
}
// CHECK-LABEL: return_f64_f32:
#[no_mangle]
pub fn return_f64_f32(x: (f64, f32)) -> (f64, f32) {
// CHECK: movl [[#%d,OFFSET:]](%ebp), %[[PTR:.*]]
// CHECK-NEXT: movsd [[#%d,OFFSET+4]](%ebp), %[[VAL1:.*]]
// CHECK-NEXT: movss [[#%d,OFFSET+12]](%ebp), %[[VAL2:.*]]
// CHECK-NEXT: movsd %[[VAL1]], (%[[PTR]])
// CHECK-NEXT: movss %[[VAL2]], 8(%[[PTR]])
// CHECK: retl
x
}
// CHECK-LABEL: return_f32_other:
#[no_mangle]
pub fn return_f32_other(x: (f32, usize)) -> (f32, usize) {
// CHECK: movl [[#%d,OFFSET:]](%ebp), %[[PTR:.*]]
// CHECK-NEXT: movss [[#%d,OFFSET+4]](%ebp), %[[VAL1:.*]]
// CHECK-NEXT: movl [[#%d,OFFSET+8]](%ebp), %[[VAL2:.*]]
// CHECK-NEXT: movss %[[VAL1]], (%[[PTR]])
// CHECK-NEXT: movl %[[VAL2]], 4(%[[PTR]])
// CHECK: retl
x
}
// CHECK-LABEL: return_f64_other:
#[no_mangle]
pub fn return_f64_other(x: (f64, usize)) -> (f64, usize) {
// CHECK: movl [[#%d,OFFSET:]](%ebp), %[[PTR:.*]]
// CHECK-NEXT: movsd [[#%d,OFFSET+4]](%ebp), %[[VAL1:.*]]
// CHECK-NEXT: movl [[#%d,OFFSET+12]](%ebp), %[[VAL2:.*]]
// CHECK-NEXT: movsd %[[VAL1]], (%[[PTR]])
// CHECK-NEXT: movl %[[VAL2]], 8(%[[PTR]])
// CHECK: retl
x
}
// CHECK-LABEL: return_other_f32:
#[no_mangle]
pub fn return_other_f32(x: (usize, f32)) -> (usize, f32) {
// CHECK: movl [[#%d,OFFSET:]](%ebp), %[[PTR:.*]]
// CHECK-NEXT: movl [[#%d,OFFSET+4]](%ebp), %[[VAL1:.*]]
// CHECK-NEXT: movss [[#%d,OFFSET+8]](%ebp), %[[VAL2:.*]]
// CHECK-NEXT: movl %[[VAL1]], (%[[PTR]])
// CHECK-NEXT: movss %[[VAL2]], 4(%[[PTR]])
// CHECK: retl
x
}
// CHECK-LABEL: return_other_f64:
#[no_mangle]
pub fn return_other_f64(x: (usize, f64)) -> (usize, f64) {
// CHECK: movl [[#%d,OFFSET:]](%ebp), %[[PTR:.*]]
// CHECK-NEXT: movl [[#%d,OFFSET+4]](%ebp), %[[VAL1:.*]]
// CHECK-NEXT: movsd [[#%d,OFFSET+8]](%ebp), %[[VAL2:.*]]
// CHECK-NEXT: movl %[[VAL1]], (%[[PTR]])
// CHECK-NEXT: movsd %[[VAL2]], {{4|8}}(%[[PTR]])
// CHECK: retl
x
}
// Calling functions returning floats
// CHECK-LABEL: call_f32:
#[no_mangle]
pub unsafe fn call_f32(x: &mut f32) {
extern "Rust" {
fn get_f32() -> f32;
}
// CHECK: movl {{.*}}(%ebp), %[[PTR:.*]]
// CHECK: calll {{()|_}}get_f32
// CHECK-NEXT: movl %eax, (%[[PTR]])
*x = get_f32();
}
// CHECK-LABEL: call_f64:
#[no_mangle]
pub unsafe fn call_f64(x: &mut f64) {
extern "Rust" {
fn get_f64() -> f64;
}
// CHECK: movl {{.*}}(%ebp), %[[PTR:.*]]
// CHECK: calll {{()|_}}get_f64
// CHECK: movsd {{.*}}(%{{ebp|esp}}), %[[VAL:.*]]
// CHECK-NEXT: movsd %[[VAL:.*]], (%[[PTR]])
*x = get_f64();
}
// Calling functions returning scalar pairs containing floats
// CHECK-LABEL: call_f32_f32:
#[no_mangle]
pub unsafe fn call_f32_f32(x: &mut (f32, f32)) {
extern "Rust" {
fn get_f32_f32() -> (f32, f32);
}
// CHECK: movl {{.*}}(%ebp), %[[PTR:.*]]
// CHECK: calll {{()|_}}get_f32_f32
// CHECK: movss [[#%d,OFFSET:]](%ebp), %[[VAL1:.*]]
// CHECK-NEXT: movss [[#%d,OFFSET+4]](%ebp), %[[VAL2:.*]]
// CHECK-NEXT: movss %[[VAL1]], (%[[PTR]])
// CHECK-NEXT: movss %[[VAL2]], 4(%[[PTR]])
*x = get_f32_f32();
}
// CHECK-LABEL: call_f64_f64:
#[no_mangle]
pub unsafe fn call_f64_f64(x: &mut (f64, f64)) {
extern "Rust" {
fn get_f64_f64() -> (f64, f64);
}
// CHECK: movl {{.*}}(%ebp), %[[PTR:.*]]
// CHECK: calll {{()|_}}get_f64_f64
// unix: movsd [[#%d,OFFSET:]](%ebp), %[[VAL1:.*]]
// unix-NEXT: movsd [[#%d,OFFSET+8]](%ebp), %[[VAL2:.*]]
// windows: movsd (%esp), %[[VAL1:.*]]
// windows-NEXT: movsd 8(%esp), %[[VAL2:.*]]
// CHECK-NEXT: movsd %[[VAL1]], (%[[PTR]])
// CHECK-NEXT: movsd %[[VAL2]], 8(%[[PTR]])
*x = get_f64_f64();
}
// CHECK-LABEL: call_f32_f64:
#[no_mangle]
pub unsafe fn call_f32_f64(x: &mut (f32, f64)) {
extern "Rust" {
fn get_f32_f64() -> (f32, f64);
}
// CHECK: movl {{.*}}(%ebp), %[[PTR:.*]]
// CHECK: calll {{()|_}}get_f32_f64
// unix: movss [[#%d,OFFSET:]](%ebp), %[[VAL1:.*]]
// unix-NEXT: movsd [[#%d,OFFSET+4]](%ebp), %[[VAL2:.*]]
// windows: movss (%esp), %[[VAL1:.*]]
// windows-NEXT: movsd 8(%esp), %[[VAL2:.*]]
// CHECK-NEXT: movss %[[VAL1]], (%[[PTR]])
// unix-NEXT: movsd %[[VAL2]], 4(%[[PTR]])
// windows-NEXT: movsd %[[VAL2]], 8(%[[PTR]])
*x = get_f32_f64();
}
// CHECK-LABEL: call_f64_f32:
#[no_mangle]
pub unsafe fn call_f64_f32(x: &mut (f64, f32)) {
extern "Rust" {
fn get_f64_f32() -> (f64, f32);
}
// CHECK: movl {{.*}}(%ebp), %[[PTR:.*]]
// CHECK: calll {{()|_}}get_f64_f32
// unix: movsd [[#%d,OFFSET:]](%ebp), %[[VAL1:.*]]
// unix-NEXT: movss [[#%d,OFFSET+8]](%ebp), %[[VAL2:.*]]
// windows: movsd (%esp), %[[VAL1:.*]]
// windows-NEXT: movss 8(%esp), %[[VAL2:.*]]
// CHECK-NEXT: movsd %[[VAL1]], (%[[PTR]])
// CHECK-NEXT: movss %[[VAL2]], 8(%[[PTR]])
*x = get_f64_f32();
}
// CHECK-LABEL: call_f32_other:
#[no_mangle]
pub unsafe fn call_f32_other(x: &mut (f32, usize)) {
extern "Rust" {
fn get_f32_other() -> (f32, usize);
}
// CHECK: movl {{.*}}(%ebp), %[[PTR:.*]]
// CHECK: calll {{()|_}}get_f32_other
// CHECK: movss [[#%d,OFFSET:]](%ebp), %[[VAL1:.*]]
// CHECK-NEXT: movl [[#%d,OFFSET+4]](%ebp), %[[VAL2:.*]]
// CHECK-NEXT: movss %[[VAL1]], (%[[PTR]])
// CHECK-NEXT: movl %[[VAL2]], 4(%[[PTR]])
*x = get_f32_other();
}
// CHECK-LABEL: call_f64_other:
#[no_mangle]
pub unsafe fn call_f64_other(x: &mut (f64, usize)) {
extern "Rust" {
fn get_f64_other() -> (f64, usize);
}
// CHECK: movl {{.*}}(%ebp), %[[PTR:.*]]
// CHECK: calll {{()|_}}get_f64_other
// unix: movsd [[#%d,OFFSET:]](%ebp), %[[VAL1:.*]]
// unix-NEXT: movl [[#%d,OFFSET+8]](%ebp), %[[VAL2:.*]]
// windows: movsd (%esp), %[[VAL1:.*]]
// windows-NEXT: movl 8(%esp), %[[VAL2:.*]]
// CHECK-NEXT: movsd %[[VAL1]], (%[[PTR]])
// CHECK-NEXT: movl %[[VAL2]], 8(%[[PTR]])
*x = get_f64_other();
}
// CHECK-LABEL: call_other_f32:
#[no_mangle]
pub unsafe fn call_other_f32(x: &mut (usize, f32)) {
extern "Rust" {
fn get_other_f32() -> (usize, f32);
}
// CHECK: movl {{.*}}(%ebp), %[[PTR:.*]]
// CHECK: calll {{()|_}}get_other_f32
// CHECK: movl [[#%d,OFFSET:]](%ebp), %[[VAL1:.*]]
// CHECK-NEXT: movss [[#%d,OFFSET+4]](%ebp), %[[VAL2:.*]]
// CHECK-NEXT: movl %[[VAL1]], (%[[PTR]])
// CHECK-NEXT: movss %[[VAL2]], 4(%[[PTR]])
*x = get_other_f32();
}
// CHECK-LABEL: call_other_f64:
#[no_mangle]
pub unsafe fn call_other_f64(x: &mut (usize, f64)) {
extern "Rust" {
fn get_other_f64() -> (usize, f64);
}
// CHECK: movl {{.*}}(%ebp), %[[PTR:.*]]
// CHECK: calll {{()|_}}get_other_f64
// unix: movl [[#%d,OFFSET:]](%ebp), %[[VAL1:.*]]
// unix-NEXT: movsd [[#%d,OFFSET+4]](%ebp), %[[VAL2:.*]]
// windows: movl (%esp), %[[VAL1:.*]]
// windows-NEXT: movsd 8(%esp), %[[VAL2:.*]]
// CHECK-NEXT: movl %[[VAL1]], (%[[PTR]])
// unix-NEXT: movsd %[[VAL2]], 4(%[[PTR]])
// windows-NEXT: movsd %[[VAL2]], 8(%[[PTR]])
*x = get_other_f64();
}
// The "C" ABI for `f16` and `f128` on x86 has never used the x87 floating point stack. Do some
// basic checks to ensure this remains the case for the "Rust" ABI.
// CHECK-LABEL: return_f16:
#[no_mangle]
pub fn return_f16(x: f16) -> f16 {
// CHECK: pinsrw $0, {{.*}}(%ebp), %xmm0
// CHECK-NOT: xmm0
// CHECK: retl
x
}
// CHECK-LABEL: return_f128:
#[no_mangle]
pub fn return_f128(x: f128) -> f128 {
// CHECK: movl [[#%d,OFFSET:]](%ebp), %[[PTR:.*]]
// CHECK-NEXT: movl [[#%d,OFFSET+16]](%ebp), %[[VAL4:.*]]
// CHECK-NEXT: movl [[#%d,OFFSET+4]](%ebp), %[[VAL1:.*]]
// CHECK-NEXT: movl [[#%d,OFFSET+8]](%ebp), %[[VAL2:.*]]
// CHECK-NEXT: movl [[#%d,OFFSET+12]](%ebp), %[[VAL3:.*]]
// CHECK-NEXT: movl %[[VAL4:.*]] 12(%[[PTR]])
// CHECK-NEXT: movl %[[VAL3:.*]] 8(%[[PTR]])
// CHECK-NEXT: movl %[[VAL2:.*]] 4(%[[PTR]])
// CHECK-NEXT: movl %[[VAL1:.*]] (%[[PTR]])
// CHECK: retl
x
}

View file

@ -1,3 +1,8 @@
// 32-bit x86 returns `f32` and `f64` differently to avoid the x87 stack.
//@ revisions: x86 other
//@[x86] only-x86
//@[other] ignore-x86
// Verify that our intrinsics generate the correct LLVM calls for f128
#![crate_type = "lib"]
@ -138,14 +143,16 @@ pub fn f128_as_f16(a: f128) -> f16 {
a as f16
}
// CHECK-LABEL: float @f128_as_f32(
// other-LABEL: float @f128_as_f32(
// x86-LABEL: i32 @f128_as_f32(
#[no_mangle]
pub fn f128_as_f32(a: f128) -> f32 {
// CHECK: fptrunc fp128 %{{.+}} to float
a as f32
}
// CHECK-LABEL: double @f128_as_f64(
// other-LABEL: double @f128_as_f64(
// x86-LABEL: void @f128_as_f64(
#[no_mangle]
pub fn f128_as_f64(a: f128) -> f64 {
// CHECK: fptrunc fp128 %{{.+}} to double

View file

@ -1,3 +1,8 @@
// 32-bit x86 returns `f32` and `f64` differently to avoid the x87 stack.
//@ revisions: x86 other
//@[x86] only-x86
//@[other] ignore-x86
// Verify that our intrinsics generate the correct LLVM calls for f16
#![crate_type = "lib"]
@ -140,14 +145,16 @@ pub fn f16_as_self(a: f16) -> f16 {
a as f16
}
// CHECK-LABEL: float @f16_as_f32(
// other-LABEL: float @f16_as_f32(
// x86-LABEL: i32 @f16_as_f32(
#[no_mangle]
pub fn f16_as_f32(a: f16) -> f32 {
// CHECK: fpext half %{{.+}} to float
a as f32
}
// CHECK-LABEL: double @f16_as_f64(
// other-LABEL: double @f16_as_f64(
// x86-LABEL: void @f16_as_f64(
#[no_mangle]
pub fn f16_as_f64(a: f16) -> f64 {
// CHECK: fpext half %{{.+}} to double

View file

@ -1,11 +1,16 @@
//@ compile-flags: -C no-prepopulate-passes -Copt-level=0
// 32-bit x86 returns `f32` and `f64` differently to avoid the x87 stack.
//@ revisions: x86 other
//@[x86] only-x86
//@[other] ignore-x86
#![crate_type = "lib"]
#[no_mangle]
pub struct F32(f32);
// CHECK: define{{.*}}float @add_newtype_f32(float %a, float %b)
// other: define{{.*}}float @add_newtype_f32(float %a, float %b)
// x86: define{{.*}}i32 @add_newtype_f32(float %a, float %b)
#[inline(never)]
#[no_mangle]
pub fn add_newtype_f32(a: F32, b: F32) -> F32 {
@ -15,7 +20,8 @@ pub fn add_newtype_f32(a: F32, b: F32) -> F32 {
#[no_mangle]
pub struct F64(f64);
// CHECK: define{{.*}}double @add_newtype_f64(double %a, double %b)
// other: define{{.*}}double @add_newtype_f64(double %a, double %b)
// x86: define{{.*}}void @add_newtype_f64(ptr{{.*}}sret([8 x i8]){{.*}}%_0, double %a, double %b)
#[inline(never)]
#[no_mangle]
pub fn add_newtype_f64(a: F64, b: F64) -> F64 {

View file

@ -1,5 +1,9 @@
//@ ignore-emscripten vectors passed directly
//@ compile-flags: -O -C no-prepopulate-passes
// 32-bit x86 returns `f32` differently to avoid the x87 stack.
//@ revisions: x86 other
//@[x86] only-x86
//@[other] ignore-x86
// This test that using union forward the abi of the inner type, as
// discussed in #54668
@ -67,7 +71,8 @@ pub union UnionF32 {
a: f32,
}
// CHECK: define {{(dso_local )?}}float @test_UnionF32(float %_1)
// other: define {{(dso_local )?}}float @test_UnionF32(float %_1)
// x86: define {{(dso_local )?}}i32 @test_UnionF32(float %_1)
#[no_mangle]
pub fn test_UnionF32(_: UnionF32) -> UnionF32 {
loop {}
@ -78,7 +83,8 @@ pub union UnionF32F32 {
b: f32,
}
// CHECK: define {{(dso_local )?}}float @test_UnionF32F32(float %_1)
// other: define {{(dso_local )?}}float @test_UnionF32F32(float %_1)
// x86: define {{(dso_local )?}}i32 @test_UnionF32F32(float %_1)
#[no_mangle]
pub fn test_UnionF32F32(_: UnionF32F32) -> UnionF32F32 {
loop {}

View file

@ -0,0 +1,61 @@
//@ run-pass
//@ compile-flags: -Copt-level=0
// Test that floats (in particular signalling NaNs) are losslessly returned from functions.
fn main() {
// FIXME(#114479): LLVM miscompiles loading and storing `f32` and `f64` when SSE is disabled on
// x86.
if cfg!(not(all(target_arch = "x86", not(target_feature = "sse2")))) {
let bits_f32 = std::hint::black_box([
4.2_f32.to_bits(),
f32::INFINITY.to_bits(),
f32::NEG_INFINITY.to_bits(),
f32::NAN.to_bits(),
// These two masks cover all the mantissa bits. One of them is a signalling NaN, the
// other is quiet.
// Similar to the masks in `test_float_bits_conv` in library/std/src/f32/tests.rs
f32::NAN.to_bits() ^ 0x002A_AAAA,
f32::NAN.to_bits() ^ 0x0055_5555,
// Same as above but with the sign bit flipped.
f32::NAN.to_bits() ^ 0x802A_AAAA,
f32::NAN.to_bits() ^ 0x8055_5555,
]);
for bits in bits_f32 {
assert_eq!(identity(f32::from_bits(bits)).to_bits(), bits);
// Test types that are returned as scalar pairs.
assert_eq!(identity((f32::from_bits(bits), 42)).0.to_bits(), bits);
assert_eq!(identity((42, f32::from_bits(bits))).1.to_bits(), bits);
let (a, b) = identity((f32::from_bits(bits), f32::from_bits(bits)));
assert_eq!((a.to_bits(), b.to_bits()), (bits, bits));
}
let bits_f64 = std::hint::black_box([
4.2_f64.to_bits(),
f64::INFINITY.to_bits(),
f64::NEG_INFINITY.to_bits(),
f64::NAN.to_bits(),
// These two masks cover all the mantissa bits. One of them is a signalling NaN, the
// other is quiet.
// Similar to the masks in `test_float_bits_conv` in library/std/src/f64/tests.rs
f64::NAN.to_bits() ^ 0x000A_AAAA_AAAA_AAAA,
f64::NAN.to_bits() ^ 0x0005_5555_5555_5555,
// Same as above but with the sign bit flipped.
f64::NAN.to_bits() ^ 0x800A_AAAA_AAAA_AAAA,
f64::NAN.to_bits() ^ 0x8005_5555_5555_5555,
]);
for bits in bits_f64 {
assert_eq!(identity(f64::from_bits(bits)).to_bits(), bits);
// Test types that are returned as scalar pairs.
assert_eq!(identity((f64::from_bits(bits), 42)).0.to_bits(), bits);
assert_eq!(identity((42, f64::from_bits(bits))).1.to_bits(), bits);
let (a, b) = identity((f64::from_bits(bits), f64::from_bits(bits)));
assert_eq!((a.to_bits(), b.to_bits()), (bits, bits));
}
}
}
#[inline(never)]
fn identity<T>(x: T) -> T {
x
}