Auto merge of #96891 - Dylan-DPC:rollup-echa4wg, r=Dylan-DPC

Rollup of 5 pull requests

Successful merges:

 - #93661 (Add missing rustc arg docs)
 - #96674 (docs: add link explaining variance to NonNull docs)
 - #96812 (Do not lint on explicit outlives requirements from external macros.)
 - #96823 (Properly fix #96638)
 - #96872 (make sure ScalarPair enums have ScalarPair variants; add some layout sanity checks)

Failed merges:

r? `@ghost`
`@rustbot` modify labels: rollup
This commit is contained in:
bors 2022-05-10 08:12:50 +00:00
commit d53f1e8fbf
14 changed files with 426 additions and 123 deletions

View file

@ -38,7 +38,7 @@ use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID};
use rustc_hir::{ForeignItemKind, GenericParamKind, HirId, PatKind, PredicateOrigin};
use rustc_index::vec::Idx;
use rustc_middle::lint::LintDiagnosticBuilder;
use rustc_middle::lint::{in_external_macro, LintDiagnosticBuilder};
use rustc_middle::ty::layout::{LayoutError, LayoutOf};
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::subst::{GenericArgKind, Subst};
@ -2115,6 +2115,7 @@ impl ExplicitOutlivesRequirements {
None
}
})
.filter(|(_, span)| !in_external_macro(tcx.sess, *span))
.collect()
}

View file

@ -221,6 +221,111 @@ impl<'tcx> fmt::Display for LayoutError<'tcx> {
}
}
/// Enforce some basic invariants on layouts.
fn sanity_check_layout<'tcx>(
tcx: TyCtxt<'tcx>,
param_env: ty::ParamEnv<'tcx>,
layout: &TyAndLayout<'tcx>,
) {
// Type-level uninhabitedness should always imply ABI uninhabitedness.
if tcx.conservative_is_privately_uninhabited(param_env.and(layout.ty)) {
assert!(layout.abi.is_uninhabited());
}
if cfg!(debug_assertions) {
fn check_layout_abi<'tcx>(tcx: TyCtxt<'tcx>, layout: Layout<'tcx>) {
match layout.abi() {
Abi::Scalar(_scalar) => {
// No padding in scalars.
/* FIXME(#96185):
assert_eq!(
layout.align().abi,
scalar.align(&tcx).abi,
"alignment mismatch between ABI and layout in {layout:#?}"
);
assert_eq!(
layout.size(),
scalar.size(&tcx),
"size mismatch between ABI and layout in {layout:#?}"
);*/
}
Abi::Vector { count, element } => {
// No padding in vectors. Alignment can be strengthened, though.
assert!(
layout.align().abi >= element.align(&tcx).abi,
"alignment mismatch between ABI and layout in {layout:#?}"
);
let size = element.size(&tcx) * count;
assert_eq!(
layout.size(),
size.align_to(tcx.data_layout().vector_align(size).abi),
"size mismatch between ABI and layout in {layout:#?}"
);
}
Abi::ScalarPair(scalar1, scalar2) => {
// Sanity-check scalar pairs. These are a bit more flexible and support
// padding, but we can at least ensure both fields actually fit into the layout
// and the alignment requirement has not been weakened.
let align1 = scalar1.align(&tcx).abi;
let align2 = scalar2.align(&tcx).abi;
assert!(
layout.align().abi >= cmp::max(align1, align2),
"alignment mismatch between ABI and layout in {layout:#?}",
);
let field2_offset = scalar1.size(&tcx).align_to(align2);
assert!(
layout.size() >= field2_offset + scalar2.size(&tcx),
"size mismatch between ABI and layout in {layout:#?}"
);
}
Abi::Uninhabited | Abi::Aggregate { .. } => {} // Nothing to check.
}
}
check_layout_abi(tcx, layout.layout);
if let Variants::Multiple { variants, .. } = &layout.variants {
for variant in variants {
check_layout_abi(tcx, *variant);
// No nested "multiple".
assert!(matches!(variant.variants(), Variants::Single { .. }));
// Skip empty variants.
if variant.size() == Size::ZERO
|| variant.fields().count() == 0
|| variant.abi().is_uninhabited()
{
// These are never actually accessed anyway, so we can skip them. (Note that
// sometimes, variants with fields have size 0, and sometimes, variants without
// fields have non-0 size.)
continue;
}
// Variants should have the same or a smaller size as the full thing.
if variant.size() > layout.size {
bug!(
"Type with size {} bytes has variant with size {} bytes: {layout:#?}",
layout.size.bytes(),
variant.size().bytes(),
)
}
// The top-level ABI and the ABI of the variants should be coherent.
let abi_coherent = match (layout.abi, variant.abi()) {
(Abi::Scalar(..), Abi::Scalar(..)) => true,
(Abi::ScalarPair(..), Abi::ScalarPair(..)) => true,
(Abi::Uninhabited, _) => true,
(Abi::Aggregate { .. }, _) => true,
_ => false,
};
if !abi_coherent {
bug!(
"Variant ABI is incompatible with top-level ABI:\nvariant={:#?}\nTop-level: {layout:#?}",
variant
);
}
}
}
}
}
#[instrument(skip(tcx, query), level = "debug")]
fn layout_of<'tcx>(
tcx: TyCtxt<'tcx>,
@ -264,10 +369,7 @@ fn layout_of<'tcx>(
cx.record_layout_for_printing(layout);
// Type-level uninhabitedness should always imply ABI uninhabitedness.
if tcx.conservative_is_privately_uninhabited(param_env.and(ty)) {
assert!(layout.abi.is_uninhabited());
}
sanity_check_layout(tcx, param_env, &layout);
Ok(layout)
})
@ -1314,9 +1416,11 @@ impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> {
};
let mut abi = Abi::Aggregate { sized: true };
// Without latter check aligned enums with custom discriminant values
// Would result in ICE see the issue #92464 for more info
if tag.size(dl) == size || variants.iter().all(|layout| layout.is_empty()) {
if layout_variants.iter().all(|v| v.abi.is_uninhabited()) {
abi = Abi::Uninhabited;
} else if tag.size(dl) == size || variants.iter().all(|layout| layout.is_empty()) {
// Without latter check aligned enums with custom discriminant values
// Would result in ICE see the issue #92464 for more info
abi = Abi::Scalar(tag);
} else {
// Try to use a ScalarPair for all tagged enums.
@ -1390,8 +1494,22 @@ impl<'tcx> LayoutCx<'tcx, TyCtxt<'tcx>> {
}
}
if layout_variants.iter().all(|v| v.abi.is_uninhabited()) {
abi = Abi::Uninhabited;
// If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the
// variants to ensure they are consistent. This is because a downcast is
// semantically a NOP, and thus should not affect layout.
if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) {
for variant in &mut layout_variants {
// We only do this for variants with fields; the others are not accessed anyway.
// Also do not overwrite any already existing "clever" ABIs.
if variant.fields.count() > 0
&& matches!(variant.abi, Abi::Aggregate { .. })
{
variant.abi = abi;
// Also need to bump up the size and alignment, so that the entire value fits in here.
variant.size = cmp::max(variant.size, size);
variant.align.abi = cmp::max(variant.align.abi, align.abi);
}
}
}
let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag);

View file

@ -3,6 +3,7 @@ use std::cmp;
use rustc_middle::ty::error::TypeError;
// An issue that might be found in the compatibility matrix
#[derive(Debug)]
enum Issue {
/// The given argument is the invalid type for the input
Invalid(usize),
@ -23,9 +24,10 @@ pub(crate) enum Compatibility<'tcx> {
}
/// Similar to `Issue`, but contains some extra information
#[derive(Debug)]
pub(crate) enum Error<'tcx> {
/// The given argument is the invalid type for the input
Invalid(usize, Compatibility<'tcx>),
/// The provided argument is the invalid type for the expected input
Invalid(usize, usize, Compatibility<'tcx>), // provided, expected
/// There is a missing input
Missing(usize),
/// There's a superfluous argument
@ -37,8 +39,15 @@ pub(crate) enum Error<'tcx> {
}
pub(crate) struct ArgMatrix<'tcx> {
/// Maps the indices in the `compatibility_matrix` rows to the indices of
/// the *user provided* inputs
input_indexes: Vec<usize>,
/// Maps the indices in the `compatibility_matrix` columns to the indices
/// of the *expected* args
arg_indexes: Vec<usize>,
/// The first dimension (rows) are the remaining user provided inputs to
/// match and the second dimension (cols) are the remaining expected args
/// to match
compatibility_matrix: Vec<Vec<Compatibility<'tcx>>>,
}
@ -52,8 +61,8 @@ impl<'tcx> ArgMatrix<'tcx> {
.map(|i| (0..minimum_input_count).map(|j| is_compatible(i, j)).collect())
.collect();
ArgMatrix {
input_indexes: (0..minimum_input_count).collect(),
arg_indexes: (0..provided_arg_count).collect(),
input_indexes: (0..provided_arg_count).collect(),
arg_indexes: (0..minimum_input_count).collect(),
compatibility_matrix,
}
}
@ -61,15 +70,15 @@ impl<'tcx> ArgMatrix<'tcx> {
/// Remove a given input from consideration
fn eliminate_input(&mut self, idx: usize) {
self.input_indexes.remove(idx);
for row in &mut self.compatibility_matrix {
row.remove(idx);
}
self.compatibility_matrix.remove(idx);
}
/// Remove a given argument from consideration
fn eliminate_arg(&mut self, idx: usize) {
self.arg_indexes.remove(idx);
self.compatibility_matrix.remove(idx);
for row in &mut self.compatibility_matrix {
row.remove(idx);
}
}
/// "satisfy" an input with a given arg, removing both from consideration
@ -78,13 +87,15 @@ impl<'tcx> ArgMatrix<'tcx> {
self.eliminate_arg(arg_idx);
}
// Returns a `Vec` of (user input, expected arg) of matched arguments. These
// are inputs on the remaining diagonal that match.
fn eliminate_satisfied(&mut self) -> Vec<(usize, usize)> {
let mut i = cmp::min(self.input_indexes.len(), self.arg_indexes.len());
let mut eliminated = vec![];
while i > 0 {
let idx = i - 1;
if matches!(self.compatibility_matrix[idx][idx], Compatibility::Compatible) {
eliminated.push((self.arg_indexes[idx], self.input_indexes[idx]));
eliminated.push((self.input_indexes[idx], self.arg_indexes[idx]));
self.satisfy_input(idx, idx);
}
i -= 1;
@ -92,7 +103,7 @@ impl<'tcx> ArgMatrix<'tcx> {
return eliminated;
}
// Check for the above mismatch cases
// Find some issue in the compatibility matrix
fn find_issue(&self) -> Option<Issue> {
let mat = &self.compatibility_matrix;
let ai = &self.arg_indexes;
@ -121,16 +132,6 @@ impl<'tcx> ArgMatrix<'tcx> {
if is_arg {
for j in 0..ii.len() {
// If we find at least one input this argument could satisfy
// this argument isn't completely useless
if matches!(mat[i][j], Compatibility::Compatible) {
useless = false;
break;
}
}
}
if is_input {
for j in 0..ai.len() {
// If we find at least one argument that could satisfy this input
// this argument isn't unsatisfiable
if matches!(mat[j][i], Compatibility::Compatible) {
unsatisfiable = false;
@ -138,9 +139,19 @@ impl<'tcx> ArgMatrix<'tcx> {
}
}
}
if is_input {
for j in 0..ai.len() {
// If we find at least one argument that could satisfy this input
// this argument isn't useless
if matches!(mat[i][j], Compatibility::Compatible) {
useless = false;
break;
}
}
}
match (is_arg, is_input, useless, unsatisfiable) {
// If an input is unsatisfied, and the argument in its position is useless
match (is_input, is_arg, useless, unsatisfiable) {
// If an argument is unsatisfied, and the input in its position is useless
// then the most likely explanation is that we just got the types wrong
(true, true, true, true) => return Some(Issue::Invalid(i)),
// Otherwise, if an input is useless, then indicate that this is an extra argument
@ -167,7 +178,7 @@ impl<'tcx> ArgMatrix<'tcx> {
_ => {
continue;
}
};
}
}
// We didn't find any of the individual issues above, but
@ -254,11 +265,11 @@ impl<'tcx> ArgMatrix<'tcx> {
// We'll want to know which arguments and inputs these rows and columns correspond to
// even after we delete them.
pub(crate) fn find_errors(mut self) -> (Vec<Error<'tcx>>, Vec<Option<usize>>) {
let provided_arg_count = self.arg_indexes.len();
let provided_arg_count = self.input_indexes.len();
let mut errors: Vec<Error<'tcx>> = vec![];
// For each expected argument, the matched *actual* input
let mut matched_inputs: Vec<Option<usize>> = vec![None; self.input_indexes.len()];
let mut matched_inputs: Vec<Option<usize>> = vec![None; self.arg_indexes.len()];
// Before we start looking for issues, eliminate any arguments that are already satisfied,
// so that an argument which is already spoken for by the input it's in doesn't
@ -269,28 +280,28 @@ impl<'tcx> ArgMatrix<'tcx> {
// Without this elimination, the first argument causes the second argument
// to show up as both a missing input and extra argument, rather than
// just an invalid type.
for (arg, inp) in self.eliminate_satisfied() {
matched_inputs[inp] = Some(arg);
for (inp, arg) in self.eliminate_satisfied() {
matched_inputs[arg] = Some(inp);
}
while self.input_indexes.len() > 0 || self.arg_indexes.len() > 0 {
// Check for the first relevant issue
match self.find_issue() {
Some(Issue::Invalid(idx)) => {
let compatibility = self.compatibility_matrix[idx][idx].clone();
let input_idx = self.input_indexes[idx];
let arg_idx = self.arg_indexes[idx];
self.satisfy_input(idx, idx);
errors.push(Error::Invalid(input_idx, compatibility));
errors.push(Error::Invalid(input_idx, arg_idx, compatibility));
}
Some(Issue::Extra(idx)) => {
let arg_idx = self.arg_indexes[idx];
self.eliminate_arg(idx);
errors.push(Error::Extra(arg_idx));
}
Some(Issue::Missing(idx)) => {
let input_idx = self.input_indexes[idx];
self.eliminate_input(idx);
errors.push(Error::Missing(input_idx));
errors.push(Error::Extra(input_idx));
}
Some(Issue::Missing(idx)) => {
let arg_idx = self.arg_indexes[idx];
self.eliminate_arg(idx);
errors.push(Error::Missing(arg_idx));
}
Some(Issue::Swap(idx, other)) => {
let input_idx = self.input_indexes[idx];
@ -302,24 +313,21 @@ impl<'tcx> ArgMatrix<'tcx> {
// Subtract 1 because we already removed the "min" row
self.satisfy_input(max - 1, min);
errors.push(Error::Swap(input_idx, other_input_idx, arg_idx, other_arg_idx));
matched_inputs[input_idx] = Some(other_arg_idx);
matched_inputs[other_input_idx] = Some(arg_idx);
matched_inputs[other_arg_idx] = Some(input_idx);
matched_inputs[arg_idx] = Some(other_input_idx);
}
Some(Issue::Permutation(args)) => {
// FIXME: If satisfy_input ever did anything non-trivial (emit obligations to help type checking, for example)
// we'd want to call this function with the correct arg/input pairs, but for now, we just throw them in a bucket.
// This works because they force a cycle, so each row is guaranteed to also be a column
let mut idxs: Vec<usize> = args.iter().filter_map(|&a| a).collect();
let mut real_idxs = vec![None; provided_arg_count];
for (src, dst) in
args.iter().enumerate().filter_map(|(src, dst)| dst.map(|dst| (src, dst)))
{
let src_arg = self.arg_indexes[src];
let dst_arg = self.arg_indexes[dst];
let dest_input = self.input_indexes[dst];
real_idxs[src_arg] = Some((dst_arg, dest_input));
matched_inputs[dest_input] = Some(src_arg);
let src_input_idx = self.input_indexes[src];
let dst_input_idx = self.input_indexes[dst];
let dest_arg_idx = self.arg_indexes[dst];
real_idxs[src_input_idx] = Some((dest_arg_idx, dst_input_idx));
matched_inputs[dest_arg_idx] = Some(src_input_idx);
}
idxs.sort();
idxs.reverse();
@ -331,8 +339,8 @@ impl<'tcx> ArgMatrix<'tcx> {
None => {
// We didn't find any issues, so we need to push the algorithm forward
// First, eliminate any arguments that currently satisfy their inputs
for (arg, inp) in self.eliminate_satisfied() {
matched_inputs[inp] = Some(arg);
for (inp, arg) in self.eliminate_satisfied() {
matched_inputs[arg] = Some(inp);
}
}
};

View file

@ -274,9 +274,9 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// A "softer" version of the helper above, which checks types without persisting them,
// and treats error types differently
// This will allow us to "probe" for other argument orders that would likely have been correct
let check_compatible = |arg_idx, input_idx| {
let formal_input_ty: Ty<'tcx> = formal_input_tys[input_idx];
let expected_input_ty: Ty<'tcx> = expected_input_tys[input_idx];
let check_compatible = |input_idx, arg_idx| {
let formal_input_ty: Ty<'tcx> = formal_input_tys[arg_idx];
let expected_input_ty: Ty<'tcx> = expected_input_tys[arg_idx];
// If either is an error type, we defy the usual convention and consider them to *not* be
// coercible. This prevents our error message heuristic from trying to pass errors into
@ -285,7 +285,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
return Compatibility::Incompatible(None);
}
let provided_arg: &hir::Expr<'tcx> = &provided_args[arg_idx];
let provided_arg: &hir::Expr<'tcx> = &provided_args[input_idx];
let expectation = Expectation::rvalue_hint(self, expected_input_ty);
// FIXME: check that this is safe; I don't believe this commits any of the obligations, but I can't be sure.
//
@ -429,11 +429,11 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let found_errors = !errors.is_empty();
errors.drain_filter(|error| {
let Error::Invalid(input_idx, Compatibility::Incompatible(error)) = error else { return false };
let expected_ty = expected_input_tys[*input_idx];
let Some(Some((provided_ty, _))) = final_arg_types.get(*input_idx) else { return false };
let Error::Invalid(input_idx, arg_idx, Compatibility::Incompatible(error)) = error else { return false };
let expected_ty = expected_input_tys[*arg_idx];
let provided_ty = final_arg_types[*input_idx].map(|ty| ty.0).unwrap();
let cause = &self.misc(provided_args[*input_idx].span);
let trace = TypeTrace::types(cause, true, expected_ty, *provided_ty);
let trace = TypeTrace::types(cause, true, expected_ty, provided_ty);
if let Some(e) = error {
if !matches!(trace.cause.as_failure_code(e), FailureCode::Error0308(_)) {
self.report_and_explain_type_error(trace, e).emit();
@ -562,11 +562,14 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
// Next special case: if there is only one "Incompatible" error, just emit that
if errors.len() == 1 {
if let Some(Error::Invalid(input_idx, Compatibility::Incompatible(Some(error)))) =
errors.iter().next()
if let Some(Error::Invalid(
input_idx,
arg_idx,
Compatibility::Incompatible(Some(error)),
)) = errors.iter().next()
{
let expected_ty = expected_input_tys[*input_idx];
let provided_ty = final_arg_types[*input_idx].map(|ty| ty.0).unwrap();
let expected_ty = expected_input_tys[*arg_idx];
let provided_ty = final_arg_types[*arg_idx].map(|ty| ty.0).unwrap();
let expected_ty = self.resolve_vars_if_possible(expected_ty);
let provided_ty = self.resolve_vars_if_possible(provided_ty);
let cause = &self.misc(provided_args[*input_idx].span);
@ -631,19 +634,13 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
let mut errors = errors.into_iter().peekable();
while let Some(error) = errors.next() {
match error {
Error::Invalid(input_idx, compatibility) => {
let expected_ty = expected_input_tys[input_idx];
let provided_ty = final_arg_types
.get(input_idx)
.and_then(|x| x.as_ref())
.map(|ty| ty.0)
.unwrap_or(tcx.ty_error());
Error::Invalid(input_idx, arg_idx, compatibility) => {
let expected_ty = expected_input_tys[arg_idx];
let provided_ty = final_arg_types[input_idx].map(|ty| ty.0).unwrap();
let expected_ty = self.resolve_vars_if_possible(expected_ty);
let provided_ty = self.resolve_vars_if_possible(provided_ty);
if let Compatibility::Incompatible(error) = &compatibility {
let cause = &self.misc(
provided_args.get(input_idx).map(|i| i.span).unwrap_or(call_span),
);
let cause = &self.misc(provided_args[input_idx].span);
let trace = TypeTrace::types(cause, true, expected_ty, provided_ty);
if let Some(e) = error {
self.note_type_err(
@ -658,16 +655,14 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}
}
if let Some(expr) = provided_args.get(input_idx) {
self.emit_coerce_suggestions(
&mut err,
&expr,
final_arg_types[input_idx].map(|ty| ty.0).unwrap(),
final_arg_types[input_idx].map(|ty| ty.1).unwrap(),
None,
None,
);
}
self.emit_coerce_suggestions(
&mut err,
&provided_args[input_idx],
final_arg_types[input_idx].map(|ty| ty.0).unwrap(),
final_arg_types[input_idx].map(|ty| ty.1).unwrap(),
None,
None,
);
}
Error::Extra(arg_idx) => {
let arg_type = if let Some((_, ty)) = final_arg_types[arg_idx] {
@ -843,12 +838,12 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}
}
Error::Swap(input_idx, other_input_idx, arg_idx, other_arg_idx) => {
let first_span = provided_args[arg_idx].span;
let second_span = provided_args[other_arg_idx].span;
let first_span = provided_args[input_idx].span;
let second_span = provided_args[other_input_idx].span;
let first_expected_ty =
self.resolve_vars_if_possible(expected_input_tys[input_idx]);
let first_provided_ty = if let Some((ty, _)) = final_arg_types[arg_idx] {
self.resolve_vars_if_possible(expected_input_tys[arg_idx]);
let first_provided_ty = if let Some((ty, _)) = final_arg_types[input_idx] {
format!(",found `{}`", ty)
} else {
"".into()
@ -858,9 +853,9 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
format!("expected `{}`{}", first_expected_ty, first_provided_ty),
));
let other_expected_ty =
self.resolve_vars_if_possible(expected_input_tys[other_input_idx]);
self.resolve_vars_if_possible(expected_input_tys[other_arg_idx]);
let other_provided_ty =
if let Some((ty, _)) = final_arg_types[other_arg_idx] {
if let Some((ty, _)) = final_arg_types[other_input_idx] {
format!(",found `{}`", ty)
} else {
"".into()
@ -926,14 +921,14 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
"{}(",
source_map.span_to_snippet(full_call_span).unwrap_or_else(|_| String::new())
);
for (idx, arg) in matched_inputs.iter().enumerate() {
let suggestion_text = if let Some(arg) = arg {
let arg_span = provided_args[*arg].span.source_callsite();
for (arg_index, input_idx) in matched_inputs.iter().enumerate() {
let suggestion_text = if let Some(input_idx) = input_idx {
let arg_span = provided_args[*input_idx].span.source_callsite();
let arg_text = source_map.span_to_snippet(arg_span).unwrap();
arg_text
} else {
// Propose a placeholder of the correct type
let expected_ty = expected_input_tys[idx];
let expected_ty = expected_input_tys[arg_index];
let input_ty = self.resolve_vars_if_possible(expected_ty);
if input_ty.is_unit() {
"()".to_string()
@ -942,7 +937,7 @@ impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
}
};
suggestion += &suggestion_text;
if idx < minimum_input_count - 1 {
if arg_index < minimum_input_count - 1 {
suggestion += ", ";
}
}

View file

@ -9,7 +9,7 @@ use crate::ops::{CoerceUnsized, DispatchFromDyn};
use crate::ptr::Unique;
use crate::slice::{self, SliceIndex};
/// `*mut T` but non-zero and covariant.
/// `*mut T` but non-zero and [covariant].
///
/// This is often the correct thing to use when building data structures using
/// raw pointers, but is ultimately more dangerous to use because of its additional
@ -42,6 +42,7 @@ use crate::slice::{self, SliceIndex};
/// it is your responsibility to ensure that `as_mut` is never called, and `as_ptr`
/// is never used for mutation.
///
/// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
/// [`PhantomData`]: crate::marker::PhantomData
/// [`UnsafeCell<T>`]: crate::cell::UnsafeCell
#[stable(feature = "nonnull", since = "1.25.0")]

View file

@ -550,6 +550,21 @@ Supported values for this option are:
- `symbols` - same as `debuginfo`, but the rest of the symbol table section is
stripped as well if the linker supports it.
## symbol-mangling-version
This option controls the [name mangling] format for encoding Rust item names
for the purpose of generating object code and linking.
Supported values for this option are:
* `v0` — The "v0" mangling scheme. The specific format is not specified at
this time.
The default if not specified will use a compiler-chosen default which may
change in the future.
[name mangling]: https://en.wikipedia.org/wiki/Name_mangling
## target-cpu
This instructs `rustc` to generate code specifically for a particular processor.

View file

@ -408,6 +408,9 @@ to customize the output:
argument](#option-emit), and as soon as the artifact is available on the
filesystem a notification will be emitted.
- `future-incompat` - includes a JSON message that contains a report if the
crate contains any code that may fail to compile in the future.
Note that it is invalid to combine the `--json` argument with the
[`--color`](#option-color) argument, and it is required to combine `--json`
with `--error-format=json`.

View file

@ -229,6 +229,32 @@ flag][option-emit] documentation.
}
```
## Future-incompatible reports
If the [`--json=future-incompat`][option-json] flag is used, then a separate
JSON structure will be emitted if the crate may stop compiling in the future.
This contains diagnostic information about the particular warnings that may be
turned into a hard error in the future. This will include the diagnostic
information, even if the diagnostics have been suppressed (such as with an
`#[allow]` attribute or the `--cap-lints` option).
```javascript
{
/* An array of objects describing a warning that will become a hard error
in the future.
*/
"future_incompat_report":
[
{
/* A diagnostic structure as defined in
https://doc.rust-lang.org/rustc/json.html#diagnostics
*/
"diagnostic": {...},
}
]
}
```
[option-emit]: command-line-arguments.md#option-emit
[option-error-format]: command-line-arguments.md#option-error-format
[option-json]: command-line-arguments.md#option-json

View file

@ -19,7 +19,7 @@ pub enum Enum4 {
A(i32),
B(i32),
}
// CHECK: %"Enum4::A" = type { [1 x i32], i32 }
// No Aggregate type, and hence nothing in LLVM IR.
pub enum Enum64 {
A(Align64),

View file

@ -184,9 +184,22 @@ error: layout_of(std::result::Result<i32, i32>) = Layout {
variants: Single {
index: 0,
},
abi: Aggregate {
sized: true,
},
abi: ScalarPair(
Initialized {
value: Int(
I32,
false,
),
valid_range: 0..=1,
},
Initialized {
value: Int(
I32,
true,
),
valid_range: 0..=4294967295,
},
),
largest_niche: None,
align: AbiAndPrefAlign {
abi: Align(4 bytes),
@ -206,9 +219,22 @@ error: layout_of(std::result::Result<i32, i32>) = Layout {
variants: Single {
index: 1,
},
abi: Aggregate {
sized: true,
},
abi: ScalarPair(
Initialized {
value: Int(
I32,
false,
),
valid_range: 0..=1,
},
Initialized {
value: Int(
I32,
true,
),
valid_range: 0..=4294967295,
},
),
largest_niche: None,
align: AbiAndPrefAlign {
abi: Align(4 bytes),

View file

@ -30,9 +30,21 @@ error: layout_of(MissingPayloadField) = Layout {
variants: Single {
index: 0,
},
abi: Aggregate {
sized: true,
},
abi: ScalarPair(
Initialized {
value: Int(
I8,
false,
),
valid_range: 0..=1,
},
Union {
value: Int(
I8,
false,
),
},
),
largest_niche: None,
align: AbiAndPrefAlign {
abi: Align(1 bytes),
@ -131,9 +143,22 @@ error: layout_of(CommonPayloadField) = Layout {
variants: Single {
index: 0,
},
abi: Aggregate {
sized: true,
},
abi: ScalarPair(
Initialized {
value: Int(
I8,
false,
),
valid_range: 0..=1,
},
Initialized {
value: Int(
I8,
false,
),
valid_range: 0..=255,
},
),
largest_niche: None,
align: AbiAndPrefAlign {
abi: Align(1 bytes),
@ -153,9 +178,22 @@ error: layout_of(CommonPayloadField) = Layout {
variants: Single {
index: 1,
},
abi: Aggregate {
sized: true,
},
abi: ScalarPair(
Initialized {
value: Int(
I8,
false,
),
valid_range: 0..=1,
},
Initialized {
value: Int(
I8,
false,
),
valid_range: 0..=255,
},
),
largest_niche: None,
align: AbiAndPrefAlign {
abi: Align(1 bytes),
@ -237,9 +275,21 @@ error: layout_of(CommonPayloadFieldIsMaybeUninit) = Layout {
variants: Single {
index: 0,
},
abi: Aggregate {
sized: true,
},
abi: ScalarPair(
Initialized {
value: Int(
I8,
false,
),
valid_range: 0..=1,
},
Union {
value: Int(
I8,
false,
),
},
),
largest_niche: None,
align: AbiAndPrefAlign {
abi: Align(1 bytes),
@ -259,9 +309,21 @@ error: layout_of(CommonPayloadFieldIsMaybeUninit) = Layout {
variants: Single {
index: 1,
},
abi: Aggregate {
sized: true,
},
abi: ScalarPair(
Initialized {
value: Int(
I8,
false,
),
valid_range: 0..=1,
},
Union {
value: Int(
I8,
false,
),
},
),
largest_niche: None,
align: AbiAndPrefAlign {
abi: Align(1 bytes),

View file

@ -0,0 +1,6 @@
pub fn foo() {}
#[macro_export]
macro_rules! gimme_a {
($($mac:tt)*) => { $($mac)* { 'a } }
}

View file

@ -0,0 +1,28 @@
// edition:2018
// aux-build:edition-lint-infer-outlives-macro.rs
// Test that the lint does not fire if the where predicate
// is from the local crate, but all the bounds are from an
// external macro.
#![deny(explicit_outlives_requirements)]
#[macro_use]
extern crate edition_lint_infer_outlives_macro;
macro_rules! make_foo {
($a:tt) => {
struct Foo<$a, 'b> where 'b: $a {
foo: &$a &'b (),
}
}
}
gimme_a! {make_foo!}
struct Bar<'a, 'b: 'a> {
//~^ ERROR: outlives requirements can be inferred
bar: &'a &'b (),
}
fn main() {}

View file

@ -0,0 +1,14 @@
error: outlives requirements can be inferred
--> $DIR/edition-lint-infer-outlives-macro.rs:23:18
|
LL | struct Bar<'a, 'b: 'a> {
| ^^^^ help: remove this bound
|
note: the lint level is defined here
--> $DIR/edition-lint-infer-outlives-macro.rs:8:9
|
LL | #![deny(explicit_outlives_requirements)]
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
error: aborting due to previous error