Auto merge of #112162 - nnethercote:clarify-mono-item-usage, r=wesleywiser

Clarify mono item usage

Some commits that make the terminology around mono items clearer, and simplify related data structures.

r? `@wesleywiser`
This commit is contained in:
bors 2023-06-02 19:53:32 +00:00
commit dd5d7c729d
2 changed files with 120 additions and 164 deletions

View file

@ -35,15 +35,15 @@
//!
//! - A "mono item" is something that results in a function or global in
//! the LLVM IR of a codegen unit. Mono items do not stand on their
//! own, they can reference other mono items. For example, if function
//! own, they can use other mono items. For example, if function
//! `foo()` calls function `bar()` then the mono item for `foo()`
//! references the mono item for function `bar()`. In general, the
//! definition for mono item A referencing a mono item B is that
//! the LLVM artifact produced for A references the LLVM artifact produced
//! uses the mono item for function `bar()`. In general, the
//! definition for mono item A using a mono item B is that
//! the LLVM artifact produced for A uses the LLVM artifact produced
//! for B.
//!
//! - Mono items and the references between them form a directed graph,
//! where the mono items are the nodes and references form the edges.
//! - Mono items and the uses between them form a directed graph,
//! where the mono items are the nodes and uses form the edges.
//! Let's call this graph the "mono item graph".
//!
//! - The mono item graph for a program contains all mono items
@ -53,12 +53,11 @@
//! mono item graph for the current crate. It runs in two phases:
//!
//! 1. Discover the roots of the graph by traversing the HIR of the crate.
//! 2. Starting from the roots, find neighboring nodes by inspecting the MIR
//! 2. Starting from the roots, find uses by inspecting the MIR
//! representation of the item corresponding to a given node, until no more
//! new nodes are found.
//!
//! ### Discovering roots
//!
//! The roots of the mono item graph correspond to the public non-generic
//! syntactic items in the source code. We find them by walking the HIR of the
//! crate, and whenever we hit upon a public function, method, or static item,
@ -69,25 +68,23 @@
//! specified. Functions marked `#[no_mangle]` and functions called by inlinable
//! functions also always act as roots.)
//!
//! ### Finding neighbor nodes
//! Given a mono item node, we can discover neighbors by inspecting its
//! MIR. We walk the MIR and any time we hit upon something that signifies a
//! reference to another mono item, we have found a neighbor. Since the
//! mono item we are currently at is always monomorphic, we also know the
//! concrete type arguments of its neighbors, and so all neighbors again will be
//! monomorphic. The specific forms a reference to a neighboring node can take
//! in MIR are quite diverse. Here is an overview:
//! ### Finding uses
//! Given a mono item node, we can discover uses by inspecting its MIR. We walk
//! the MIR to find other mono items used by each mono item. Since the mono
//! item we are currently at is always monomorphic, we also know the concrete
//! type arguments of its used mono items. The specific forms a use can take in
//! MIR are quite diverse. Here is an overview:
//!
//! #### Calling Functions/Methods
//! The most obvious form of one mono item referencing another is a
//! The most obvious way for one mono item to use another is a
//! function or method call (represented by a CALL terminator in MIR). But
//! calls are not the only thing that might introduce a reference between two
//! calls are not the only thing that might introduce a use between two
//! function mono items, and as we will see below, they are just a
//! specialization of the form described next, and consequently will not get any
//! special treatment in the algorithm.
//!
//! #### Taking a reference to a function or method
//! A function does not need to actually be called in order to be a neighbor of
//! A function does not need to actually be called in order to be used by
//! another function. It suffices to just take a reference in order to introduce
//! an edge. Consider the following example:
//!
@ -109,18 +106,18 @@
//! The MIR of none of these functions will contain an explicit call to
//! `print_val::<i32>`. Nonetheless, in order to mono this program, we need
//! an instance of this function. Thus, whenever we encounter a function or
//! method in operand position, we treat it as a neighbor of the current
//! method in operand position, we treat it as a use of the current
//! mono item. Calls are just a special case of that.
//!
//! #### Drop glue
//! Drop glue mono items are introduced by MIR drop-statements. The
//! generated mono item will again have drop-glue item neighbors if the
//! generated mono item will have additional drop-glue item uses if the
//! type to be dropped contains nested values that also need to be dropped. It
//! might also have a function item neighbor for the explicit `Drop::drop`
//! might also have a function item use for the explicit `Drop::drop`
//! implementation of its type.
//!
//! #### Unsizing Casts
//! A subtle way of introducing neighbor edges is by casting to a trait object.
//! A subtle way of introducing use edges is by casting to a trait object.
//! Since the resulting fat-pointer contains a reference to a vtable, we need to
//! instantiate all object-safe methods of the trait, as we need to store
//! pointers to these functions even if they never get called anywhere. This can
@ -151,7 +148,7 @@
//! Mono item collection can be performed in one of two modes:
//!
//! - Lazy mode means that items will only be instantiated when actually
//! referenced. The goal is to produce the least amount of machine code
//! used. The goal is to produce the least amount of machine code
//! possible.
//!
//! - Eager mode is meant to be used in conjunction with incremental compilation
@ -198,7 +195,6 @@ use rustc_session::lint::builtin::LARGE_ASSIGNMENTS;
use rustc_session::Limit;
use rustc_span::source_map::{dummy_spanned, respan, Span, Spanned, DUMMY_SP};
use rustc_target::abi::Size;
use std::ops::Range;
use std::path::PathBuf;
use crate::errors::{
@ -211,75 +207,60 @@ pub enum MonoItemCollectionMode {
Lazy,
}
/// Maps every mono item to all mono items it references in its
/// body.
pub struct InliningMap<'tcx> {
// Maps a source mono item to the range of mono items
// accessed by it.
// The range selects elements within the `targets` vecs.
index: FxHashMap<MonoItem<'tcx>, Range<usize>>,
targets: Vec<MonoItem<'tcx>>,
pub struct UsageMap<'tcx> {
// Maps every mono item to the mono items used by it.
used_map: FxHashMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>>,
// Maps every mono item to the mono items that use it.
user_map: FxHashMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>>,
}
type MonoItems<'tcx> = Vec<Spanned<MonoItem<'tcx>>>;
impl<'tcx> InliningMap<'tcx> {
fn new() -> InliningMap<'tcx> {
InliningMap { index: FxHashMap::default(), targets: Vec::new() }
impl<'tcx> UsageMap<'tcx> {
fn new() -> UsageMap<'tcx> {
UsageMap { used_map: FxHashMap::default(), user_map: FxHashMap::default() }
}
fn record_accesses<'a>(
fn record_used<'a>(
&mut self,
source: MonoItem<'tcx>,
new_targets: &'a [Spanned<MonoItem<'tcx>>],
user_item: MonoItem<'tcx>,
used_items: &'a [Spanned<MonoItem<'tcx>>],
) where
'tcx: 'a,
{
let start_index = self.targets.len();
let new_items_count = new_targets.len();
self.targets.reserve(new_items_count);
for Spanned { node: mono_item, .. } in new_targets.into_iter() {
self.targets.push(*mono_item);
let used_items: Vec<_> = used_items.iter().map(|item| item.node).collect();
for &used_item in used_items.iter() {
self.user_map.entry(used_item).or_default().push(user_item);
}
let end_index = self.targets.len();
assert!(self.index.insert(source, start_index..end_index).is_none());
assert!(self.used_map.insert(user_item, used_items).is_none());
}
/// Internally iterate over all items referenced by `source` which will be
/// made available for inlining.
pub fn with_inlining_candidates<F>(&self, tcx: TyCtxt<'tcx>, source: MonoItem<'tcx>, mut f: F)
pub fn get_user_items(&self, item: MonoItem<'tcx>) -> Option<&[MonoItem<'tcx>]> {
self.user_map.get(&item).map(|items| items.as_slice())
}
/// Internally iterate over all inlined items used by `item`.
pub fn for_each_inlined_used_item<F>(&self, tcx: TyCtxt<'tcx>, item: MonoItem<'tcx>, mut f: F)
where
F: FnMut(MonoItem<'tcx>),
{
if let Some(range) = self.index.get(&source) {
for candidate in self.targets[range.clone()].iter() {
let is_inlined = candidate.instantiation_mode(tcx) == InstantiationMode::LocalCopy;
if is_inlined {
f(*candidate);
}
let used_items = self.used_map.get(&item).unwrap();
for used_item in used_items.iter() {
let is_inlined = used_item.instantiation_mode(tcx) == InstantiationMode::LocalCopy;
if is_inlined {
f(*used_item);
}
}
}
/// Internally iterate over all items and the things each accesses.
pub fn iter_accesses<F>(&self, mut f: F)
where
F: FnMut(MonoItem<'tcx>, &[MonoItem<'tcx>]),
{
for (&accessor, range) in &self.index {
f(accessor, &self.targets[range.clone()])
}
}
}
#[instrument(skip(tcx, mode), level = "debug")]
pub fn collect_crate_mono_items(
tcx: TyCtxt<'_>,
mode: MonoItemCollectionMode,
) -> (FxHashSet<MonoItem<'_>>, InliningMap<'_>) {
) -> (FxHashSet<MonoItem<'_>>, UsageMap<'_>) {
let _prof_timer = tcx.prof.generic_activity("monomorphization_collector");
let roots =
@ -288,12 +269,12 @@ pub fn collect_crate_mono_items(
debug!("building mono item graph, beginning at roots");
let mut visited = MTLock::new(FxHashSet::default());
let mut inlining_map = MTLock::new(InliningMap::new());
let mut usage_map = MTLock::new(UsageMap::new());
let recursion_limit = tcx.recursion_limit();
{
let visited: MTLockRef<'_, _> = &mut visited;
let inlining_map: MTLockRef<'_, _> = &mut inlining_map;
let usage_map: MTLockRef<'_, _> = &mut usage_map;
tcx.sess.time("monomorphization_collector_graph_walk", || {
par_for_each_in(roots, |root| {
@ -304,13 +285,13 @@ pub fn collect_crate_mono_items(
visited,
&mut recursion_depths,
recursion_limit,
inlining_map,
usage_map,
);
});
});
}
(visited.into_inner(), inlining_map.into_inner())
(visited.into_inner(), usage_map.into_inner())
}
// Find all non-generic items by walking the HIR. These items serve as roots to
@ -353,24 +334,23 @@ fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionMode) -> Vec<MonoItem<
/// Collect all monomorphized items reachable from `starting_point`, and emit a note diagnostic if a
/// post-monomorphization error is encountered during a collection step.
#[instrument(skip(tcx, visited, recursion_depths, recursion_limit, inlining_map), level = "debug")]
#[instrument(skip(tcx, visited, recursion_depths, recursion_limit, usage_map), level = "debug")]
fn collect_items_rec<'tcx>(
tcx: TyCtxt<'tcx>,
starting_point: Spanned<MonoItem<'tcx>>,
starting_item: Spanned<MonoItem<'tcx>>,
visited: MTLockRef<'_, FxHashSet<MonoItem<'tcx>>>,
recursion_depths: &mut DefIdMap<usize>,
recursion_limit: Limit,
inlining_map: MTLockRef<'_, InliningMap<'tcx>>,
usage_map: MTLockRef<'_, UsageMap<'tcx>>,
) {
if !visited.lock_mut().insert(starting_point.node) {
if !visited.lock_mut().insert(starting_item.node) {
// We've been here already, no need to search again.
return;
}
let mut neighbors = Vec::new();
let mut used_items = Vec::new();
let recursion_depth_reset;
//
// Post-monomorphization errors MVP
//
// We can encounter errors while monomorphizing an item, but we don't have a good way of
@ -396,7 +376,7 @@ fn collect_items_rec<'tcx>(
// FIXME: don't rely on global state, instead bubble up errors. Note: this is very hard to do.
let error_count = tcx.sess.diagnostic().err_count();
match starting_point.node {
match starting_item.node {
MonoItem::Static(def_id) => {
let instance = Instance::mono(tcx, def_id);
@ -404,19 +384,19 @@ fn collect_items_rec<'tcx>(
debug_assert!(should_codegen_locally(tcx, &instance));
let ty = instance.ty(tcx, ty::ParamEnv::reveal_all());
visit_drop_use(tcx, ty, true, starting_point.span, &mut neighbors);
visit_drop_use(tcx, ty, true, starting_item.span, &mut used_items);
recursion_depth_reset = None;
if let Ok(alloc) = tcx.eval_static_initializer(def_id) {
for &id in alloc.inner().provenance().ptrs().values() {
collect_miri(tcx, id, &mut neighbors);
collect_miri(tcx, id, &mut used_items);
}
}
if tcx.needs_thread_local_shim(def_id) {
neighbors.push(respan(
starting_point.span,
used_items.push(respan(
starting_item.span,
MonoItem::Fn(Instance {
def: InstanceDef::ThreadLocalShim(def_id),
substs: InternalSubsts::empty(),
@ -432,14 +412,14 @@ fn collect_items_rec<'tcx>(
recursion_depth_reset = Some(check_recursion_limit(
tcx,
instance,
starting_point.span,
starting_item.span,
recursion_depths,
recursion_limit,
));
check_type_length_limit(tcx, instance);
rustc_data_structures::stack::ensure_sufficient_stack(|| {
collect_neighbours(tcx, instance, &mut neighbors);
collect_used_items(tcx, instance, &mut used_items);
});
}
MonoItem::GlobalAsm(item_id) => {
@ -457,13 +437,13 @@ fn collect_items_rec<'tcx>(
hir::InlineAsmOperand::SymFn { anon_const } => {
let fn_ty =
tcx.typeck_body(anon_const.body).node_type(anon_const.hir_id);
visit_fn_use(tcx, fn_ty, false, *op_sp, &mut neighbors);
visit_fn_use(tcx, fn_ty, false, *op_sp, &mut used_items);
}
hir::InlineAsmOperand::SymStatic { path: _, def_id } => {
let instance = Instance::mono(tcx, *def_id);
if should_codegen_locally(tcx, &instance) {
trace!("collecting static {:?}", def_id);
neighbors.push(dummy_spanned(MonoItem::Static(*def_id)));
used_items.push(dummy_spanned(MonoItem::Static(*def_id)));
}
}
hir::InlineAsmOperand::In { .. }
@ -483,19 +463,19 @@ fn collect_items_rec<'tcx>(
// Check for PMEs and emit a diagnostic if one happened. To try to show relevant edges of the
// mono item graph.
if tcx.sess.diagnostic().err_count() > error_count
&& starting_point.node.is_generic_fn()
&& starting_point.node.is_user_defined()
&& starting_item.node.is_generic_fn()
&& starting_item.node.is_user_defined()
{
let formatted_item = with_no_trimmed_paths!(starting_point.node.to_string());
let formatted_item = with_no_trimmed_paths!(starting_item.node.to_string());
tcx.sess.emit_note(EncounteredErrorWhileInstantiating {
span: starting_point.span,
span: starting_item.span,
formatted_item,
});
}
inlining_map.lock_mut().record_accesses(starting_point.node, &neighbors);
usage_map.lock_mut().record_used(starting_item.node, &used_items);
for neighbour in neighbors {
collect_items_rec(tcx, neighbour, visited, recursion_depths, recursion_limit, inlining_map);
for used_item in used_items {
collect_items_rec(tcx, used_item, visited, recursion_depths, recursion_limit, usage_map);
}
if let Some((def_id, depth)) = recursion_depth_reset {
@ -611,14 +591,14 @@ fn check_type_length_limit<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) {
}
}
struct MirNeighborCollector<'a, 'tcx> {
struct MirUsedCollector<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
body: &'a mir::Body<'tcx>,
output: &'a mut MonoItems<'tcx>,
instance: Instance<'tcx>,
}
impl<'a, 'tcx> MirNeighborCollector<'a, 'tcx> {
impl<'a, 'tcx> MirUsedCollector<'a, 'tcx> {
pub fn monomorphize<T>(&self, value: T) -> T
where
T: TypeFoldable<TyCtxt<'tcx>>,
@ -632,7 +612,7 @@ impl<'a, 'tcx> MirNeighborCollector<'a, 'tcx> {
}
}
impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> {
impl<'a, 'tcx> MirVisitor<'tcx> for MirUsedCollector<'a, 'tcx> {
fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) {
debug!("visiting rvalue {:?}", *rvalue);
@ -1392,13 +1372,13 @@ fn collect_miri<'tcx>(tcx: TyCtxt<'tcx>, alloc_id: AllocId, output: &mut MonoIte
/// Scans the MIR in order to find function calls, closures, and drop-glue.
#[instrument(skip(tcx, output), level = "debug")]
fn collect_neighbours<'tcx>(
fn collect_used_items<'tcx>(
tcx: TyCtxt<'tcx>,
instance: Instance<'tcx>,
output: &mut MonoItems<'tcx>,
) {
let body = tcx.instance_mir(instance.def);
MirNeighborCollector { tcx, body: &body, output, instance }.visit_body(&body);
MirUsedCollector { tcx, body: &body, output, instance }.visit_body(&body);
}
#[instrument(skip(tcx, output), level = "debug")]

View file

@ -115,14 +115,14 @@ use rustc_middle::ty::{self, visit::TypeVisitableExt, InstanceDef, TyCtxt};
use rustc_session::config::{DumpMonoStatsFormat, SwitchWithOptPath};
use rustc_span::symbol::Symbol;
use crate::collector::InliningMap;
use crate::collector::UsageMap;
use crate::collector::{self, MonoItemCollectionMode};
use crate::errors::{CouldntDumpMonoStats, SymbolAlreadyDefined, UnknownCguCollectionMode};
struct PartitioningCx<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
target_cgu_count: usize,
inlining_map: &'a InliningMap<'tcx>,
usage_map: &'a UsageMap<'tcx>,
}
struct PlacedRootMonoItems<'tcx> {
@ -138,14 +138,14 @@ fn partition<'tcx, I>(
tcx: TyCtxt<'tcx>,
mono_items: &mut I,
max_cgu_count: usize,
inlining_map: &InliningMap<'tcx>,
usage_map: &UsageMap<'tcx>,
) -> Vec<CodegenUnit<'tcx>>
where
I: Iterator<Item = MonoItem<'tcx>>,
{
let _prof_timer = tcx.prof.generic_activity("cgu_partitioning");
let cx = &PartitioningCx { tcx, target_cgu_count: max_cgu_count, inlining_map };
let cx = &PartitioningCx { tcx, target_cgu_count: max_cgu_count, usage_map };
// In the first step, we place all regular monomorphizations into their
// respective 'home' codegen unit. Regular monomorphizations are all
@ -405,7 +405,7 @@ fn merge_codegen_units<'tcx>(
}
/// For symbol internalization, we need to know whether a symbol/mono-item is
/// accessed from outside the codegen unit it is defined in. This type is used
/// used from outside the codegen unit it is defined in. This type is used
/// to keep track of that.
#[derive(Clone, PartialEq, Eq, Debug)]
enum MonoItemPlacement {
@ -422,33 +422,25 @@ fn place_inlined_mono_items<'tcx>(
let single_codegen_unit = codegen_units.len() == 1;
for old_codegen_unit in codegen_units.iter_mut() {
for cgu in codegen_units.iter_mut() {
// Collect all items that need to be available in this codegen unit.
let mut reachable = FxHashSet::default();
for root in old_codegen_unit.items().keys() {
follow_inlining(cx.tcx, *root, cx.inlining_map, &mut reachable);
for root in cgu.items().keys() {
// Insert the root item itself, plus all inlined items that are
// reachable from it without going via another root item.
reachable.insert(*root);
get_reachable_inlined_items(cx.tcx, *root, cx.usage_map, &mut reachable);
}
let mut new_codegen_unit = CodegenUnit::new(old_codegen_unit.name());
// Add all monomorphizations that are not already there.
for mono_item in reachable {
if let Some(linkage) = old_codegen_unit.items().get(&mono_item) {
// This is a root, just copy it over.
new_codegen_unit.items_mut().insert(mono_item, *linkage);
} else {
if !cgu.items().contains_key(&mono_item) {
if roots.contains(&mono_item) {
bug!(
"GloballyShared mono-item inlined into other CGU: \
{:?}",
mono_item
);
bug!("GloballyShared mono-item inlined into other CGU: {:?}", mono_item);
}
// This is a CGU-private copy.
new_codegen_unit
.items_mut()
.insert(mono_item, (Linkage::Internal, Visibility::Default));
cgu.items_mut().insert(mono_item, (Linkage::Internal, Visibility::Default));
}
if !single_codegen_unit {
@ -458,39 +450,32 @@ fn place_inlined_mono_items<'tcx>(
Entry::Occupied(e) => {
let placement = e.into_mut();
debug_assert!(match *placement {
MonoItemPlacement::SingleCgu { cgu_name } => {
cgu_name != new_codegen_unit.name()
}
MonoItemPlacement::SingleCgu { cgu_name } => cgu_name != cgu.name(),
MonoItemPlacement::MultipleCgus => true,
});
*placement = MonoItemPlacement::MultipleCgus;
}
Entry::Vacant(e) => {
e.insert(MonoItemPlacement::SingleCgu {
cgu_name: new_codegen_unit.name(),
});
e.insert(MonoItemPlacement::SingleCgu { cgu_name: cgu.name() });
}
}
}
}
*old_codegen_unit = new_codegen_unit;
}
return mono_item_placements;
fn follow_inlining<'tcx>(
fn get_reachable_inlined_items<'tcx>(
tcx: TyCtxt<'tcx>,
mono_item: MonoItem<'tcx>,
inlining_map: &InliningMap<'tcx>,
item: MonoItem<'tcx>,
usage_map: &UsageMap<'tcx>,
visited: &mut FxHashSet<MonoItem<'tcx>>,
) {
if !visited.insert(mono_item) {
return;
}
inlining_map.with_inlining_candidates(tcx, mono_item, |target| {
follow_inlining(tcx, target, inlining_map, visited);
usage_map.for_each_inlined_used_item(tcx, item, |inlined_item| {
let is_new = visited.insert(inlined_item);
if is_new {
get_reachable_inlined_items(tcx, inlined_item, usage_map, visited);
}
});
}
}
@ -504,7 +489,7 @@ fn internalize_symbols<'tcx>(
if codegen_units.len() == 1 {
// Fast path for when there is only one codegen unit. In this case we
// can internalize all candidates, since there is nowhere else they
// could be accessed from.
// could be used from.
for cgu in codegen_units {
for candidate in &internalization_candidates {
cgu.items_mut().insert(*candidate, (Linkage::Internal, Visibility::Default));
@ -514,45 +499,36 @@ fn internalize_symbols<'tcx>(
return;
}
// Build a map from every monomorphization to all the monomorphizations that
// reference it.
let mut accessor_map: FxHashMap<MonoItem<'tcx>, Vec<MonoItem<'tcx>>> = Default::default();
cx.inlining_map.iter_accesses(|accessor, accessees| {
for accessee in accessees {
accessor_map.entry(*accessee).or_default().push(accessor);
}
});
// For each internalization candidates in each codegen unit, check if it is
// accessed from outside its defining codegen unit.
// used from outside its defining codegen unit.
for cgu in codegen_units {
let home_cgu = MonoItemPlacement::SingleCgu { cgu_name: cgu.name() };
for (accessee, linkage_and_visibility) in cgu.items_mut() {
if !internalization_candidates.contains(accessee) {
for (item, linkage_and_visibility) in cgu.items_mut() {
if !internalization_candidates.contains(item) {
// This item is no candidate for internalizing, so skip it.
continue;
}
debug_assert_eq!(mono_item_placements[accessee], home_cgu);
debug_assert_eq!(mono_item_placements[item], home_cgu);
if let Some(accessors) = accessor_map.get(accessee) {
if accessors
if let Some(user_items) = cx.usage_map.get_user_items(*item) {
if user_items
.iter()
.filter_map(|accessor| {
// Some accessors might not have been
.filter_map(|user_item| {
// Some user mono items might not have been
// instantiated. We can safely ignore those.
mono_item_placements.get(accessor)
mono_item_placements.get(user_item)
})
.any(|placement| *placement != home_cgu)
{
// Found an accessor from another CGU, so skip to the next
// item without marking this one as internal.
// Found a user from another CGU, so skip to the next item
// without marking this one as internal.
continue;
}
}
// If we got here, we did not find any accesses from other CGUs,
// so it's fine to make this monomorphization internal.
// If we got here, we did not find any uses from other CGUs, so
// it's fine to make this monomorphization internal.
*linkage_and_visibility = (Linkage::Internal, Visibility::Default);
}
}
@ -788,7 +764,7 @@ fn mono_item_visibility<'tcx>(
} else {
// If this isn't a generic function then we mark this a `Default` if
// this is a reachable item, meaning that it's a symbol other crates may
// access when they link to us.
// use when they link to us.
if tcx.is_reachable_non_generic(def_id.to_def_id()) {
*can_be_internalized = false;
debug_assert!(!is_generic);
@ -968,7 +944,7 @@ fn collect_and_partition_mono_items(tcx: TyCtxt<'_>, (): ()) -> (&DefIdSet, &[Co
}
};
let (items, inlining_map) = collector::collect_crate_mono_items(tcx, collection_mode);
let (items, usage_map) = collector::collect_crate_mono_items(tcx, collection_mode);
tcx.sess.abort_if_errors();
@ -979,7 +955,7 @@ fn collect_and_partition_mono_items(tcx: TyCtxt<'_>, (): ()) -> (&DefIdSet, &[Co
tcx,
&mut items.iter().copied(),
tcx.sess.codegen_units(),
&inlining_map,
&usage_map,
);
codegen_units[0].make_primary();
&*tcx.arena.alloc_from_iter(codegen_units)