miri ABI check: fix handling of 1-ZST; don't accept sign differences
This commit is contained in:
parent
cbe8a05903
commit
efc759238d
2 changed files with 38 additions and 35 deletions
|
@ -254,6 +254,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
|
|||
}
|
||||
|
||||
/// Find the wrapped inner type of a transparent wrapper.
|
||||
/// Must not be called on 1-ZST (as they don't have a uniquely defined "wrapped field").
|
||||
fn unfold_transparent(&self, layout: TyAndLayout<'tcx>) -> TyAndLayout<'tcx> {
|
||||
match layout.ty.kind() {
|
||||
ty::Adt(adt_def, _) if adt_def.repr().transparent() => {
|
||||
|
@ -263,11 +264,7 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
|
|||
let field = layout.field(self, idx);
|
||||
if field.is_1zst() { None } else { Some(field) }
|
||||
});
|
||||
let Some(first) = non_1zst_fields.next() else {
|
||||
// All fields are 1-ZST, so this is basically the same as `()`.
|
||||
// (We still also compare the `PassMode`, so if this target does something strange with 1-ZST there, we'll know.)
|
||||
return self.layout_of(self.tcx.types.unit).unwrap();
|
||||
};
|
||||
let first = non_1zst_fields.next().expect("`unfold_transparent` called on 1-ZST");
|
||||
assert!(
|
||||
non_1zst_fields.next().is_none(),
|
||||
"more than one non-1-ZST field in a transparent type"
|
||||
|
@ -289,17 +286,6 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
|
|||
caller_layout: TyAndLayout<'tcx>,
|
||||
callee_layout: TyAndLayout<'tcx>,
|
||||
) -> bool {
|
||||
fn primitive_abi_compat(a1: abi::Primitive, a2: abi::Primitive) -> bool {
|
||||
match (a1, a2) {
|
||||
// For integers, ignore the sign.
|
||||
(abi::Primitive::Int(int_ty1, _sign1), abi::Primitive::Int(int_ty2, _sign2)) => {
|
||||
int_ty1 == int_ty2
|
||||
}
|
||||
// For everything else we require full equality.
|
||||
_ => a1 == a2,
|
||||
}
|
||||
}
|
||||
|
||||
if caller_layout.ty == callee_layout.ty {
|
||||
// Fast path: equal types are definitely compatible.
|
||||
return true;
|
||||
|
@ -308,27 +294,40 @@ impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
|
|||
match (caller_layout.abi, callee_layout.abi) {
|
||||
// If both sides have Scalar/Vector/ScalarPair ABI, we can easily directly compare them.
|
||||
// Different valid ranges are okay (the validity check will complain if this leads to
|
||||
// invalid transmutes).
|
||||
// invalid transmutes). Different signs are *not* okay on some targets (e.g. `extern
|
||||
// "C"` on `s390x` where small integers are passed zero/sign-extended in large
|
||||
// registers), so we generally reject them to increase portability.
|
||||
// NOTE: this is *not* a stable guarantee! It just reflects a property of our current
|
||||
// ABIs. It's also fragile; the same pair of types might be considered ABI-compatible
|
||||
// when used directly by-value but not considered compatible as a struct field or array
|
||||
// element.
|
||||
(abi::Abi::Scalar(caller), abi::Abi::Scalar(callee)) => {
|
||||
primitive_abi_compat(caller.primitive(), callee.primitive())
|
||||
caller.primitive() == callee.primitive()
|
||||
}
|
||||
(
|
||||
abi::Abi::Vector { element: caller_element, count: caller_count },
|
||||
abi::Abi::Vector { element: callee_element, count: callee_count },
|
||||
) => {
|
||||
primitive_abi_compat(caller_element.primitive(), callee_element.primitive())
|
||||
caller_element.primitive() == callee_element.primitive()
|
||||
&& caller_count == callee_count
|
||||
}
|
||||
(abi::Abi::ScalarPair(caller1, caller2), abi::Abi::ScalarPair(callee1, callee2)) => {
|
||||
primitive_abi_compat(caller1.primitive(), callee1.primitive())
|
||||
&& primitive_abi_compat(caller2.primitive(), callee2.primitive())
|
||||
caller1.primitive() == callee1.primitive()
|
||||
&& caller2.primitive() == callee2.primitive()
|
||||
}
|
||||
(abi::Abi::Aggregate { .. }, abi::Abi::Aggregate { .. }) => {
|
||||
// Aggregates are compatible only if they newtype-wrap the same type.
|
||||
// Aggregates are compatible only if they newtype-wrap the same type, or if they are both 1-ZST.
|
||||
// (The latter part is needed to ensure e.g. that `struct Zst` is compatible with `struct Wrap((), Zst)`.)
|
||||
// This is conservative, but also means that our check isn't quite so heavily dependent on the `PassMode`,
|
||||
// which means having ABI-compatibility on one target is much more likely to imply compatibility for other targets.
|
||||
self.unfold_transparent(caller_layout).ty
|
||||
== self.unfold_transparent(callee_layout).ty
|
||||
if caller_layout.is_1zst() || callee_layout.is_1zst() {
|
||||
// If either is a 1-ZST, both must be.
|
||||
caller_layout.is_1zst() && callee_layout.is_1zst()
|
||||
} else {
|
||||
// Neither is a 1-ZST, so we can check what they are wrapping.
|
||||
self.unfold_transparent(caller_layout).ty
|
||||
== self.unfold_transparent(callee_layout).ty
|
||||
}
|
||||
}
|
||||
// What remains is `Abi::Uninhabited` (which can never be passed anyway) and
|
||||
// mismatching ABIs, that should all be rejected.
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
use std::mem;
|
||||
use std::num;
|
||||
|
||||
#[derive(Copy, Clone)]
|
||||
#[derive(Copy, Clone, Default)]
|
||||
struct Zst;
|
||||
|
||||
fn test_abi_compat<T: Copy, U: Copy>(t: T, u: U) {
|
||||
|
@ -31,7 +31,7 @@ fn test_abi_compat<T: Copy, U: Copy>(t: T, u: U) {
|
|||
}
|
||||
|
||||
/// Ensure that `T` is compatible with various repr(transparent) wrappers around `T`.
|
||||
fn test_abi_newtype<T: Copy>(t: T) {
|
||||
fn test_abi_newtype<T: Copy + Default>() {
|
||||
#[repr(transparent)]
|
||||
#[derive(Copy, Clone)]
|
||||
struct Wrapper1<T>(T);
|
||||
|
@ -45,6 +45,7 @@ fn test_abi_newtype<T: Copy>(t: T) {
|
|||
#[derive(Copy, Clone)]
|
||||
struct Wrapper3<T>(Zst, T, [u8; 0]);
|
||||
|
||||
let t = T::default();
|
||||
test_abi_compat(t, Wrapper1(t));
|
||||
test_abi_compat(t, Wrapper2(t, ()));
|
||||
test_abi_compat(t, Wrapper2a((), t));
|
||||
|
@ -62,21 +63,24 @@ fn main() {
|
|||
// these would be stably guaranteed. Code that relies on this is equivalent to code that relies
|
||||
// on the layout of `repr(Rust)` types. They are also fragile: the same mismatches in the fields
|
||||
// of a struct (even with `repr(C)`) will not always be accepted by Miri.
|
||||
// Note that `bool` and `u8` are *not* compatible, at least on x86-64!
|
||||
// One of them has `arg_ext: Zext`, the other does not.
|
||||
// Similarly, `i32` and `u32` are not compatible on s390x due to different `arg_ext`.
|
||||
test_abi_compat(0u32, 'x');
|
||||
test_abi_compat(42u32, num::NonZeroU32::new(1).unwrap());
|
||||
test_abi_compat(0u32, Some(num::NonZeroU32::new(1).unwrap()));
|
||||
test_abi_compat(&0u32, &0u32 as *const u32);
|
||||
test_abi_compat(&0u32, &([true; 4], [0u32; 0]));
|
||||
// Note that `bool` and `u8` are *not* compatible, at least on x86-64!
|
||||
// One of them has `arg_ext: Zext`, the other does not.
|
||||
|
||||
// These must work for *any* type, since we guarantee that `repr(transparent)` is ABI-compatible
|
||||
// with the wrapped field.
|
||||
test_abi_newtype(());
|
||||
// FIXME: this still fails! test_abi_newtype(Zst);
|
||||
test_abi_newtype(0u32);
|
||||
test_abi_newtype(0f32);
|
||||
test_abi_newtype((0u32, 1u32, 2u32));
|
||||
test_abi_newtype([0u32, 1u32, 2u32]);
|
||||
test_abi_newtype([0i32; 0]);
|
||||
test_abi_newtype::<()>();
|
||||
test_abi_newtype::<Zst>();
|
||||
test_abi_newtype::<u32>();
|
||||
test_abi_newtype::<f32>();
|
||||
test_abi_newtype::<(u8, u16, f32)>();
|
||||
test_abi_newtype::<[u8; 0]>();
|
||||
test_abi_newtype::<[u32; 0]>();
|
||||
test_abi_newtype::<[u32; 2]>();
|
||||
test_abi_newtype::<[u32; 32]>();
|
||||
}
|
||||
|
|
Loading…
Add table
Reference in a new issue