std::trie: use macros to share code between the iterator implementations.

This commit is contained in:
Huon Wilson 2014-01-07 01:00:19 +11:00
parent f07c74d93a
commit fe03caedf0

View file

@ -141,40 +141,95 @@ impl<T> TrieMap<T> {
remaining_max: self.length
}
}
}
// FIXME #5846 we want to be able to choose between &x and &mut x
// (with many different `x`) below, so we need to optionally pass mut
// as a tt, but the only thing we can do with a `tt` is pass them to
// other macros, so this takes the `& <mutability> <operand>` token
// sequence and forces their evalutation as an expression. (see also
// `item!` below.)
macro_rules! addr { ($e:expr) => { $e } }
macro_rules! bound {
($iterator_name:ident,
// the current treemap
self = $this:expr,
// the key to look for
key = $key:expr,
// are we looking at the upper bound?
is_upper = $upper:expr,
// method names for slicing/iterating.
slice_from = $slice_from:ident,
iter = $iter:ident,
// see the comment on `addr!`, this is just an optional mut, but
// there's no 0-or-1 repeats yet.
mutability = $($mut_:tt)*) => {
{
// # For `mut`
// We need an unsafe pointer here because we are borrowing
// mutable references to the internals of each of these
// mutable nodes, while still using the outer node.
//
// However, we're allowed to flaunt rustc like this because we
// never actually modify the "shape" of the nodes. The only
// place that mutation is can actually occur is of the actual
// values of the TrieMap (as the return value of the
// iterator), i.e. we can never cause a deallocation of any
// TrieNodes so the raw pointer is always valid.
//
// # For non-`mut`
// We like sharing code so much that even a little unsafe won't
// stop us.
let this = $this;
let mut node = addr!(& $($mut_)* this.root as * $($mut_)* TrieNode<T>);
let key = $key;
let mut idx = 0;
let mut it = $iterator_name {
stack: ~[],
remaining_min: 0,
remaining_max: this.length
};
// this addr is necessary for the `Internal` pattern.
addr!(loop {
let children = unsafe {addr!(& $($mut_)* (*node).children)};
let child_id = chunk(key, idx);
match children[child_id] {
Internal(ref $($mut_)* n) => {
node = addr!(& $($mut_)* **n as * $($mut_)* TrieNode<T>);
}
External(stored, _) => {
if stored < key || ($upper && stored == key) {
it.stack.push(children.$slice_from(child_id + 1).$iter());
} else {
it.stack.push(children.$slice_from(child_id).$iter());
}
return it;
}
Nothing => {
it.stack.push(children.$slice_from(child_id + 1).$iter());
return it
}
}
it.stack.push(children.$slice_from(child_id + 1).$iter());
idx += 1;
})
}
}
}
impl<T> TrieMap<T> {
// If `upper` is true then returns upper_bound else returns lower_bound.
#[inline]
fn bound<'a>(&'a self, key: uint, upper: bool) -> TrieMapIterator<'a, T> {
let mut node: &'a TrieNode<T> = &self.root;
let mut idx = 0;
let mut it = TrieMapIterator {
stack: ~[],
remaining_min: 0,
remaining_max: self.length
};
loop {
let children = &node.children;
let child_id = chunk(key, idx);
match children[child_id] {
Internal(ref n) => {
node = &**n;
it.stack.push(children.slice_from(child_id + 1).iter());
}
External(stored, _) => {
if stored < key || (upper && stored == key) {
it.stack.push(children.slice_from(child_id + 1).iter());
} else {
it.stack.push(children.slice_from(child_id).iter());
}
return it;
}
Nothing => {
it.stack.push(children.slice_from(child_id + 1).iter());
return it
}
}
idx += 1;
}
bound!(TrieMapIterator, self = self,
key = key, is_upper = upper,
slice_from = slice_from, iter = iter,
mutability = )
}
/// Get an iterator pointing to the first key-value pair whose key is not less than `key`.
@ -191,47 +246,10 @@ impl<T> TrieMap<T> {
// If `upper` is true then returns upper_bound else returns lower_bound.
#[inline]
fn mut_bound<'a>(&'a mut self, key: uint, upper: bool) -> TrieMapMutIterator<'a, T> {
// we need an unsafe pointer here because we are borrowing
// references to the internals of each of these
// nodes.
//
// However, we're allowed to flaunt rustc like this because we
// never actually modify the "shape" of the nodes. The only
// place that mutation is can actually occur is of the actual
// values of the TrieMap (as the return value of the
// iterator), i.e. we can never cause a deallocation of any
// TrieNodes so this pointer is always valid.
let mut node = &mut self.root as *mut TrieNode<T>;
let mut idx = 0;
let mut it = TrieMapMutIterator {
stack: ~[],
remaining_min: 0,
remaining_max: self.length
};
loop {
let children = unsafe {&mut (*node).children};
let child_id = chunk(key, idx);
match children[child_id] {
Internal(ref mut n) => {
node = &mut **n as *mut TrieNode<T>;
}
External(stored, _) => {
if stored < key || (upper && stored == key) {
it.stack.push(children.mut_slice_from(child_id + 1).mut_iter());
} else {
it.stack.push(children.mut_slice_from(child_id).mut_iter());
}
return it;
}
Nothing => {
it.stack.push(children.mut_slice_from(child_id + 1).mut_iter());
return it
}
}
it.stack.push(children.mut_slice_from(child_id + 1).mut_iter());
idx += 1;
}
bound!(TrieMapMutIterator, self = self,
key = key, is_upper = upper,
slice_from = mut_slice_from, iter = mut_iter,
mutability = mut)
}
/// Get an iterator pointing to the first key-value pair whose key is not less than `key`.
@ -464,39 +482,6 @@ pub struct TrieMapIterator<'a, T> {
priv remaining_max: uint
}
impl<'a, T> Iterator<(uint, &'a T)> for TrieMapIterator<'a, T> {
fn next(&mut self) -> Option<(uint, &'a T)> {
while !self.stack.is_empty() {
match self.stack[self.stack.len() - 1].next() {
None => {
self.stack.pop();
}
Some(ref child) => {
match **child {
Internal(ref node) => {
self.stack.push(node.children.iter());
}
External(key, ref value) => {
self.remaining_max -= 1;
if self.remaining_min > 0 {
self.remaining_min -= 1;
}
return Some((key, value));
}
Nothing => {}
}
}
}
}
return None;
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
(self.remaining_min, Some(self.remaining_max))
}
}
/// Forward iterator over the key-value pairs of a map, with the
/// values being mutable.
pub struct TrieMapMutIterator<'a, T> {
@ -505,39 +490,51 @@ pub struct TrieMapMutIterator<'a, T> {
priv remaining_max: uint
}
impl<'a, T> Iterator<(uint, &'a mut T)> for TrieMapMutIterator<'a, T> {
fn next(&mut self) -> Option<(uint, &'a mut T)> {
while !self.stack.is_empty() {
match self.stack[self.stack.len() - 1].next() {
None => {
self.stack.pop();
}
Some(child) => {
match *child {
Internal(ref mut node) => {
self.stack.push(node.children.mut_iter());
}
External(key, ref mut value) => {
self.remaining_max -= 1;
if self.remaining_min > 0 {
self.remaining_min -= 1;
}
return Some((key, value));
}
Nothing => {}
}
}
}
}
return None;
}
// FIXME #5846: see `addr!` above.
macro_rules! item { ($i:item) => {$i}}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
(self.remaining_min, Some(self.remaining_max))
macro_rules! iterator_impl {
($name:ident,
iter = $iter:ident,
mutability = $($mut_:tt)*) => {
item!(impl<'a, T> Iterator<(uint, &'a $($mut_)* T)> for $name<'a, T> {
fn next(&mut self) -> Option<(uint, &'a $($mut_)* T)> {
while !self.stack.is_empty() {
match self.stack[self.stack.len() - 1].next() {
None => {
self.stack.pop();
}
Some(child) => {
addr!(match *child {
Internal(ref $($mut_)* node) => {
self.stack.push(node.children.$iter());
}
External(key, ref $($mut_)* value) => {
self.remaining_max -= 1;
if self.remaining_min > 0 {
self.remaining_min -= 1;
}
return Some((key, value));
}
Nothing => {}
})
}
}
}
return None;
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
(self.remaining_min, Some(self.remaining_max))
}
})
}
}
iterator_impl! { TrieMapIterator, iter = iter, mutability = }
iterator_impl! { TrieMapMutIterator, iter = mut_iter, mutability = mut }
/// Forward iterator over a set
pub struct TrieSetIterator<'a> {
priv iter: TrieMapIterator<'a, ()>