Since it's inception a long time ago, the parallel compiler and its cfgs
have been a maintenance burden. This was a necessary evil the allow
iteration while not degrading performance because of synchronization
overhead.
But this time is over. Thanks to the amazing work by the parallel
working group (and the dyn sync crimes), the parallel compiler has now
been fast enough to be shipped by default in nightly for quite a while
now.
Stable and beta have still been on the serial compiler, because they
can't use `-Zthreads` anyways.
But this is quite suboptimal:
- the maintenance burden still sucks
- we're not testing the serial compiler in nightly
Because of these reasons, it's time to end it. The serial compiler has
served us well in the years since it was split from the parallel one,
but it's over now.
Let the knight slay one head of the two-headed dragon!
Instead of keeping a list of architectures which have native support
for 64-bit atomics, just use #[cfg(target_has_atomic = "64")] and its
inverted counterpart to determine whether we need to use portable
AtomicU64 on the target architecture.
This involves lots of breaking changes. There are two big changes that
force changes. The first is that the bitflag types now don't
automatically implement normal derive traits, so we need to derive them
manually.
Additionally, bitflags now have a hidden inner type by default, which
breaks our custom derives. The bitflags docs recommend using the impl
form in these cases, which I did.
- Sort dependencies and features sections.
- Add `tidy` markers to the sorted sections so they stay sorted.
- Remove empty `[lib`] sections.
- Remove "See more keys..." comments.
Excluded files:
- rustc_codegen_{cranelift,gcc}, because they're external.
- rustc_lexer, because it has external use.
- stable_mir, because it has external use.
Introduce `DynSend` and `DynSync` auto trait for parallel compiler
part of parallel-rustc #101566
This PR introduces `DynSend / DynSync` trait and `FromDyn / IntoDyn` structure in rustc_data_structure::marker. `FromDyn` can dynamically check data structures for thread safety when switching to parallel environments (such as calling `par_for_each_in`). This happens only when `-Z threads > 1` so it doesn't affect single-threaded mode's compile efficiency.
r? `@cjgillot`
- only borrow the refcell once per loop
- avoid complex matches to reduce branch paths in the hot loop
- use a by-ref fast path that avoids mutations at the expense of having false negatives
Use a lock-free datastructure for source_span
follow up to the perf regression in https://github.com/rust-lang/rust/pull/105462
The main regression is likely the CStore, but let's evaluate the perf impact of this on its own
`rustc_data_structures::thin_vec::ThinVec` looks like this:
```
pub struct ThinVec<T>(Option<Box<Vec<T>>>);
```
It's just a zero word if the vector is empty, but requires two
allocations if it is non-empty. So it's only usable in cases where the
vector is empty most of the time.
This commit removes it in favour of `thin_vec::ThinVec`, which is also
word-sized, but stores the length and capacity in the same allocation as
the elements. It's good in a wider variety of situation, e.g. in enum
variants where the vector is usually/always non-empty.
The commit also:
- Sorts some `Cargo.toml` dependency lists, to make additions easier.
- Sorts some `use` item lists, to make additions easier.
- Changes `clean_trait_ref_with_bindings` to take a
`ThinVec<TypeBinding>` rather than a `&[TypeBinding]`, because this
avoid some unnecessary allocations.