Begin experimental support for pin reborrowing
This commit adds basic support for reborrowing `Pin` types in argument position. At the moment it only supports reborrowing `Pin<&mut T>` as `Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in argument position (not as the receiver in a method call).
This PR makes the following example compile:
```rust
#![feature(pin_ergonomics)]
fn foo(_: Pin<&mut Foo>) {
}
fn bar(mut x: Pin<&mut Foo>) {
foo(x);
foo(x);
}
```
Previously, you would have had to write `bar` as:
```rust
fn bar(mut x: Pin<&mut Foo>) {
foo(x.as_mut());
foo(x);
}
```
Tracking:
- #130494
r? `@compiler-errors`
Generating a call to `as_mut()` let to more restrictive borrows than
what reborrowing usually gives us. Instead, we change the desugaring to
reborrow the pin internals directly which makes things more expressive.
This commit adds basic support for reborrowing `Pin` types in argument
position. At the moment it only supports reborrowing `Pin<&mut T>` as
`Pin<&mut T>` by inserting a call to `Pin::as_mut()`, and only in
argument position (not as the receiver in a method call).
layout computation: gracefully handle unsized types in unexpected locations
This PR reworks the layout computation to eagerly return an error when encountering an unsized field where a sized field was expected, rather than delaying a bug and attempting to recover a layout. This is required, because with trivially false where clauses like `[T]: Sized`, any field can possible be an unsized type, without causing a compile error.
Since this PR removes the `delayed_bug` method from the `LayoutCalculator` trait, it essentially becomes the same as the `HasDataLayout` trait, so I've also refactored the `LayoutCalculator` to be a simple wrapper struct around a type that implements `HasDataLayout`.
The majority of the diff is whitespace changes, so viewing with whitespace ignored is advised.
implements https://github.com/rust-lang/rust/pull/123169#issuecomment-2025788480
r? `@compiler-errors` or compiler
fixes https://github.com/rust-lang/rust/issues/123134
fixes https://github.com/rust-lang/rust/issues/124182
fixes https://github.com/rust-lang/rust/issues/126939
fixes https://github.com/rust-lang/rust/issues/127737
Don't use `typeck_root_def_id` in codegen for finding closure's root
Generating debuginfo in codegen currently peels off all the closure-specific generics (which presumably is done because they're redundant). This doesn't currently work correctly for the bodies we synthesize for async closures's returned coroutines (#128506), leading to #129702.
Specifically, `typeck_root_def_id` for some `DefKind::SyntheticCoroutineBody` just returns itself (because it loops while `is_typeck_child` is `true`, and that returns `false` for this defkind), which means we don't end up peeling off the coroutine-specific generics, and we end up encountering an otherwise unreachable `CoroutineWitness` type leading to an ICE.
This PR fixes `is_typeck_child` to consider `DefKind::SyntheticCorotuineBody` to be a typeck child, fixing `typeck_root_def_id` and suppressing this debuginfo bug.
Fixes#129702
const-eval interning: accept interior mutable pointers in final value
…but keep rejecting mutable references
This fixes https://github.com/rust-lang/rust/issues/121610 by no longer firing the lint when there is a pointer with interior mutability in the final value of the constant. On stable, such pointers can be created with code like:
```rust
pub enum JsValue {
Undefined,
Object(Cell<bool>),
}
impl Drop for JsValue {
fn drop(&mut self) {}
}
// This does *not* get promoted since `JsValue` has a destructor.
// However, the outer scope rule applies, still giving this 'static lifetime.
const UNDEFINED: &JsValue = &JsValue::Undefined;
```
It's not great to accept such values since people *might* think that it is legal to mutate them with unsafe code. (This is related to how "infectious" `UnsafeCell` is, which is a [wide open question](https://github.com/rust-lang/unsafe-code-guidelines/issues/236).) However, we [explicitly document](https://doc.rust-lang.org/reference/behavior-considered-undefined.html) that things created by `const` are immutable. Furthermore, we also accept the following even more questionable code without any lint today:
```rust
let x: &'static Option<Cell<i32>> = &None;
```
This is even more questionable since it does *not* involve a `const`, and yet still puts the data into immutable memory. We could view this as promotion [potentially introducing UB](https://github.com/rust-lang/unsafe-code-guidelines/issues/493). However, we've accepted this since ~forever and it's [too late to reject this now](https://github.com/rust-lang/rust/pull/122789); the pattern is just too useful.
So basically, if you think that `UnsafeCell` should be tracked fully precisely, then you should want the lint we currently emit to be removed, which this PR does. If you think `UnsafeCell` should "infect" surrounding `enum`s, the big problem is really https://github.com/rust-lang/unsafe-code-guidelines/issues/493 which does not trigger the lint -- the cases the lint triggers on are actually the "harmless" ones as there is an explicit surrounding `const` explaining why things end up being immutable.
What all this goes to show is that the hard error added in https://github.com/rust-lang/rust/pull/118324 (later turned into the future-compat lint that I am now suggesting we remove) was based on some wrong assumptions, at least insofar as it concerns shared references. Furthermore, that lint does not help at all for the most problematic case here where the potential UB is completely implicit. (In fact, the lint is actively in the way of [my preferred long-term strategy](https://github.com/rust-lang/unsafe-code-guidelines/issues/493#issuecomment-2028674105) for dealing with this UB.) So I think we should go back to square one and remove that error/lint for shared references. For mutable references, it does seem to work as intended, so we can keep it. Here it serves as a safety net in case the static checks that try to contain mutable references to the inside of a const initializer are not working as intended; I therefore made the check ICE to encourage users to tell us if that safety net is triggered.
Closes https://github.com/rust-lang/rust/issues/122153 by removing the lint.
Cc `@rust-lang/opsem` `@rust-lang/lang`
`ProjectionElem` and `UnOp`/`BinOp` dont need to be `PartialOrd`/`Ord`
These types don't really admit a natural ordering and no code seems to rely on it, so let's remove it.
Don't call closure_by_move_body_def_id on FnOnce async closures in MIR validation
Refactors the check in #129847 to not unncessarily call the `closure_by_move_body_def_id` query for async closures that don't *need* a by-move body.
Fixes#130167
Rescope temp lifetime in if-let into IfElse with migration lint
Tracking issue #124085
This PR shortens the temporary lifetime to cover only the pattern matching and consequent branch of a `if let`.
At the expression location, means that the lifetime is shortened from previously the deepest enclosing block or statement in Edition 2021. This warrants an Edition change.
Coming with the Edition change, this patch also implements an edition lint to warn about the change and a safe rewrite suggestion to preserve the 2021 semantics in most cases.
Related to #103108.
Related crater runs: https://github.com/rust-lang/rust/pull/129466.
...and remove the `const_arg_path` feature gate as a result. It was only
a stopgap measure to fix the regression that the new lowering introduced
(which should now be fixed by this PR).
Fix `clippy::useless_conversion`
Self-explanatory. Probably the last clippy change I'll actually put up since this is the only other one I've actually seen in the wild.
Simplify some nested `if` statements
Applies some but not all instances of `clippy::collapsible_if`. Some ended up looking worse afterwards, though, so I left those out. Also applies instances of `clippy::collapsible_else_if`
Review with whitespace disabled please.
Rollup of 11 pull requests
Successful merges:
- #128316 (Stabilize most of `io_error_more`)
- #129473 (use `download-ci-llvm=true` in the default compiler config)
- #129529 (Add test to build crates used by r-a on stable)
- #129981 (Remove `serialized_bitcode` from `LtoModuleCodegen`.)
- #130094 (Inform the solver if evaluation is concurrent)
- #130132 ([illumos] enable SIGSEGV handler to detect stack overflows)
- #130146 (bootstrap `naked_asm!` for `compiler-builtins`)
- #130149 (Helper function for formatting with `LifetimeSuggestionPosition`)
- #130152 (adapt a test for llvm 20)
- #130162 (bump download-ci-llvm-stamp)
- #130164 (move some const fn out of the const_ptr_as_ref feature)
r? `@ghost`
`@rustbot` modify labels: rollup
interpret: make typed copies lossy wrt provenance and padding
A "typed copy" in Rust can be a lossy process: when copying at type `usize` (or any other non-pointer type), if the original memory had any provenance, that provenance is lost. When copying at pointer type, if the original memory had partial provenance (i.e., not the same provenance for all bytes), that provenance is lost. When copying any type with padding, the contents of padding are lost.
This PR equips our validity-checking pass with the ability to reset provenance and padding according to those rules. Can be reviewed commit-by-commit. The first three commits are just preparation without any functional change.
Fixes https://github.com/rust-lang/miri/issues/845
Fixes https://github.com/rust-lang/miri/issues/2182
Parallel compilation of a program can cause unexpected event sequencing.
Inform the solver when this is true so it can skip invalid asserts, then
assert replaced solutions are equal if Some
Correctly handle stability of `#[diagnostic]` attributes
This commit changes the way we treat the stability of attributes in the
`#[diagnostic]` namespace. Instead of relaying on ad-hoc checks to
ensure at call side that a certain attribute is really usable at that
location it centralises the logic to one place. For diagnostic
attributes comming from other crates it just skips serializing
attributes that are not stable and that do not have the corresponding
feature enabled. For attributes from the current crate we can just use
the feature information provided by `TyCtx`.
r? `@compiler-errors`
This commit changes the way we treat the stability of attributes in the
`#[diagnostic]` namespace. Instead of relaying on ad-hoc checks to
ensure at call side that a certain attribute is really usable at that
location it centralises the logic to one place. For diagnostic
attributes comming from other crates it just skips serializing
attributes that are not stable and that do not have the corresponding
feature enabled. For attributes from the current crate we can just use
the feature information provided by `TyCtx`.