Remove extra check cfg handled by libc directly
The `libc` crate has handle for quite some time now [check-cfg in it's own build script](497ac428bc/build.rs (L6-L32)).
We therefor no longer need to manually define them.
add safe compilation options
Add two options when building rustc : strip and stack protector.
If set `strip = true`, `rustc` will be stripped of symbols using `-Cstrip=symbols`.
Also can set `stack-protector` and then `rustc` will be compiled with stack protectors.
Add new targets {x86_64,i686}-win7-windows-msvc
This PR adds two new Tier 3 targets, x86_64-win7-windows-msvc and i686-win7-windows-msvc, that aim to support targeting Windows 7 after the `*-pc-windows-msvc` target drops support for it (slated to happen in 1.76.0).
# Tier 3 target policy
> At this tier, the Rust project provides no official support for a target, so we place minimal requirements on the introduction of targets.
>
> A proposed new tier 3 target must be reviewed and approved by a member of the compiler team based on these requirements. The reviewer may choose to gauge broader compiler team consensus via a [Major Change Proposal (MCP)](https://forge.rust-lang.org/compiler/mcp.html).
>
> A proposed target or target-specific patch that substantially changes code shared with other targets (not just target-specific code) must be reviewed and approved by the appropriate team for that shared code before acceptance.
>
> - A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
This is me, `@roblabla` on github.
> - Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
I went with naming the target `x86_64-win7-windows-msvc`, inserting the `win7` in the vendor field (usually set to to `pc`). This is done to avoid ecosystem churn, as quite a few crates have `cfg(target_os = "windows")` or `cfg(target_env = "msvc")`, but nearly no `cfg(target_vendor = "pc")`. Since my goal is to be able to seamlessly swap to the `win7` target, I figured it'd be easier this way.
> - Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
I believe the naming is pretty explicit.
> - If possible, use only letters, numbers, dashes and underscores for the name. Periods (`.`) are known to cause issues in Cargo.
The name comforms to this requirement.
> - Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
> - The target must not introduce license incompatibilities.
> - Anything added to the Rust repository must be under the standard Rust license (`MIT OR Apache-2.0`).
> - The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the `tidy` tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
> - Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, `rustc` built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
> - "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are *not* limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
As far as I understand it, this target has exactly the same legal situation as the existing Tier 1 x86_64-pc-windows-msvc.
> - Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
> - This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
Understood.
> - Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
This target supports the whole libstd surface, since it's essentially reusing all of the x86_64-pc-windows-msvc target. Understood.
> - The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
Wrote some documentation on how to build, test and cross-compile the target in the `platform-support` part. Hopefully it's enough to get started.
> - Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via ``@`)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
> - Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
Understood.
> - Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
> - In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
Understood.
> If a tier 3 target stops meeting these requirements, or the target maintainers no longer have interest or time, or the target shows no signs of activity and has not built for some time, or removing the target would improve the quality of the Rust codebase, we may post a PR to remove it; any such PR will be CCed to the target maintainers (and potentially other people who have previously worked on the target), to check potential interest in improving the situation.
Understood.
Add emulated TLS support
This is a reopen of https://github.com/rust-lang/rust/pull/96317 . many android devices still only use 128 pthread keys, so using emutls can be helpful.
Currently LLVM uses emutls by default for some targets (such as android, openbsd), but rust does not use it, because `has_thread_local` is false.
This commit has some changes to allow users to enable emutls:
1. add `-Zhas-thread-local` flag to specify that std uses `#[thread_local]` instead of pthread key.
2. when using emutls, decorate symbol names to find thread local symbol correctly.
3. change `-Zforce-emulated-tls` to `-Ztls-model=emulated` to explicitly specify whether to generate emutls.
r? `@Amanieu`
Introduce support for `async gen` blocks
I'm delighted to demonstrate that `async gen` block are not very difficult to support. They're simply coroutines that yield `Poll<Option<T>>` and return `()`.
**This PR is WIP and in draft mode for now** -- I'm mostly putting it up to show folks that it's possible. This PR needs a lang-team experiment associated with it or possible an RFC, since I don't think it falls under the jurisdiction of the `gen` RFC that was recently authored by oli (https://github.com/rust-lang/rfcs/pull/3513, https://github.com/rust-lang/rust/issues/117078).
### Technical note on the pre-generator-transform yield type:
The reason that the underlying coroutines yield `Poll<Option<T>>` and not `Poll<T>` (which would make more sense, IMO, for the pre-transformed coroutine), is because the `TransformVisitor` that is used to turn coroutines into built-in state machine functions would have to destructure and reconstruct the latter into the former, which requires at least inserting a new basic block (for a `switchInt` terminator, to match on the `Poll` discriminant).
This does mean that the desugaring (at the `rustc_ast_lowering` level) of `async gen` blocks is a bit more involved. However, since we already need to intercept both `.await` and `yield` operators, I don't consider it much of a technical burden.
r? `@ghost`
never_patterns: Parse match arms with no body
Never patterns are meant to signal unreachable cases, and thus don't take bodies:
```rust
let ptr: *const Option<!> = ...;
match *ptr {
None => { foo(); }
Some(!),
}
```
This PR makes rustc accept the above, and enforces that an arm has a body xor is a never pattern. This affects parsing of match arms even with the feature off, so this is delicate. (Plus this is my first non-trivial change to the parser).
~~The last commit is optional; it introduces a bit of churn to allow the new suggestions to be machine-applicable. There may be a better solution? I'm not sure.~~ EDIT: I removed that commit
r? `@compiler-errors`
Rollup of 8 pull requests
Successful merges:
- #118505 (Elaborate on ip_addr bit conversion endianness)
- #118581 (OnceLock: Add note about drop and statics)
- #118677 ([rustdoc] Fix display of features)
- #118690 (coverage: Avoid unnecessary macros in unit tests)
- #118693 (Tell MirUsedCollector that the pointer alignment checks calls its panic symbol)
- #118695 (coverage: Merge refined spans in a separate final pass)
- #118709 (fix jobserver GLOBAL_CLIENT_CHECKED uninitialized before use)
- #118722 (rustdoc: remove unused parameter `reversed` from onEach(Lazy))
r? `@ghost`
`@rustbot` modify labels: rollup
rustdoc: remove unused parameter `reversed` from onEach(Lazy)
This feature was added in edec5807ac to support JavaScript-based toggles that were later replaced with HTML `<details>`.
Avoid adding builtin functions to `symbols.o`
We found performance regressions in #113923. The problem seems to be that `--gc-sections` does not remove these symbols. I tested that lld removes these symbols, but ld and gold do not.
I found that `used` adds symbols to `symbols.o` at 3e202ead60/compiler/rustc_codegen_ssa/src/back/linker.rs (L1786-L1791).
The PR removes builtin functions.
Note that under LTO, ld still preserves these symbols. (lld will still remove them.)
The first commit also fixes#118559. But I think the second commit also makes sense.
compile-time evaluation: detect writes through immutable pointers
This has two motivations:
- it unblocks https://github.com/rust-lang/rust/pull/116745 (and therefore takes a big step towards `const_mut_refs` stabilization), because we can now detect if the memory that we find in `const` can be interned as "immutable"
- it would detect the UB that was uncovered in https://github.com/rust-lang/rust/pull/117905, which was caused by accidental stabilization of `copy` functions in `const` that can only be called with UB
When UB is detected, we emit a future-compat warn-by-default lint. This is not a breaking change, so completely in line with [the const-UB RFC](https://rust-lang.github.io/rfcs/3016-const-ub.html), meaning we don't need t-lang FCP here. I made the lint immediately show up for dependencies since it is nearly impossible to even trigger this lint without `const_mut_refs` -- the accidentally stabilized `copy` functions are the only way this can happen, so the crates that popped up in #117905 are the only causes of such UB (in the code that crater covers), and the three cases of UB that we know about have all been fixed in their respective crates already.
The way this is implemented is by making use of the fact that our interpreter is already generic over the notion of provenance. For CTFE we now use the new `CtfeProvenance` type which is conceptually an `AllocId` plus a boolean `immutable` flag (but packed for a more efficient representation). This means we can mark a pointer as immutable when it is created as a shared reference. The flag will be propagated to all pointers derived from this one. We can then check the immutable flag on each write to reject writes through immutable pointers.
I just hope perf works out.
Re-enable `rustc_codegen_gcc` tests in CI
When #117947 dropped llvm-15 from CI, we neglected to copy #117313's changes to enable `rustc_codegen_gcc` testing to the new base llvm-16. This is now restored, as well as copying the setup to llvm-17 as well so we hopefully won't miss it next time.
In addition, due to case mismatch in `$extra_env` updates in `docker/run.sh`, I think it wasn't actually getting enabled before, but this should now be fixed. I also avoided the linker hack for `libgccjit.so` that was present before, because that's not needed if the version matches the base `gcc` used for linking.
r? GuillaumeGomez
add comment about keeping flags in sync between bootstrap.py and bootstrap.rs
They got out of sync, probably because this comment was missing on the Python side (it only exists on the Rust side). https://github.com/rust-lang/rust/pull/118642 brings the flags back in sync but does not fix the comment, so let's do that here.
r? clubby789
`riscv32` platform support
This PR adds the following RISCV targets to the tier 2 list of targets:
- riscv32imafc-unknown-none-elf
- riscv32im-unknown-none-elf
The rationale behind adding them directly to tier 2, is that the other bare metal targets already exist at tier 2, and these new targets are the same with an additional target feature enabled.
As well as the additional targets, this PR fills out the platform support document(s) that were previously missing.
~~The RISC-V bare metal targets don't currently have a platform support document, but this will change soon as the RISC-V team from the Rust-embedded working group will maintain these once https://github.com/davidtwco/rust/pull/1 is merged (and `@davidtwco's` upstream PR is merged after). For the time being you can cc myself or any other member of the RISC-V team: https://github.com/orgs/rust-embedded/teams/riscv.~~
> A tier 2 target must have value to people other than its maintainers. (It may still be a niche target, but it must not be exclusively useful for an inherently closed group.)
RISC-V is an open specification, used and accessible to anyone including individuals.
> A tier 2 target must have a designated team of developers (the "target maintainers") available to consult on target-specific build-breaking issues, or if necessary to develop target-specific language or library implementation details. This team must have at least 2 developers.
This rust-embedded working group's [RISCV team](https://github.com/orgs/rust-embedded/teams/riscv) will maintain these targets.
> The target must not place undue burden on Rust developers not specifically concerned with that target. Rust developers are expected to not gratuitously break a tier 2 target, but are not expected to become experts in every tier 2 target, and are not expected to provide target-specific implementations for every tier 2 target.
I don't forsee this being an issue, the RISCV team will ensure we avoid undue burden for the general Rust community.
> The target must provide documentation for the Rust community explaining how to build for the target using cross-compilation, and explaining how to run tests for the target. If at all possible, this documentation should show how to run Rust programs and tests for the target using emulation, to allow anyone to do so. If the target cannot be feasibly emulated, the documentation should explain how to obtain and work with physical hardware, cloud systems, or equivalent.
There are links to resources we maintain in the re wg org in the platform support document.
> The target must document its baseline expectations for the features or versions of CPUs, operating systems, libraries, runtime environments, and similar.
Documented in the platform support document.
> If introducing a new tier 2 or higher target that is identical to an existing Rust target except for the baseline expectations for the features or versions of CPUs, operating systems, libraries, runtime environments, and similar, then the proposed target must document to the satisfaction of the approving teams why the specific difference in baseline expectations provides sufficient value to justify a separate target.
New target features in RISCV can drastically change the capability of a CPU, hence the need for a separate target to support different variants. We aim to support any ratified RISCV extensions.
> Tier 2 targets must not leave any significant portions of core or the standard library unimplemented or stubbed out, unless they cannot possibly be supported on the target.
`core` is fully implemented.
> The code generation backend for the target should not have deficiencies that invalidate Rust safety properties, as evaluated by the Rust compiler team. (This requirement does not apply to arbitrary security enhancements or mitigations provided by code generation backends, only to those properties needed to ensure safe Rust code cannot cause undefined behavior or other unsoundness.) If this requirement does not hold, the target must clearly and prominently document any such limitations as part of the target's entry in the target tier list, and ideally also via a failing test in the testsuite. The Rust compiler team must be satisfied with the balance between these limitations and the difficulty of implementing the necessary features.
RISCV is a well-established and well-maintained LLVM backend. To the best of my knowledge, the backend won't cause the generated code to have undefined behaviour.
> If the target supports C code, and the target has an interoperable calling convention for C code, the Rust target must support that C calling convention for the platform via extern "C". The C calling convention does not need to be the default Rust calling convention for the target, however.
The C calling convention is supported by RISCV.
> The target must build reliably in CI, for all components that Rust's CI considers mandatory.
For the last 4-5 years many of these RISCV targets have been building in CI without any known issues.
> The approving teams may additionally require that a subset of tests pass in CI, such as enough to build a functional "hello world" program, ./x.py test --no-run, or equivalent "smoke tests". In particular, this requirement may apply if the target builds host tools, or if the tests in question provide substantial value via early detection of critical problems.
Not applicable, in the future we may wish to add qemu tests but this is out of scope for now.
> Building the target in CI must not take substantially longer than the current slowest target in CI, and should not substantially raise the maintenance burden of the CI infrastructure. This requirement is subjective, to be evaluated by the infrastructure team, and will take the community importance of the target into account.
To the best of my knowledge, this will not induce a burden on the current CI infra.
> Tier 2 targets should, if at all possible, support cross-compiling. Tier 2 targets should not require using the target as the host for builds, even if the target supports host tools.
Cross-compilation is supported and documented in the platform support document.
> In addition to the legal requirements for all targets (specified in the tier 3 requirements), because a tier 2 target typically involves the Rust project building and supplying various compiled binaries, incorporating the target and redistributing any resulting compiled binaries (e.g. built libraries, host tools if any) must not impose any onerous license requirements on any members of the Rust project, including infrastructure team members and those operating CI systems. This is a subjective requirement, to be evaluated by the approving teams.
There are no additional license issues to worry about.
> Tier 2 targets must not impose burden on the authors of pull requests, or other developers in the community, to ensure that tests pass for the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on tests failing for the target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding the PR breaking tests on a tier 2 target, unless they have opted into such messages.
The RISCV team agrees not to do this.
> The target maintainers should regularly run the testsuite for the target, and should fix any test failures in a reasonably timely fashion.
The RISCV team will fix any issues in a timely manner.
Currently LLVM uses emutls by default
for some targets (such as android, openbsd),
but rust does not use it, because `has_thread_local` is false.
This commit has some changes to allow users to enable emutls:
1. add `-Zhas-thread-local` flag to specify
that std uses `#[thread_local]` instead of pthread key.
2. when using emutls, decorate symbol names
to find thread local symbol correctly.
3. change `-Zforce-emulated-tls` to `-Ztls-model=emulated`
to explicitly specify whether to generate emutls.
Remove `#[rustc_host]`, use internal desugaring
Also removed a way for users to explicitly specify the host param since that isn't particularly useful. This should eliminate any pain with encoding attributes across crates and etc.
r? `@compiler-errors`
Use `unwinding` crate for unwinding on Xous platform
This patch adds support for using [unwinding](https://github.com/nbdd0121/unwinding) on platforms where libunwinding isn't viable. An example of such a platform is `riscv32imac-unknown-xous-elf`.
### Background
The Rust project maintains a fork of llvm at [llvm-project](https://github.com/rust-lang/llvm-project/) where it applies patches on top of the llvm project. This mostly seems to be to get unwinding support for the SGX project, and there may be other patches that I'm unaware of.
There is a lot of machinery in the build system to support compiling `libunwind` on other platforms, and I needed to add additional patches to llvm in order to add support for Xous.
Rather than continuing down this path, it seemed much easier to use a Rust-based library. The `unwinding` crate by `@nbdd0121` fits this description perfectly.
### Future work
This could potentially replace the custom patches for `libunwind` on other platforms such as SGX, and could enable unwinding support on many more exotic platforms.
### Anti-goals
This is not designed to replace `libunwind` on tier-one platforms or those where unwinding support already exists. There is already a well-established approach for unwinding there. Instead, this aims to enable unwinding on new platforms where C++ code may be difficult to compile.
Add `unwinding` as a permitted dependency of rustc, as it is now used as
part of panic unwinding within platforms such as Xous.
Signed-off-by: Sean Cross <sean@xobs.io>
bootstrap(builder.rs): Don't explicitly warn against `semicolon_in_expressions_from_macros`
This already wasn't passed in bootstrap.py and the lint itself already warns-by-default for 2 years now and has already been added to the future-incompat group in Rust 1.68.
See https://github.com/rust-lang/rust/issues/79813 for the tracking issue.
Add support for making lib features internal
We have the notion of an "internal" lang feature: a feature that is never intended to be stabilized, and using which can cause ICEs and other issues without that being considered a bug.
This extends that idea to lib features as well. It is an alternative to https://github.com/rust-lang/rust/pull/115623: instead of using an attribute to declare lib features internal, we simply do this based on the name. Everything ending in `_internals` or `_internal` is considered internal.
Then we rename `core_intrinsics` to `core_intrinsics_internal`, which fixes https://github.com/rust-lang/rust/issues/115597.
Add support for `gen fn`
This builds on #116447 to add support for `gen fn` functions. For the most part we follow the same approach as desugaring `async fn`, but replacing `Future` with `Iterator` and `async {}` with `gen {}` for the body.
The version implemented here uses the return type of a `gen fn` as the yield type. For example:
```rust
gen fn count_to_three() -> i32 {
yield 1;
yield 2;
yield 3;
}
```
In the future, I think we should experiment with a syntax like `gen fn count_to_three() yield i32 { ... }`, but that can go in another PR.
cc `@oli-obk` `@compiler-errors`
Update books
## rust-lang/nomicon
1 commits in 1842257814919fa62e81bdecd5e8f95be2839dbb..83d015105e6d490fc30d6c95da1e56152a50e228
2023-11-22 15:35:31 UTC to 2023-11-22 15:35:31 UTC
- Reword the section on general race conditions (rust-lang/nomicon#431)
## rust-lang/reference
5 commits in cd8193e972f61b92117095fc73b67af767b4d6bc..692d216f5a1151e8852ddb308ba64040e634c876
2023-12-04 09:45:06 UTC to 2023-11-21 17:57:18 UTC
- Fix note on `self` coercion (rust-lang/reference#1431)
- Document C string literal tokens. (rust-lang/reference#1423)
- type-layout.md: Warn about repr(align)/repr(packed) and field order (rust-lang/reference#1430)
- Lone `self` in a method body resolves to the self parameter (rust-lang/reference#1427)
- Reference wildcard patterns from underscore expr (rust-lang/reference#1428)
## rust-lang/rust-by-example
4 commits in a6581246f96837113968c02187db24f742af3908..da0a06aada31a324ae84a9eaee344f6a944b9683
2023-11-27 12:50:49 UTC to 2023-11-21 11:58:19 UTC
- fix tiny typo in string conversion docs (rust-lang/rust-by-example#1776)
- fix(arg): Remove reference to Rust Cookbook in arg parsing (rust-lang/rust-by-example#1775)
- fix:typo error (rust-lang/rust-by-example#1774)
- Remove space between `&` and `self` (rust-lang/rust-by-example#1772)
## rust-lang/rustc-dev-guide
5 commits in ddb8b1309f9e905804cea1e248a4572fed6b464b..904bb5aa7b21adad58ffae610e2830c7b0f813b0
2023-11-28 13:13:36 UTC to 2023-11-22 06:13:00 UTC
- Update how-to-build-and-run.md (rust-lang/rustc-dev-guide#1828)
- notification groups: add information about how to ping them (rust-lang/rustc-dev-guide#1818)
- Add explanations on how to run rustc_codegen_gcc tests (rust-lang/rustc-dev-guide#1821)
- Add back the `canonicalization` chapter. (rust-lang/rustc-dev-guide#1532)
- Emphasize that the experts map is not up to date (rust-lang/rustc-dev-guide#1826)
Fix `x` not to quit after `x` prints `settings.json`
I fixed the `x` not to quit after the `x` prints `.vscode/settings.json`.
The command `x setup` ask as following:
```
x.py can automatically install the recommended `.vscode/settings.json` file for rustc development
Would you like to create/update `settings.json`, or only print suggested settings?: [y/p/N]
```
When user types `p`, the `x` prints the contents and quit the program.
It is a hassle to start the command again, so I fixed the `x` to ask what to do again.
Remove mention of rust to make the error message generic.
The deprecation notice is used when in crates as well. This applies to versions Rust or Crates.
Relates #118148
This already wasn't passed in bootstrap.py and the lint itself already warns-by-default for 2 years now and has already been added to the future-incompat group in Rust 1.68.
See https://github.com/rust-lang/rust/issues/79813 for the tracking issue.
The deprecation notice is used when in crates as well. This applies to versions Rust or Crates.
Fixes#118148
Signed-off-by: Harold Dost <h.dost@criteo.com>