```
error[E0507]: cannot move out of `*x` which is behind a shared reference
--> $DIR/borrowck-fn-in-const-a.rs:6:16
|
LL | return *x
| ^^ move occurs because `*x` has type `String`, which does not implement the `Copy` trait
|
help: consider cloning the value if the performance cost is acceptable
|
LL - return *x
LL + return x.clone()
|
```
Split an item bounds and an item's super predicates
This is the moral equivalent of #107614, but instead for predicates this applies to **item bounds**. This PR splits out the item bounds (i.e. *all* predicates that are assumed to hold for the alias) from the item *super predicates*, which are the subset of item bounds which share the same self type as the alias.
## Why?
Much like #107614, there are places in the compiler where we *only* care about super-predicates, and considering predicates that possibly don't have anything to do with the alias is problematic. This includes things like closure signature inference (which is at its core searching for `Self: Fn(..)` style bounds), but also lints like `#[must_use]`, error reporting for aliases, computing type outlives predicates.
Even in cases where considering all of the `item_bounds` doesn't lead to bugs, unnecessarily considering irrelevant bounds does lead to a regression (#121121) due to doing extra work in the solver.
## Example 1 - Trait Aliases
This is best explored via an example:
```
type TAIT<T> = impl TraitAlias<T>;
trait TraitAlias<T> = A + B where T: C;
```
The item bounds list for `Tait<T>` will include:
* `Tait<T>: A`
* `Tait<T>: B`
* `T: C`
While `item_super_predicates` query will include just the first two predicates.
Side-note: You may wonder why `T: C` is included in the item bounds for `TAIT`? This is because when we elaborate `TraitAlias<T>`, we will also elaborate all the predicates on the trait.
## Example 2 - Associated Type Bounds
```
type TAIT<T> = impl Iterator<Item: A>;
```
The `item_bounds` list for `TAIT<T>` will include:
* `Tait<T>: Iterator`
* `<Tait<T> as Iterator>::Item: A`
But the `item_super_predicates` will just include the first bound, since that's the only bound that is relevant to the *alias* itself.
## So what
This leads to some diagnostics duplication just like #107614, but none of it will be user-facing. We only see it in the UI test suite because we explicitly disable diagnostic deduplication.
Regarding naming, I went with `super_predicates` kind of arbitrarily; this can easily be changed, but I'd consider better names as long as we don't block this PR in perpetuity.
unify query canonicalization mode
Exclude from canonicalization only the static lifetimes that appear in the param env because of #118965 . Any other occurrence can be canonicalized safely AFAICT.
r? `@lcnr`
Separate move path tracking between borrowck and drop elaboration.
The primary goal of this PR is to skip creating a `MovePathIndex` for path that do not need dropping in drop elaboration.
The 2 first commits are cleanups.
The next 2 commits displace `move` errors from move-path builder to borrowck. Move-path builder keeps the same logic, but does not carry error information any more.
The remaining commits allow to filter `MovePathIndex` creation according to types. This is used in drop elaboration, to avoid computing dataflow for paths that do not need dropping.
Location-insensitive polonius: consider a loan escaping if an SCC has member constraints applied only
The location-insensitive analysis considered loans to escape if there were member constraints, which makes *some* sense for scopes and matches the scopes that NLL computes on all the tests.
However, polonius and NLLs differ on the fuzzed case #116657, where an SCC has member constraints but no applied ones (and is kinda surprising). The existing UI tests with member constraints impacting scopes all have some constraint applied.
This PR changes the location-insensitive analysis to consider a loan to escape if there are applied member constraints, and for extra paranoia/insurance via fuzzing and crater: actually checks the constraint's min choice is indeed a universal region as we expect. (This could be turned into a `debug_assert` and early return as a slight optimization after these periods of verification)
The 4 UI tests where member constraints are meaningful for computing scopes still pass obviously, and this also fixes#116657.
r? `@matthewjasper`