Commit graph

1139 commits

Author SHA1 Message Date
Matthias Krüger
55a9165644
Rollup merge of #122810 - nnethercote:rm-target_override, r=WaffleLapkin
Remove `target_override`

Because the "target can override the backend" and "backend can override the target" situation is a mess. Details in the individual commits.

r? `@WaffleLapkin`
2024-03-21 17:46:51 +01:00
Matthias Krüger
24ea68b73c
Rollup merge of #122696 - royb3:riscv32ima, r=petrochenkov
Add bare metal riscv32 target.

I asked in the embedded Rust matrix if it would be OK to clone a PR to add another riscv32 configuration. The riscv32ima in this case. ``````@MabezDev`````` was open to this suggestion as a maintainer for the Riscv targets.

I now took https://github.com/rust-lang/rust/pull/117958/ for inspiration and added/edited the appropriate files.

# [Tier 3 target policy](https://doc.rust-lang.org/nightly/rustc/target-tier-policy.html#tier-3-target-policy)

> At this tier, the Rust project provides no official support for a target, so we place minimal requirements on the introduction of targets.
>
> A proposed new tier 3 target must be reviewed and approved by a member of the compiler team based on these requirements. The reviewer may choose to gauge broader compiler team consensus via a [Major Change Proposal (MCP)](https://forge.rust-lang.org/compiler/mcp.html).
>
> A proposed target or target-specific patch that substantially changes code shared with other targets (not just target-specific code) must be reviewed and approved by the appropriate team for that shared code before acceptance.

> * A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)

The target being added is using riscv32 as a basis, with added extensions. The riscv32 targets already have a maintainer and are named in the description file.

> * Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
>   * Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
>   * If possible, use only letters, numbers, dashes and underscores for the name. Periods (.) are known to cause issues in Cargo.

Name is derived from the extensions used in the target.
> * Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
>   * The target must not introduce license incompatibilities.

Same conditions apply compared to other riscv32 targets.
>   * Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).

Same conditions apply compared to other riscv32 targets.
>   * The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.

Same conditions apply compared to other riscv32 targets.
>   * Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.

Same conditions apply compared to other riscv32 targets.
>   * "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.

Same conditions apply compared to other riscv32 targets.
> * Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
>   * This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.

Same conditions apply compared to other riscv32 targets.
> * Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.

This target is build on top of existing riscv32 targets and inherits these implementations.
> * The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.

The documentation of this target is shared along with targets that target riscv32 with a different configuration of extensions.
> * Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via ``````@)`````` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.

I now understand, apologies for the mention before.
>   * Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.

I now understand, apologies for the link to a similar PR before.
> * Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
>   * In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.

This should not cause issues, as the target has similarities to other configurations of the riscv32 targets.
> * Tier 3 targets must be able to produce assembly using at least one of rustc's supported backends from any host target.

This should not cause issues, as the target has similarities to other configurations of the riscv32 targets.
2024-03-21 12:05:06 +01:00
Nicholas Nethercote
23ee523ea6 Remove CodegenBackend::target_override.
Backend and target selection is a mess: the target can override the
backend (via `Target::default_codegen_backend`), *and* the backend can
override the target (via `CodegenBackend::target_override`).

The code that handles this is ugly. It calls `build_target_config`
twice, once before getting the backend and once again afterward. It also
must check that both overrides aren't triggering at the same time.

This commit removes the latter override. It's used in rust-gpu but
@eddyb said via Zulip that removing it would be ok. This simplifies the
code greatly, and will allow some nice follow-up refactorings.
2024-03-21 11:48:49 +11:00
Roy Buitenhuis
2fca27cd3b Add bare metal riscv32 target. 2024-03-20 16:02:10 +01:00
Mark Rousskov
02f1930595 step cfgs 2024-03-20 08:49:13 -04:00
Matthias Krüger
722514f466
Rollup merge of #122212 - erikdesjardins:byval-align2, r=wesleywiser
Copy byval argument to alloca if alignment is insufficient

Fixes #122211

"Ignore whitespace" recommended.
2024-03-14 20:00:18 +01:00
guoguangwu
ee8efd705b fix: typos
Signed-off-by: guoguangwu <guoguangwug@gmail.com>
2024-03-13 13:57:23 +08:00
bors
5b7343b966 Auto merge of #122170 - alexcrichton:rename-wasi-threads, r=petrochenkov
Rename `wasm32-wasi-preview1-threads` to `wasm32-wasip1-threads`

This commit renames the current `wasm32-wasi-preview1-threads` target to `wasm32-wasip1-threads`. The need for this rename is a bit unfortunate as the previous name was chosen in an attempt to be future-compatible with other WASI targets. Originally this target was proposed to be `wasm32-wasi-threads`, and that's what was originally implemented in wasi-sdk as well. After discussion though and with the plans for the upcoming component-model target (now named `wasm32-wasip2`) the "preview1" naming was chosen for the threads-based target. The WASI subgroup later decided that it was time to drop the "preview" terminology and recommends "pX" instead, hence previous PRs to add `wasm32-wasip2` and rename `wasm32-wasi` to `wasm32-wasip1`.

So, with all that history, the "proper name" for this target is different than its current name, so one way or another a rename is required. This PR proposes renaming this target cold-turkey, unlike `wasm32-wasi` which is having a long transition period to change its name. The threads-based target is predicted to see only a fraction of the traffic of `wasm32-wasi` due to the unstable nature of the WASI threads proposal itself.

While I was here I updated the in-tree documentation in the target spec file itself as most of the documentation was copied from the original WASI target and wasn't as applicable to this target.

Also, as an aside, I can at least try to apologize for all the naming confusion here, but this is hopefully the last WASI-related rename.
2024-03-12 08:30:46 +00:00
Matthias Krüger
7b29381c8a
Rollup merge of #122342 - ChrisDenton:defautlib, r=petrochenkov
Update /NODEFAUTLIB comment for msvc

I've tried to explain a bit more about the effects of `/NODEFAULTLIB` when using msvc link.exe (or compatible) as they're different from `-nodefaultlib` on gnu.

I also removed the part about licensing as I'm not sure licensing is an issue? Or rather, it's no more or less of an issue no matter how you link msvc libraries. The license is the one you get if using VS at all and even dynamic linking includes static code (e.g. startup/shutdown code, etc).

r? petrochenkov
2024-03-12 06:29:05 +01:00
Matthias Krüger
60ab300d47
Rollup merge of #115141 - ChrisDenton:windows-support, r=wesleywiser
Update Windows platform support

This should not be merged until Rust 1.76 but I'm told this may need an fcp in addition to [MCP 651](https://github.com/rust-lang/compiler-team/issues/651).

cc ```@rust-lang/compiler``` ```@rust-lang/release```
2024-03-12 06:29:02 +01:00
Chris Denton
aeec0d1269
Update /NODEFAUTLIB comment for msvc 2024-03-11 18:31:50 +00:00
Chris Denton
779ac6951f
Update Windows platform support 2024-03-11 17:50:33 +00:00
Alex Crichton
e1e9d38f58 Rename wasm32-wasi-preview1-threads to wasm32-wasip1-threads
This commit renames the current `wasm32-wasi-preview1-threads` target to
`wasm32-wasip1-threads`. The need for this rename is a bit unfortunate
as the previous name was chosen in an attempt to be future-compatible
with other WASI targets. Originally this target was proposed to be
`wasm32-wasi-threads`, and that's what was originally implemented in
wasi-sdk as well. After discussion though and with the plans for the
upcoming component-model target (now named `wasm32-wasip2`) the
"preview1" naming was chosen for the threads-based target. The WASI
subgroup later decided that it was time to drop the "preview"
terminology and recommends "pX" instead, hence previous PRs to add
`wasm32-wasip2` and rename `wasm32-wasi` to `wasm32-wasip1`.

So, with all that history, the "proper name" for this target is
different than its current name, so one way or another a rename is
required. This PR proposes renaming this target cold-turkey, unlike
`wasm32-wasi` which is having a long transition period to change its
name. The threads-based target is predicted to see only a fraction of
the traffic of `wasm32-wasi` due to the unstable nature of the WASI
threads proposal itself.

While I was here I updated the in-tree documentation in the target spec
file itself as most of the documentation was copied from the original
WASI target and wasn't as applicable to this target.

Also, as an aside, I can at least try to apologize for all the naming
confusion here, but this is hopefully the last WASI-related rename.
2024-03-11 09:31:41 -07:00
Jubilee
e1ceadcdfe
Rollup merge of #117458 - kjetilkjeka:embedded-linker, r=petrochenkov
LLVM Bitcode Linker: A self contained linker for nvptx and other targets

This PR introduces a new linker named `llvm-bitcode-linker`. It is a `self-contained` linker that can be used to link programs in `llbc` before optimizing and compiling to native code. It will first be used internally in the Rust compiler to enable tests for the `nvptx64-nvidia-cuda` target as the original `rust-ptx-linker` is deprecated. It will then be provided to users of the `nvptx64-nvidia-cuda` target with the purpose of linking ptx. More targets than nvptx will also be supported eventually.

The PR introduces a new unstable `LinkerFlavor` for the compiler. The compiler will also not be shipped with rustc but most likely instead be shipped in it's own unstable component (a follow up PR will be opened for this). This means that merging this PR should not add any stability guarantees.

When more details of `self-contained` is implemented it will only be possible to use the linker when `-Clink-self-contained=+linker` is passed.

<details>
  <summary>Original Description</summary>

**When this PR was created it was focused a bit differently. The original text is preserved here in case there's some interests in it**

I have experimenting with approaches to replace the ptx-linker and enable the nvptx target tests again. I think it's time to get some feedback on the approach.

### The problem
The only useful linker for the nvptx target is [this crate](https://github.com/denzp/rust-ptx-linker). Since this linker performs linking on llvm bitcode it needs to track the llvm version of rustc and use the same format. It has not been maintained for 3+ years and must be considered abandoned. Over the years rust have upgraded LLVM while the linker has been left to bitrot. It is no longer in a usable state.

Due to the difficulty of keeping the ptx-linker up to date outside of tree the nvptx tests was [disabled a long time ago](f8f9a2869c). It was [previously discussed](https://github.com/rust-lang/rust/pull/96842#issuecomment-1146470177) if adding the ptx-linker to the rust repo would be a possibility. My efforts in doing this stopped at getting an answered if the license would prohibit it from inclusion in the [Rust repo](https://github.com/rust-lang/rust/pull/96842#issuecomment-1148397554). I therefore concluded that a re-write would be necessary.

### The possible solution presented here
The llvm tools know perfectly well how to link and optimize llvm bitcode. Each of them only perform a single task, and are therefore a bit cumbersome to call with the current linker approach rustc takes.

This PR adds a simple tool (current name `embedded-linker`) which can link self contained (often embedded) programs in llvm bitcode before compiling to the target format. Optimization will also be performed if lto is enabled. The rust compiler will make a single invocation to this tool, while the tool will orchestrate the many calls to the llvm tools.

### The questions
 - Is having control over the nvptx linking and therefore also tests worth it to add such tool? or should the tool live outside the rust repo?
 - Is the approach of calling llvm tools acceptable? Or would we want to keep the ptx-linker approach of using the llvm library? The tools seems to provide more simplicity and stability, but more intermediate files are being written. Perhaps there also are some performance penalty for the calling tools approach.
 - What is the process for adding such tool? MCP?
 - Does adding `llvm-link` to the llvm-tool component require any process?
 - Does it require some sort of FCP to remove ptx-linker as the default linker for ptx? Or is it sufficient that using the upstream ptx-linker is broken in its current state. it is possible to use a somewhat patched version of ptx-linker.
</details>
2024-03-11 09:29:32 -07:00
Jubilee
86af4d25a5
Rollup merge of #116793 - WaffleLapkin:target_rules_the_backend, r=cjgillot
Allow targets to override default codegen backend

Implements https://github.com/rust-lang/compiler-team/issues/670.
2024-03-11 09:29:32 -07:00
Erik Desjardins
818f13095a update make_indirect_byval comment about missing fix (this PR is the fix) 2024-03-11 09:39:43 -04:00
Kjetil Kjeka
43f2055af5 LLVM Bitcode Linker: Add as a linker known to the compiler 2024-03-11 13:35:35 +01:00
Kjetil Kjeka
af42d2a4b2 NVPTX: Enable self-contained for the nvptx target 2024-03-11 13:35:35 +01:00
bors
d255c6a57c Auto merge of #122305 - Nilstrieb:target-tiers, r=davidtwco
Add metadata to targets

follow up to #121905 and #122157

This adds four pieces of metadata to every target:
- description
- tier
- host tools
- std

This information is currently scattered across target docs and both
- not machine readable, making validation harder
- sometimes subtly encoding by the table it's in, causing mistakes and making it harder to review changes to the properties

By putting it in the compiler, we improve this. Later, we will use this canonical information to generate target documentation from it.

I used find-replace for all the `description: None`.

One thing I'm not sure about is the behavior for the JSON. It doesn't really make sense that custom targets supply this information, especially the tier. But for the roundtrip tests, we do need to print and parse it. Maybe emit a warning when a custom target provides the metadata key? Either way, I don't think that's important right now, this PR should get merged ASAP or it will conflict all over the place.

r? davidtwco
2024-03-11 12:27:15 +00:00
bors
a6d93acf5f Auto merge of #122050 - erikdesjardins:sret, r=nikic
Stop using LLVM struct types for byval/sret

For `byval` and `sret`, the type has no semantic meaning, only the size matters\*†. Using `[N x i8]` is a more direct way to specify that we want `N` bytes, and avoids relying on LLVM's struct layout.

\*: The alignment would matter, if we didn't explicitly specify it. From what I can tell, we always specified the alignment for `sret`; for `byval`, we didn't until #112157.

†: For `byval`, the hidden copy may be impacted by padding in the LLVM struct type, i.e. padding bytes may not be copied. (I'm not sure if this is done today, but I think it would be legal.) But we manually pad our LLVM struct types specifically to avoid there ever being LLVM-visible padding, so that shouldn't be an issue.

Split out from #121577.

r? `@nikic`
2024-03-11 04:45:27 +00:00
Nilstrieb
5bcb66cfb3 Add metadata to targets
This adds four pieces of metadata to every target:
- description
- tier
- host tools
- std

This information is currently scattered across target docs and both
- not machine readable, making validation harder
- sometimes subtly encoding by the table it's in, causing mistakes and
  making it harder to review changes to the properties

By putting it in the compiler, we improve this. Later, we will use this
canonical information to generate target documentation from it.
2024-03-10 20:46:08 +01:00
erikdesjardins
549eac374f
once byval abi is computed, the target abi isn't used further
Co-authored-by: Ralf Jung <post@ralfj.de>
2024-03-09 12:49:35 -05:00
Erik Desjardins
38324a1f4f improve byval abi docs 2024-03-09 12:08:48 -05:00
Matthias Krüger
b9a3952479
Rollup merge of #122157 - dpaoliello:targetdesc, r=Nilstrieb
Add the new description field to Target::to_json, and add descriptions for some MSVC targets

The original PR to add a `description` field to `Target` (<https://github.com/rust-lang/rust/pull/121905>) didn't add the field to `Target::to_json`, which meant that the `check_consistency` testwould fail if you tried to set a description as it wouldn't survive round-tripping via JSON: https://github.com/rust-lang/rust/actions/runs/8180997936/job/22370052535#step:27:4967

This change adds the field to `Target::to_json`, and sets some descriptions to verify that it works correctly.
2024-03-08 21:02:01 +01:00
Daniel Paoliello
d6b597b786 Add the new description field to Target::to_json, and add descriptions for some MSVC targets 2024-03-08 09:57:20 -08:00
Matthias Krüger
7e6a6d0779
Rollup merge of #121832 - heiher:loongarch64-musl, r=wesleywiser
Add new Tier-3 target: `loongarch64-unknown-linux-musl`

MCP: https://github.com/rust-lang/compiler-team/issues/518
2024-03-08 08:19:18 +01:00
Erik Desjardins
c56ffaa3af fix now-incorrect parenthetical about byval attr 2024-03-07 18:00:36 -05:00
bors
9c3ad802d9 Auto merge of #119199 - dpaoliello:arm64ec, r=petrochenkov
Add arm64ec-pc-windows-msvc target

Introduces the `arm64ec-pc-windows-msvc` target for building Arm64EC ("Emulation Compatible") binaries for Windows.

For more information about Arm64EC see <https://learn.microsoft.com/en-us/windows/arm/arm64ec>.

## Tier 3 policy:

> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)

I will be the maintainer for this target.

> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.

Target uses the `arm64ec` architecture to match LLVM and MSVC, and the `-pc-windows-msvc` suffix to indicate that it targets Windows via the MSVC environment.

> Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.

Target name exactly specifies the type of code that will be produced.

> If possible, use only letters, numbers, dashes and underscores for the name. Periods (.) are known to cause issues in Cargo.

Done.

> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.

> The target must not introduce license incompatibilities.

Uses the same dependencies, requirements and licensing as the other `*-pc-windows-msvc` targets.

> Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).

Understood.

> The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.

> Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.

> "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.

Uses the same dependencies, requirements and licensing as the other `*-pc-windows-msvc` targets.

> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.

> This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.

Understood, I am not a member of the Rust team.

> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.

Both `core` and `alloc` are supported.

Support for `std` depends on making changes to the standard library, `stdarch` and `backtrace` which cannot be done yet as they require fixes coming in LLVM 18.

> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.

Documentation is provided in src/doc/rustc/src/platform-support/arm64ec-pc-windows-msvc.md

> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.

> Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.

> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.

> In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.

Understood.
2024-03-07 20:18:54 +00:00
Daniel Paoliello
a6a556c2a9 Add arm64ec-pc-windows-msvc target
Introduces the `arm64ec-pc-windows-msvc` target for building Arm64EC ("Emulation Compatible") binaries for Windows.

For more information about Arm64EC see <https://learn.microsoft.com/en-us/windows/arm/arm64ec>.

Tier 3 policy:

> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)

I will be the maintainer for this target.

> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.

Target uses the `arm64ec` architecture to match LLVM and MSVC, and the `-pc-windows-msvc` suffix to indicate that it targets Windows via the MSVC environment.

> Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.

Target name exactly specifies the type of code that will be produced.

> If possible, use only letters, numbers, dashes and underscores for the name. Periods (.) are known to cause issues in Cargo.

Done.

> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.

> The target must not introduce license incompatibilities.

Uses the same dependencies, requirements and licensing as the other `*-pc-windows-msvc` targets.

> Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).

Understood.

> The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.

> Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.

> "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.

Uses the same dependencies, requirements and licensing as the other `*-pc-windows-msvc` targets.

> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.

> This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.

Understood, I am not a member of the Rust team.

> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.

Both `core` and `alloc` are supported.

Support for `std` dependends on making changes to the standard library, `stdarch` and `backtrace` which cannot be done yet as the bootstrapping compiler raises a warning ("unexpected `cfg` condition value") for `target_arch = "arm64ec"`.

> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.

Documentation is provided in src/doc/rustc/src/platform-support/arm64ec-pc-windows-msvc.md

> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via @) to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.

> Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.

> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.

> In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.

Understood.
2024-03-06 17:49:37 -08:00
WANG Rui
e81df3f322 loongarch: add frecipe and relax target feature 2024-03-06 17:24:32 +08:00
WANG Rui
d756375234 Add new Tier-3 target: loongarch64-unknown-linux-musl
MCP: https://github.com/rust-lang/compiler-team/issues/518
2024-03-06 10:10:32 +08:00
Nilstrieb
1db67fb854 Add a description field to target definitions
This is the short description (`64-bit MinGW (Windows 7+)`) including
the platform requirements.

The reason for doing it like this is that this PR will be quite prone to
conflicts whenever targets get added, so it should be as simple as
possible to get it merged. Future PRs which migrate targets are scoped
to groups of targets, so they will not conflict as they can just touch
these.

This moves some of the information from the rustc book into the
compiler.
It cannot be queried yet, that is future work. It is also future work to
fill out all the descriptions, which will coincide with the work of
moving over existing target docs to the new format.
2024-03-05 15:42:10 +00:00
bors
d18480b84f Auto merge of #120468 - alexcrichton:start-wasm32-wasi-rename, r=wesleywiser
Add a new `wasm32-wasip1` target to rustc

This commit adds a new target called `wasm32-wasip1` to rustc. This new target is explained in these two MCPs:

* https://github.com/rust-lang/compiler-team/issues/607
* https://github.com/rust-lang/compiler-team/issues/695

In short, the previous `wasm32-wasi` target is going to be renamed to `wasm32-wasip1` to better live alongside the [new `wasm32-wasip2` target](https://github.com/rust-lang/rust/pull/119616). This new target is added alongside the `wasm32-wasi` target and has the exact same definition as the previous target. This PR is effectively a rename of `wasm32-wasi` to `wasm32-wasip1`. Note, however, that as explained in rust-lang/compiler-team#695 the previous `wasm32-wasi` target is not being removed at this time. This change will reach stable Rust before even a warning about the rename will be printed. At this time this change is just the start where a new target is introduced and users can start migrating if they support only Nightly for example.
2024-03-04 18:55:14 +00:00
bors
9e73597e5a Auto merge of #121903 - Nilstrieb:rename-qnx-file, r=WaffleLapkin
Remove underscore from QNX target file name

For consistency with the other QNX targets and the actual target names.
2024-03-03 11:34:21 +00:00
Alex Crichton
cb39d6c515 Add a new wasm32-wasip1 target to rustc
This commit adds a new target called `wasm32-wasip1` to rustc.
This new target is explained in these two MCPs:

* https://github.com/rust-lang/compiler-team/issues/607
* https://github.com/rust-lang/compiler-team/issues/695

In short, the previous `wasm32-wasi` target is going to be renamed to
`wasm32-wasip1` to better live alongside the [new
`wasm32-wasip2` target](https://github.com/rust-lang/rust/pull/119616).
This new target is added alongside the `wasm32-wasi` target and has the
exact same definition as the previous target. This PR is effectively a
rename of `wasm32-wasi` to `wasm32-wasip1`. Note, however, that
as explained in rust-lang/compiler-team#695 the previous `wasm32-wasi`
target is not being removed at this time. This change will reach stable
Rust before even a warning about the rename will be printed. At this
time this change is just the start where a new target is introduced and
users can start migrating if they support only Nightly for example.
2024-03-02 09:03:51 -08:00
Nilstrieb
8ca9b8dbf7 Remove underscore from QNX target file name
For consistency with the other QNX targets and the actual target names.
2024-03-02 16:50:03 +01:00
Ramon de C Valle
dee4e02102 Add initial support for DataFlowSanitizer
Adds initial support for DataFlowSanitizer to the Rust compiler. It
currently supports `-Zsanitizer-dataflow-abilist`. Additional options
for it can be passed to LLVM command line argument processor via LLVM
arguments using `llvm-args` codegen option (e.g.,
`-Cllvm-args=-dfsan-combine-pointer-labels-on-load=false`).
2024-03-01 18:50:40 -08:00
bors
6cbf0926d5 Auto merge of #121728 - tgross35:f16-f128-step1-ty-updates, r=compiler-errors
Add stubs in IR and ABI for `f16` and `f128`

This is the very first step toward the changes in https://github.com/rust-lang/rust/pull/114607 and the [`f16` and `f128` RFC](https://rust-lang.github.io/rfcs/3453-f16-and-f128.html). It adds the types to `rustc_type_ir::FloatTy` and `rustc_abi::Primitive`, and just propagates those out as `unimplemented!` stubs where necessary.

These types do not parse yet so there is no feature gate, and it should be okay to use `unimplemented!`.

The next steps will probably be AST support with parsing and the feature gate.

r? `@compiler-errors`
cc `@Nilstrieb` suggested breaking the PR up in https://github.com/rust-lang/rust/pull/120645#issuecomment-1925900572
2024-03-01 03:36:11 +00:00
Guillaume Gomez
36bd9ef5a8
Rollup merge of #120820 - CKingX:cpu-base-minimum, r=petrochenkov,ChrisDenton
Enable CMPXCHG16B, SSE3, SAHF/LAHF and 128-bit Atomics (in nightly) in Windows x64

As Rust plans to set Windows 10 as the minimum supported OS for target x86_64-pc-windows-msvc, I have added the cmpxchg16b and sse3 feature. Windows 10 requires CMPXCHG16B, LAHF/SAHF, and PrefetchW as stated in the requirements [here](https://download.microsoft.com/download/c/1/5/c150e1ca-4a55-4a7e-94c5-bfc8c2e785c5/Windows%2010%20Minimum%20Hardware%20Requirements.pdf). Furthermore, CPUs that meet these requirements also have SSE3 ([see](https://walbourn.github.io/directxmath-sse3-and-ssse3/))
2024-02-29 17:08:36 +01:00
Trevor Gross
e3f63d9375 Add f16 and f128 to rustc_type_ir::FloatTy and rustc_abi::Primitive
Make changes necessary to support these types in the compiler.
2024-02-28 12:58:32 -05:00
Ryan Levick
5e9bed7b1e
Rename wasm32-wasi-preview2 to wasm32-wasip2
Signed-off-by: Ryan Levick <me@ryanlevick.com>
2024-02-27 10:14:45 -05:00
Ryan Levick
f115064631 Add the wasm32-wasi-preview2 target
Signed-off-by: Ryan Levick <me@ryanlevick.com>
2024-02-27 09:58:04 -05:00
bors
53ed660d47 Auto merge of #120411 - erikdesjardins:netbsdcall, r=Nilstrieb
i586_unknown_netbsd: use inline stack probes

This is one of the last two targets still using "call" stack probes.

I don't believe that this target uses call stack probes for any particular reason--inline stack probes are used on [`i686_unknown_netbsd`](b362939be1/compiler/rustc_target/src/spec/targets/i686_unknown_netbsd.rs (L8)), suggesting they work on netbsd; and on [`i586_unknown_linux_gnu`](b362939be1/compiler/rustc_target/src/spec/targets/i586_unknown_linux_gnu.rs (L4)) (via the base [`i686_unknown_linux_gnu`](b362939be1/compiler/rustc_target/src/spec/targets/i686_unknown_linux_gnu.rs (L9))), suggesting they work with `cpu = "pentium"`.

...although I don't have a netbsd system to test this on.

(cc `@he32)`
2024-02-27 08:35:56 +00:00
bors
5c786a7fe3 Auto merge of #121516 - RalfJung:platform-intrinsics-begone, r=oli-obk
remove platform-intrinsics ABI; make SIMD intrinsics be regular intrinsics

`@Amanieu` `@workingjubilee` I don't think there is any reason these need to be "special"? The [original RFC](https://rust-lang.github.io/rfcs/1199-simd-infrastructure.html) indicated eventually making them stable, but I think that is no longer the plan, so seems to me like we can clean this up a bit.

Blocked on https://github.com/rust-lang/stdarch/pull/1538, https://github.com/rust-lang/rust/pull/121542.
2024-02-26 22:24:16 +00:00
Matthias Krüger
e13f454874
Rollup merge of #119590 - ChrisDenton:cfg-target-abi, r=Nilstrieb
Stabilize `cfg_target_abi`

This stabilizes the `cfg` option called `target_abi`:

```rust
#[cfg(target_abi = "eabihf")]
```

Tracking issue: #80970

fixes #78791
resolves #80970
2024-02-25 17:05:19 +01:00
Ralf Jung
cc3df0af7b remove platform-intrinsics ABI; make SIMD intrinsics be regular intrinsics 2024-02-25 08:14:52 +01:00
Chris Denton
93ec0e6299
Stabilize cfg_target_abi 2024-02-24 17:52:03 -03:00
Martin Nordholts
ff930d4fed compiler/rustc_target/src/spec/base/apple/tests.rs: Avoid unnecessary large move
Fixes:

    $ MAGIC_EXTRA_RUSTFLAGS=-Zmove-size-limit=4096 ./x test compiler/rustc_target
    error: moving 6216 bytes
      --> compiler/rustc_target/src/spec/base/apple/tests.rs:17:19
       |
    17 |     for target in all_sim_targets {
       |                   ^^^^^^^^^^^^^^^ value moved from here
       |
       = note: The current maximum size is 4096, but it can be customized with the move_size_limit attribute: `#![move_size_limit = "..."]`
       = note: `-D large-assignments` implied by `-D warnings`
       = help: to override `-D warnings` add `#[allow(large_assignments)]`
2024-02-24 09:46:18 +01:00
Matthias Krüger
26cb6c7287
Rollup merge of #120742 - Nadrieril:use-min_exh_pats, r=compiler-errors
mark `min_exhaustive_patterns` as complete

This is step 1 and 2 of my [proposal](https://github.com/rust-lang/rust/issues/119612#issuecomment-1918097361) to move `min_exhaustive_patterns` forward. The vast majority of in-tree use cases of `exhaustive_patterns` are covered by `min_exhaustive_patterns`. There are a few cases that still require `exhaustive_patterns` in tests and they're all behind references.

r? ``@ghost``
2024-02-23 17:02:03 +01:00
Nilstrieb
5540d817e3
Rollup merge of #121291 - heiher:revert-medium-cmodel, r=Nilstrieb
target: Revert default to the medium code model on LoongArch targets

This reverts commit 35dad14dfb.

Fixes #121289
2024-02-20 15:13:54 +01:00