Check alias args for WF even if they have escaping bound vars
#### What
This PR stops skipping arguments of aliases if they have escaping bound vars, instead recursing into them and only discarding the resulting obligations referencing bounds vars.
#### An example:
From the test:
```
trait Trait {
type Gat<U: ?Sized>;
}
fn test<T>(f: for<'a> fn(<&'a T as Trait>::Gat<&'a [str]>)) where for<'a> &'a T: Trait {}
//~^ ERROR the size for values of type `[()]` cannot be known at compilation time
fn main() {}
```
We now prove that `str: Sized` in order for `&'a [str]` to be well-formed. We were previously unconditionally skipping over `&'a [str]` as it referenced a buond variable. We now recurse into it and instead only discard the `[str]: 'a` obligation because of the escaping bound vars.
#### Why?
This is a change that improves consistency about proving well-formedness earlier in the pipeline, which is necessary for future work on where-bounds in binders and correctly handling higher-ranked implied bounds. I don't expect this to fix any unsoundness.
#### What doesn't it fix?
Specifically, this doesn't check projection predicates' components are well-formed, because there are too many regressions: https://github.com/rust-lang/rust/pull/123737#issuecomment-2052198478
This makes `-Zprint-type-sizes`'s output easier to read, because the
name of an `async fn` is more immediately recognizable than its span.
I also deleted the comment "FIXME(eddyb) should use `def_span`." because
it appears to have already been fixed by commit 67727aa7c3.
Rollup of 15 pull requests
Successful merges:
- #116791 (Allow codegen backends to opt-out of parallel codegen)
- #116793 (Allow targets to override default codegen backend)
- #117458 (LLVM Bitcode Linker: A self contained linker for nvptx and other targets)
- #119385 (Fix type resolution of associated const equality bounds (take 2))
- #121438 (std support for wasm32 panic=unwind)
- #121893 (Add tests (and a bit of cleanup) for interior mut handling in promotion and const-checking)
- #122080 (Clarity improvements to `DropTree`)
- #122152 (Improve diagnostics for parenthesized type arguments)
- #122166 (Remove the unused `field_remapping` field from `TypeLowering`)
- #122249 (interpret: do not call machine read hooks during validation)
- #122299 (Store backtrace for `must_produce_diag`)
- #122318 (Revision-related tweaks for next-solver tests)
- #122320 (Use ptradd for vtable indexing)
- #122328 (unix_sigpipe: Replace `inherit` with `sig_dfl` in syntax tests)
- #122330 (bootstrap readme: fix, improve, update)
r? `@ghost`
`@rustbot` modify labels: rollup
This improves parallel rustc parallelism by avoiding the bottleneck after each individual `par_body_owners` (because it needs to wait for queries to finish, so if there is one long running one, a lot of cores will be idle while waiting for the single query).
Account for non-overlapping unmet trait bounds in suggestion
When a method not found on a type parameter could have been provided by any
of multiple traits, suggest each trait individually, instead of a single
suggestion to restrict the type parameter with *all* of them.
Before:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
help: consider restricting the type parameters to satisfy the trait bounds
|
LL | fn g<T>(a: T, b: T) -> std::cmp::Ordering where T: Iterator, T: Ord {
| +++++++++++++++++++++++++
```
After:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
= help: items from traits can only be used if the type parameter is bounded by the trait
help: the following traits define an item `cmp`, perhaps you need to restrict type parameter `T` with one of them:
|
LL | fn g<T: Ord>(a: T, b: T) -> std::cmp::Ordering {
| +++++
LL | fn g<T: Iterator>(a: T, b: T) -> std::cmp::Ordering {
| ++++++++++
```
Fix#108428.
Follow up to #120396, only last commit is relevant.
Expand the primary span of E0277 when the immediate unmet bound is not what the user wrote:
```
error[E0277]: the trait bound `i32: Bar` is not satisfied
--> f100.rs:6:6
|
6 | <i32 as Foo>::foo();
| ^^^ the trait `Bar` is not implemented for `i32`, which is required by `i32: Foo`
|
help: this trait has no implementations, consider adding one
--> f100.rs:2:1
|
2 | trait Bar {}
| ^^^^^^^^^
note: required for `i32` to implement `Foo`
--> f100.rs:3:14
|
3 | impl<T: Bar> Foo for T {}
| --- ^^^ ^
| |
| unsatisfied trait bound introduced here
```
Fix#40120.
When a method not found on a type parameter could have been provided by any
of multiple traits, suggest each trait individually, instead of a single
suggestion to restrict the type parameter with *all* of them.
Before:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
help: consider restricting the type parameters to satisfy the trait bounds
|
LL | fn g<T>(a: T, b: T) -> std::cmp::Ordering where T: Iterator, T: Ord {
| +++++++++++++++++++++++++
```
After:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
= help: items from traits can only be used if the type parameter is bounded by the trait
help: the following traits define an item `cmp`, perhaps you need to restrict type parameter `T` with one of them:
|
LL | fn g<T: Ord>(a: T, b: T) -> std::cmp::Ordering {
| +++++
LL | fn g<T: Iterator>(a: T, b: T) -> std::cmp::Ordering {
| ++++++++++
```
Fix#108428.
Deduplicate more sized errors on call exprs
Change the implicit `Sized` `Obligation` `Span` for call expressions to include the whole expression. This aids the existing deduplication machinery to reduce the number of errors caused by a single unsized expression.
Change the implicit `Sized` `Obligation` `Span` for call expressions to
include the whole expression. This aids the existing deduplication
machinery to reduce the number of errors caused by a single unsized
expression.
unify query canonicalization mode
Exclude from canonicalization only the static lifetimes that appear in the param env because of #118965 . Any other occurrence can be canonicalized safely AFAICT.
r? `@lcnr`