Fix quadratic behavior of repeated vectored writes
Some implementations of `Write::write_vectored` in the standard library (`BufWriter`, `LineWriter`, `Stdout`, `Stderr`) check all buffers to calculate the total length. This is O(n) over the number of buffers.
It's common that only a limited number of buffers is written at a time (e.g. 1024 for `writev(2)`). `write_vectored_all` will then call `write_vectored` repeatedly, leading to a runtime of O(n²) over the number of buffers.
This fix is to only calculate as much as needed if it's needed.
Here's a test program:
```rust
#![feature(write_all_vectored)]
use std::fs::File;
use std::io::{BufWriter, IoSlice, Write};
use std::time::Instant;
fn main() {
let buf = vec![b'\0'; 100_000_000];
let mut slices: Vec<IoSlice<'_>> = buf.chunks(100).map(IoSlice::new).collect();
let mut writer = BufWriter::new(File::create("/dev/null").unwrap());
let start = Instant::now();
write_smart(&slices, &mut writer);
println!("write_smart(): {:?}", start.elapsed());
let start = Instant::now();
writer.write_all_vectored(&mut slices).unwrap();
println!("write_all_vectored(): {:?}", start.elapsed());
}
fn write_smart(mut slices: &[IoSlice<'_>], writer: &mut impl Write) {
while !slices.is_empty() {
// Only try to write as many slices as can be written
let res = writer
.write_vectored(slices.get(..1024).unwrap_or(slices))
.unwrap();
slices = &slices[(res / 100)..];
}
}
```
Before this change:
```
write_smart(): 6.666952ms
write_all_vectored(): 498.437092ms
```
After this change:
```
write_smart(): 6.377158ms
write_all_vectored(): 6.923412ms
```
`LineWriter` (and by extension `Stdout`) isn't fully repaired by this because it looks for newlines. I could open an issue for that after this is merged, I think it's fixable but not trivially.
Improve std::fs::read_to_string example
Resolves [#118621](https://github.com/rust-lang/rust/issues/118621)
For the original code to succeed it requires address.txt to contain a socketaddress, however it is much easier to follow if this is just any strong - eg address could be a street address or just text.
Also changed the variable name from "foo" to something more meaningful as cargo clippy warns you against using foo as a placeholder.
```
$ cat main.rs
use std::fs;
use std::error::Error;
fn main() -> Result<(), Box<dyn Error>> {
let addr: String = fs::read_to_string("address.txt")?.parse()?;
println!("{}", addr);
Ok(())
}
$ cat address.txt
123 rusty lane
san francisco 94999
$ cargo run
Finished dev [unoptimized + debuginfo] target(s) in 0.00s
Running `/home/haydon/workspace/rust-test-pr/tester/target/debug/tester`
123 rusty lane
san francisco 94999
```
Make `std::os::unix::ucred` module private
Tracking issue: #42839
Currently, this unstable module exists: [`std::os::unix::ucred`](https://doc.rust-lang.org/stable/std/os/unix/ucred/index.html).
All it does is provide `UCred` (which is also available from `std::os::unix::net`), `impl_*` (which is probably a mishap and should be private) and `peer_cred` (which is undocumented but has a documented counterpart at `std::os::unix::net::UnixStream::peer_cred`).
This PR makes the entire `ucred` module private and moves it into `net`, because that's where it is used.
I hope it's fine to simply remove it without a deprecation phase. Otherwise, I can add back a deprecated reexport module `std::os::unix::ucred`.
`@rustbot` label: -T-libs +T-libs-api
Stabilize the `#[diagnostic]` namespace and `#[diagnostic::on_unimplemented]` attribute
This PR stabilizes the `#[diagnostic]` attribute namespace and a minimal option of the `#[diagnostic::on_unimplemented]` attribute.
The `#[diagnostic]` attribute namespace is meant to provide a home for attributes that allow users to influence error messages emitted by the compiler. The compiler is not guaranteed to use any of this hints, however it should accept any (non-)existing attribute in this namespace and potentially emit lint-warnings for unused attributes and options. This is meant to allow discarding certain attributes/options in the future to allow fundamental changes to the compiler without the need to keep then non-meaningful options working.
The `#[diagnostic::on_unimplemented]` attribute is allowed to appear on a trait definition. This allows crate authors to hint the compiler to emit a specific error message if a certain trait is not implemented. For the `#[diagnostic::on_unimplemented]` attribute the following options are implemented:
* `message` which provides the text for the top level error message
* `label` which provides the text for the label shown inline in the broken code in the error message
* `note` which provides additional notes.
The `note` option can appear several times, which results in several note messages being emitted. If any of the other options appears several times the first occurrence of the relevant option specifies the actually used value. Any other occurrence generates an lint warning. For any other non-existing option a lint-warning is generated.
All three options accept a text as argument. This text is allowed to contain format parameters referring to generic argument or `Self` by name via the `{Self}` or `{NameOfGenericArgument}` syntax. For any non-existing argument a lint warning is generated.
This allows to have a trait definition like:
```rust
#[diagnostic::on_unimplemented(
message = "My Message for `ImportantTrait<{A}>` is not implemented for `{Self}`",
label = "My Label",
note = "Note 1",
note = "Note 2"
)]
trait ImportantTrait<A> {}
```
which then generates for the following code
```rust
fn use_my_trait(_: impl ImportantTrait<i32>) {}
fn main() {
use_my_trait(String::new());
}
```
this error message:
```
error[E0277]: My Message for `ImportantTrait<i32>` is not implemented for `String`
--> src/main.rs:14:18
|
14 | use_my_trait(String::new());
| ------------ ^^^^^^^^^^^^^ My Label
| |
| required by a bound introduced by this call
|
= help: the trait `ImportantTrait<i32>` is not implemented for `String`
= note: Note 1
= note: Note 2
```
[Playground with the unstable feature](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=05133acce8e1d163d481e97631f17536)
Fixes#111996
Rollup of 9 pull requests
Successful merges:
- #121958 (Fix redundant import errors for preload extern crate)
- #121976 (Add an option to have an external download/bootstrap cache)
- #122022 (loongarch: add frecipe and relax target feature)
- #122026 (Do not try to format removed files)
- #122027 (Uplift some feeding out of `associated_type_for_impl_trait_in_impl` and into queries)
- #122063 (Make the lowering of `thir::ExprKind::If` easier to follow)
- #122074 (Add missing PartialOrd trait implementation doc for array)
- #122082 (remove outdated fixme comment)
- #122091 (Note why we're using a new thread in `test_get_os_named_thread`)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove unnecessary fixme on new thread stack size
As the FIXME itself notes, there's nothing to fix here.
And as the documentation for [`CreateThread`] says of `dwStackSize`, the value is rounded up to the nearest page. A 4kb stack is very small but perfectly usable if you're careful. Of course it will be very limited but there's no reason to add artificial limits. We don't know what the user is doing.
[`CreateThread`]: https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread
Refer to "slice" instead of "vector" in Ord and PartialOrd trait impl of slices
The trait implementation comments of Ord and PartialOrd for slice incorrectly mention "vectors" instead of "slices".
This PR fixes those two comments as requested in #122071.
Note why we're using a new thread in `test_get_os_named_thread`
``@RalfJung`` expressed some "surprise and confusion" about why we're spawning a new thread in this test. Hopefully this comment will help future readers.
Add missing PartialOrd trait implementation doc for array
Analogously to vectors and slices, this PR documents the lexicographic sorting of PartialOrd as rustdoc comment on the trait implementation of PartialOrd for arrays.
Associated issue: #122073.
bootstrap/libtest: print test name eagerly on failure even with `verbose-tests=false` / `--quiet`
Previously, libtest would wait until all tests finished running to print the progress, which made it
annoying to run many tests at once (since you don't know which have failed). Change it to print the
names as soon as they fail.
This makes it much easier to know which test failed without having to wait for compiletest to completely finish running. Before:
```
Testing stage0 compiletest suite=ui mode=ui (x86_64-unknown-linux-gnu)
running 15274 tests
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 88/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 176/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 264/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 352/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 440/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 528/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiFFiiiiiii
...
```
After:
```
Testing stage0 compiletest suite=ui mode=ui (x86_64-unknown-linux-gnu)
running 15274 tests
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 88/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 176/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 264/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 352/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 440/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 528/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
[ui] tests/ui/associated-type-bounds/implied-in-supertrait.rs ... F
[ui] tests/ui/associated-type-bounds/return-type-notation/basic.rs#next_with ... F
iiiiiiiiiiiii
...
```
This serves a similar use case to the existing RUSTC_TEST_FAIL_FAST, but is on by default and as a result much more discoverable. We should consider unifying RUSTC_TEST_FAIL_FAST with the `--no-fail-fast` flag in the future for consistency and discoverability.
On modern Linux with Intel AMX and 1KiB matrices,
Arm SVE with potentially 2KiB vectors,
and RISCV Vectors with up to 16KiB vectors,
we must handle dynamic signal stack sizes.
We can do so unconditionally by using getauxval,
but assuming it may return 0 as an answer,
thus falling back to the old constant if needed.
only set noalias on Box with the global allocator
As discovered in https://github.com/rust-lang/miri/issues/3341, `noalias` and custom allocators don't go well together.
rustc can now check whether a Box uses the global allocator. This replaces the previous ad-hoc and rather unprincipled check for a zero-sized allocator.
This is the rustc part of fixing that; Miri will also need a patch.
const_eval_select: make it safe but be careful with what we expose on stable for now
As this is all still nightly-only I think `````@rust-lang/wg-const-eval````` can do that without involving t-lang.
r? `````@oli-obk`````
Cc `````@Nilstrieb````` -- the updated version of your RFC would basically say that we can remove these comments about not making behavior differences visible in stable `const fn`
Add basic i18n guidance for `Display`
I've tried to be relatively noncommittal here. The part I think is most important is to mention the concept of "display adapters" *somewhere* in the `std::fmt` documentation that has some chance of being discovered when people go looking for ways to provide context when `Display`ing their type.
Rendered:
> ### Internationalization
>
> Because a type can only have one `Display` implementation, it is often preferable to only implement `Display` when there is a single most "obvious" way that values can be formatted as text. This could mean formatting according to the "invariant" culture and "undefined" locale, or it could mean that the type display is designed for a specific culture/locale, such as developer logs.
>
> If not all values have a justifiably canonical textual format or if you want to support alternative formats not covered by the standard set of possible [formatting traits], the most flexible approach is display adapters: methods like [`str::escape_default`] or [`Path::display`] which create a wrapper implementing `Display` to output the specific display format.
>
> [formatting traits]: https://doc.rust-lang.org/nightly/std/fmt/index.html#formatting-traits
> [`str::escape_default`]: https://doc.rust-lang.org/nightly/std/primitive.str.html#method.escape_default
> [`Path::display`]: https://doc.rust-lang.org/nightly/std/path/struct.Path.html#method.display
The module docs do already have a [localization header](https://doc.rust-lang.org/nightly/std/fmt/index.html#localization), so maybe this header should be l10n instead of i18n, or maybe this information should live under that header? I'm not sure, but here on the `Display` trait at least isn't a *bad* spot to put it.
The other side of this that comes up a lot is `FromStr` compatibility, but that's for a different PR.
net: Don't use checked arithmetic when parsing numbers with known max digits
Add a branch to `Parser::read_number` that determines whether checked or regular arithmetic is used.
- If `max_digits.is_some()`, then we know we are parsing a `u8` or `u16` because `read_number` is only called with `Some(3)` or `Some(4)`. Both types fit within a `u32` without risk of overflow. Thus, we can use plain arithmetic to avoid extra instructions from `checked_mul` and `checked_add`.
Add benches for `IpAddr`, `Ipv4Addr`, `Ipv6Addr`, `SocketAddr`, `SocketAddrV4`, and `SocketAddrV6` parsing
Add ASCII fast-path for `char::is_grapheme_extended`
I discovered that `impl Debug for str` is quite slow because it ends up doing a `unicode_data::grapheme_extend::lookup` for each char, which ends up doing a binary search.
This introduces a fast-path for ASCII chars which do not have this property.
The `lookup` is thus completely gone from profiles.
---
As a followup, maybe it’s worth implementing this fast path directly in `unicode_data` so that it can check for the lower bound directly before going to a potentially expensive binary search.
Rollup of 10 pull requests
Successful merges:
- #121213 (Add an example to demonstrate how Rc::into_inner works)
- #121262 (Add vector time complexity)
- #121287 (Clarify/add `must_use` message for Rc/Arc/Weak::into_raw.)
- #121664 (Adjust error `yield`/`await` lowering)
- #121826 (Use root obligation on E0277 for some cases)
- #121838 (Use the correct logic for nested impl trait in assoc types)
- #121913 (Don't panic when waiting on poisoned queries)
- #121987 (pattern analysis: abort on arity mismatch)
- #121993 (Avoid using unnecessary queries when printing the query stack in panics)
- #121997 (interpret/cast: make more matches on FloatTy properly exhaustive)
r? `@ghost`
`@rustbot` modify labels: rollup
Use root obligation on E0277 for some cases
When encountering trait bound errors that satisfy some heuristics that tell us that the relevant trait for the user comes from the root obligation and not the current obligation, we use the root predicate for the main message.
This allows to talk about "X doesn't implement Pattern<'_>" over the most specific case that just happened to fail, like "char doesn't implement Fn(&mut char)" in
`tests/ui/traits/suggest-dereferences/root-obligation.rs`
The heuristics are:
- the type of the leaf predicate is (roughly) the same as the type from the root predicate, as a proxy for "we care about the root"
- the leaf trait and the root trait are different, so as to avoid talking about `&mut T: Trait` and instead remain talking about `T: Trait` instead
- the root trait is not `Unsize`, as to avoid talking about it in `tests/ui/coercion/coerce-issue-49593-box-never.rs`.
```
error[E0277]: the trait bound `&char: Pattern<'_>` is not satisfied
--> $DIR/root-obligation.rs:6:38
|
LL | .filter(|c| "aeiou".contains(c))
| -------- ^ the trait `Fn<(char,)>` is not implemented for `&char`, which is required by `&char: Pattern<'_>`
| |
| required by a bound introduced by this call
|
= note: required for `&char` to implement `FnOnce<(char,)>`
= note: required for `&char` to implement `Pattern<'_>`
note: required by a bound in `core::str::<impl str>::contains`
--> $SRC_DIR/core/src/str/mod.rs:LL:COL
help: consider dereferencing here
|
LL | .filter(|c| "aeiou".contains(*c))
| +
```
Fix#79359, fix#119983, fix#118779, cc #118415 (the suggestion needs to change), cc #121398 (doesn't fix the underlying issue).
Clarify/add `must_use` message for Rc/Arc/Weak::into_raw.
The current `#[must_use]` messages for `{sync,rc}::Weak::into_raw` ("`self` will be dropped if the result is not used") are misleading, as `self` is consumed and will *not* be dropped.
This PR changes their `#[must_use]` message to the same as `Arc::into_raw`'s[ current `#[must_use]` message](d573564575/library/alloc/src/sync.rs (L1482)) ("losing the pointer will leak memory"), and also adds it to `Rc::into_raw`, which is not currently `#[must_use]`.
perf: improve write_fmt to handle simple strings
In case format string has no arguments, simplify its implementation with a direct call to `output.write_str(value)`. This builds on `@dtolnay` original [suggestion](https://github.com/serde-rs/serde/pull/2697#issuecomment-1940376414). This does not change any expectations because the original `fn write()` implementation calls `write_str` for parts of the format string.
```rust
write!(f, "text") -> f.write_str("text")
```
```diff
/// [`write!`]: crate::write!
+#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn write(output: &mut dyn Write, args: Arguments<'_>) -> Result {
+ if let Some(s) = args.as_str() { output.write_str(s) } else { write_internal(output, args) }
+}
+
+/// Actual implementation of the [`write`], but without the simple string optimization.
+fn write_internal(output: &mut dyn Write, args: Arguments<'_>) -> Result {
let mut formatter = Formatter::new(output);
let mut idx = 0;
```
* Hopefully it will improve the simple case for the https://github.com/rust-lang/rust/issues/99012
* Another related (original?) issues #10761
* Previous similar attempt to fix it by by `@Kobzol` #100700
CC: `@m-ou-se` as probably the biggest expert in everything `format!`
Previously, libtest would wait until all tests finished running to print the progress, which made it
annoying to run many tests at once (since you don't know which have failed). Change it to print the
names as soon as they fail.
This also adds a test for the terse output; previously it was untested.
Add a scheme for moving away from `extern "rust-intrinsic"` entirely
All `rust-intrinsic`s can become free functions now, either with a fallback body, or with a dummy body and an attribute, requiring backends to actually implement the intrinsic.
This PR demonstrates the dummy-body scheme with the `vtable_size` intrinsic.
cc https://github.com/rust-lang/rust/issues/63585
follow-up to #120500
MCP at https://github.com/rust-lang/compiler-team/issues/720
arithmetic
If `max_digits.is_some()`, then we know we are parsing a `u8` or `u16`
because `read_number` is only called with `Some(3)` or `Some(4)`. Both
types fit well within a `u32` without risk of overflow. Thus, we can use
plain arithmetic to avoid extra instructions from `checked_mul` and
`checked_add`.
Doc: Fix incorrect reference to integer in Atomic{Ptr,Bool}::as_ptr.
I am assuming "resulting integer" is an error, since we are talking about pointers and booleans here. Seems like it was missed while copy & pasting the docs from the integer versions. I also checked the rest of the docs, and this was the only mention of integers.