There are some test cases involving `parse` and `tokenstream` and
`mut_visit` that are located in `rustc_expand`. Because it used to be
the case that constructing a `ParseSess` required the involvement of
`rustc_expand`. However, since #64197 merged (a long time ago)
`rust_expand` no longer needs to be involved.
This commit moves the tests into `rustc_parse`. This is the optimal
place for the `parse` tests. It's not ideal for the `tokenstream` and
`mut_visit` tests -- they would be better in `rustc_ast` -- but they
still rely on parsing, which is not available in `rustc_ast`. But
`rustc_parse` is lower down in the crate graph and closer to `rustc_ast`
than `rust_expand`, so it's still an improvement for them.
The exact renaming is as follows:
- rustc_expand/src/mut_visit/tests.rs -> rustc_parse/src/parser/mut_visit/tests.rs
- rustc_expand/src/tokenstream/tests.rs -> rustc_parse/src/parser/tokenstream/tests.rs
- rustc_expand/src/tests.rs + rustc_expand/src/parse/tests.rs ->
compiler/rustc_parse/src/parser/tests.rs
The latter two test files are combined because there's no need for them
to be separate, and having a `rustc_parse::parser::parse` module would
be weird. This also means some `pub(crate)`s can be removed.
Stabilise inline_const
# Stabilisation Report
## Summary
This PR will stabilise `inline_const` feature in expression position. `inline_const_pat` is still unstable and will *not* be stabilised.
The feature will allow code like this:
```rust
foo(const { 1 + 1 })
```
which is roughly desugared into
```rust
struct Foo;
impl Foo {
const FOO: i32 = 1 + 1;
}
foo(Foo::FOO)
```
This feature is from https://github.com/rust-lang/rfcs/pull/2920 and is tracked in #76001 (the tracking issue should *not* be closed as it needs to track inline const in pattern position). The initial implementation is done in #77124.
## Difference from RFC
There are two major differences (enhancements) as implemented from the RFC. First thing is that the RFC says that the type of an inline const block inferred from the content *within* it, but we currently can infer the type using the information from outside the const block as well. This is a frequently requested feature to the initial implementation (e.g. #89964). The inference is implemented in #89561 and is done by treating inline const similar to a closure and therefore share inference context with its parent body.
This allows code like:
```rust
let v: Vec<i32> = const { Vec::new() };
```
Another enhancement that differs from the RFC is that we currently allow inline consts to reference generic parameters. This is implemented in #96557.
This allows code like:
```rust
fn create_none_array<T, const N: usize>() -> [Option<T>; N] {
[const { None::<T> }; N]
}
```
This enhancement also makes inline const usable as static asserts:
```rust
fn require_zst<T>() {
const { assert!(std::mem::size_of::<T>() == 0) }
}
```
## Documentation
Reference: rust-lang/reference#1295
## Unresolved issues
We still have a few issues that are not resolved, but I don't think it necessarily has to block stabilisation:
* expr fragment specifier issue: #86730
* ~~`const {}` behaves similar to `async {}` but not to `{}` and `unsafe {}` (they are treated as `ExpressionWithoutBlock` rather than `ExpressionWithBlock`): https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/const.20blocks.20differ.20from.20normal.20and.20from.20unsafe.20blocks/near/290229453~~
## Tests
There are a few tests in https://github.com/rust-lang/rust/tree/master/src/test/ui/inline-const
delegation: Support renaming, and async, const, extern "ABI" and C-variadic functions
Also allow delegating to functions with opaque types (`impl Trait`).
The delegation item will refer to the original opaque type from the callee, fresh opaque type won't be created, which seems like a reasonable behavior.
(Such delegation items will cause query cycles when used in trait impls, but it can be fixed later.)
Part of https://github.com/rust-lang/rust/issues/118212.
Rollup of 3 pull requests
Successful merges:
- #124003 (Dellvmize some intrinsics (use `u32` instead of `Self` in some integer intrinsics))
- #124169 (Don't fatal when calling `expect_one_of` when recovering arg in `parse_seq`)
- #124286 (Subtree sync for rustc_codegen_cranelift)
r? `@ghost`
`@rustbot` modify labels: rollup
Don't fatal when calling `expect_one_of` when recovering arg in `parse_seq`
In `parse_seq`, when parsing a sequence of token-separated items, if we don't see a separator, we try to parse another item eagerly in order to give a good diagnostic and recover from a missing separator:
d1a0fa5ed3/compiler/rustc_parse/src/parser/mod.rs (L900-L901)
If parsing the item itself calls `expect_one_of`, then we will fatal because of #58903:
d1a0fa5ed3/compiler/rustc_parse/src/parser/mod.rs (L513-L516)
For `precise_capturing` feature I implemented, we do end up calling `expected_one_of`:
d1a0fa5ed3/compiler/rustc_parse/src/parser/ty.rs (L712-L714)
This leads the compiler to fatal *before* having emitted the first error, leading to absolutely no useful information for the user about what happened in the parser.
This PR makes it so that we stop doing that.
Fixes#124195
Disallow ambiguous attributes on expressions
This implements the suggestion in [#15701](https://github.com/rust-lang/rust/issues/15701#issuecomment-2033124217) to disallow ambiguous outer attributes on expressions. This should resolve one of the concerns blocking the stabilization of `stmt_expr_attributes`.
The current message for "`->` used for field access" is the following:
```rust
error: expected one of `!`, `.`, `::`, `;`, `?`, `{`, `}`, or an operator, found `->`
--> src/main.rs:2:6
|
2 | a->b;
| ^^ expected one of 8 possible tokens
```
(playground link[1])
This PR tries to address this by adding a dedicated error message and recovery. The proposed error message is:
```
error: `->` used for field access or method call
--> ./tiny_test.rs:2:6
|
2 | a->b;
| ^^ help: try using `.` instead
|
= help: the `.` operator will dereference the value if needed
```
(feel free to bikeshed it as much as necessary)
[1]: https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=7f8b6f4433aa7866124123575456f54e
Signed-off-by: Sasha Pourcelot <sasha.pourcelot@protonmail.com>
Properly handle emojis as literal prefix in macros
Do not accept the following
```rust
macro_rules! lexes {($($_:tt)*) => {}}
lexes!(🐛"foo");
```
Before, invalid emoji identifiers were gated during parsing instead of lexing in all cases, but this didn't account for macro pre-expansion of literal prefixes.
Fix#123696.
Implement syntax for `impl Trait` to specify its captures explicitly (`feature(precise_capturing)`)
Implements `impl use<'a, 'b, T, U> Sized` syntax that allows users to explicitly list the captured parameters for an opaque, rather than inferring it from the opaque's bounds (or capturing *all* lifetimes under 2024-edition capture rules). This allows us to exclude some implicit captures, so this syntax may be used as a migration strategy for changes due to #117587.
We represent this list of captured params as `PreciseCapturingArg` in AST and HIR, resolving them between `rustc_resolve` and `resolve_bound_vars`. Later on, we validate that the opaques only capture the parameters in this list.
We artificially limit the feature to *require* mentioning all type and const parameters, since we don't currently have support for non-lifetime bivariant generics. This can be relaxed in the future.
We also may need to limit this to require naming *all* lifetime parameters for RPITIT, since GATs have no variance. I have to investigate this. This can also be relaxed in the future.
r? `@oli-obk`
Tracking issue:
- https://github.com/rust-lang/rust/issues/123432
Cleanup: Rename `ModSep` to `PathSep`
`::` is usually referred to as the *path separator* (citation needed).
The existing name `ModSep` for *module separator* is a bit misleading since it in fact separates the segments of arbitrary path segments, not only ones resolving to modules. Let me just give a shout-out to associated items (`T::Assoc`, `<Ty as Trait>::function`) and enum variants (`Option::None`).
Motivation: Reduce friction for new contributors, prevent potential confusion.
cc `@petrochenkov`
r? nnethercote or compiler
Fix invalid silencing of parsing error
Given
```rust
macro_rules! a {
( ) => {
impl<'b> c for d {
e::<f'g>
}
};
}
```
ensure an error is emitted.
Fix#123079.
Do not accept the following
```rust
macro_rules! lexes {($($_:tt)*) => {}}
lexes!(🐛"foo");
```
Before, invalid emoji identifiers were gated during parsing instead of lexing in all cases, but this didn't account for macro expansion of literal prefixes.
Fix#123696.
`lexer::UnmatchedDelim` struct in `rustc_parse` is unnecessary public
outside of the crate. This commit reduces the visibility to
`pub(crate)`.
Beside, this removes unnecessary field `expected_delim` that causes
warnings after changing the visibility.
Check `x86_64` size assertions on `aarch64`, too
(Context: https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Checking.20size.20assertions.20on.20aarch64.3F)
Currently the compiler has around 30 sets of `static_assert_size!` for various size-critical data structures (e.g. various IR nodes), guarded by `#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]`.
(Presumably this cfg avoids having to maintain separate size values for 32-bit targets and unusual 64-bit targets. Apparently it may have been necessary before the i128/u128 alignment changes, too.)
This is slightly incovenient for people on aarch64 workstations (e.g. Macs), because the assertions normally aren't checked until we push to a PR. So this PR adds `aarch64` to the `#[cfg(..)]` guarding all of those assertions in the compiler.
---
Implemented with a simple find/replace. Verified by manually inspecting each `static_assert_size!` in `compiler/`, and checking that either the replacement succeeded, or adding aarch64 wouldn't have been appropriate.
Match ergonomics 2024: implement mutable by-reference bindings
Implements the mutable by-reference bindings portion of match ergonomics 2024 (#123076), with the `mut ref`/`mut ref mut` syntax, under feature gate `mut_ref`.
r? `@Nadrieril`
`@rustbot` label A-patterns A-edition-2024
Suggest associated type bounds on problematic associated equality bounds
Fixes#105056. TL;DR: Suggest `Trait<Ty: Bound>` on `Trait<Ty = Bound>` in Rust >=2021.
~~Blocked on #122055 (stabilization of `associated_type_bounds`), I'd say.~~ (merged)
For the `MiddleDot` case, current behaviour:
- For a case like `1.2`, `sym1` is `1` and `sym2` is `2`, and `self.token`
holds `1.2`.
- It creates a new ident token from `sym1` that it puts into `self.token`.
- Then it does `bump_with` with a new dot token, which moves the `sym1`
token into `prev_token`.
- Then it does `bump_with` with a new ident token from `sym2`, which moves the
`dot` token into `prev_token` and discards the `sym1` token.
- Then it does `bump`, which puts whatever is next into `self.token`,
moves the `sym2` token into `prev_token`, and discards the `dot` token
altogether.
New behaviour:
- Skips creating and inserting the `sym1` and dot tokens, because they are
unnecessary.
- This also demonstrates that the comment about `Spacing::Alone` is
wrong -- that value is never used. That comment was added in #77250,
and AFAICT it has always been incorrect.
The commit also expands comments. I found this code hard to read
previously, the examples in comments make it easier.
Pass in the span for the field rather than using `prev_token`.
Also rename it `mk_expr_tuple_field_access`, because it doesn't do any
actual parsing, it just creates an expression with what it's given.
Not much of a clarity win by itself, but unlocks additional subsequent
simplifications.