Support for native WASM exceptions
### Motivation
Currently, rustc does not support native WASM exceptions. It does support JavaScript based exceptions for the wasm32-emscripten-target, but this requires back&forth with javascript for many calls, which is very slow.
Native wasm support for exceptions is quite common: Clang+LLVM implemented them years ago, and all major browsers support them by now. They enable zero-cost exceptions, at least with regard to runtime-performance-cost. They may increase startup-time and code size, though.
### Important: This PR does not change default behaviour
Exceptions usually add a lot of code in form of unwinding blocks, increasing the binary size. Most users probably do not want that, especially which regard to web development.
Therefore, wasm exceptions play a similar role as WASM-threads: rustc should support them, like clang does, but users who want to use it have to use some command-line magic like rustflags to opt in.
### What does this PR do?
As stated above, the default behaviour is not changed. It is already possible to opt-in into wasm exceptions using the command line. Unfortunately, the LLVM IR is invalid and the LLVM backend crashes.
```
rustc <sourcefile>
--target wasm32-unknown-unknown
-C panic=unwind
-C llvm-args=-wasm-enable-eh
-C target-feature=+exception-handling
```
As it turns out, LLVM is quite picky when it comes to IR for exception handling. If the IR does not look exactly like it should, some LLVM-assertions fail and the code generation crashes.
This PR adds the necessary modifications to the code generator to make it work. It also adds `exception-handling` as a wasm target feature.
### What this PR does not / what is missing
This PR is not a full fledges solution. It is the first step. A few parts are still missing; however, it is already useable (see next section).
Currently missing:
* The std library has to be adapted. Currently, only [no_std] crates work
* Usually, nested exceptions abort the program (i.e. a panic during the cleanup of another panic). This is currently not done yet.
- Currently, code inside cleanup handlers does not unwind
- To fix this requires a little more work: The code generator currently maintains a single terminate block per function for this. Unfortunately, WASM requires funclet based exception handling. Therefore, we need to create a terminate block per funclet. This is probably not a big problem, but I want to keep this PR simple.
### How to use the compiler given this PR?
This PR does not add any command line flags or features. It uses those which are already there. To compile with exceptions enabled, you need
* to set the panic strategy to unwind, i.e. `-C panic=unwind`
* to enable the exception-handling target feature, i.e. `-C target-feature=+exception-handling`
* to tell LLVM about the exception handling, i.e. `-C llvm-args=-wasm-enable-eh`
Since the standard library has not been adapted, you can only use it in [no_std] crates as of now. The intrinsic `core::intrinsics::r#try` works. To throw exceptions, you need the ```@llvm.wasm.throw``` intrinsic.
I created a sample application which works for me: https://github.com/mirkootter/rust-wasm-demos
This example can be run at https://webassembly.sh
After the last commit, they contain `Option<&OperandBundleDef<'a>>` but
the values are always `Some(_)`. This commit removes the needless
`Option` wrapper. This also simplifies the type signatures of
`LLVMRustBuild{Invoke,Call}`, which were relying on the fact that the
represention of `Option<&T>` is the same as `&T` for non-`None` values.
They never have a length of more than two. So this commit changes them
to `SmallVec<[_; 2]>`.
Also, we possibly push `None` values and then filter those `None` values
out again with `retain`. So this commit removes the `retain` and instead
only pushes the values if they are `Some(_)`.
I don't know why `SmallStr` was used here; some ad hoc profiling showed
this code is not that hot, the string is usually empty, and when it's
not empty it's usually very short. However, the use of a
`SmallStr<1024>` does result in 1024 byte `memcpy` call on each
execution, which shows up when I do `memcpy` profiling. So using a
normal string makes the code both simpler and very slightly faster.
`lookup_debug_loc` finds a file, line, and column, which requires two
binary searches. But this call site only needs the file.
This commit replaces the call with `lookup_source_file`, which does a
single binary search.
`lookup_debug_loc` calls `SourceMap::lookup_line`, which does a binary
search over the files, and then a binary search over the lines within
the found file. It then calls `SourceFile::line_begin_pos`, which redoes
the binary search over the lines within the found file.
This commit removes the second binary search over the lines, instead
getting the line starting pos directly using the result of the first
binary search over the lines.
(And likewise for `get_span_loc`, in the cranelift backend.)
Because tiny CGUs make compilation less efficient *and* result in worse
generated code.
We don't do this when the number of CGUs is explicitly given, because
there are times when the requested number is very important, as
described in some comments within the commit. So the commit also
introduces a `CodegenUnits` type that distinguishes between default
values and user-specified values.
This change has a roughly neutral effect on walltimes across the
rustc-perf benchmarks; there are some speedups and some slowdowns. But
it has significant wins for most other metrics on numerous benchmarks,
including instruction counts, cycles, binary size, and max-rss. It also
reduces parallelism, which is good for reducing jobserver competition
when multiple rustc processes are running at the same time. It's smaller
benchmarks that benefit the most; larger benchmarks already have CGUs
that are all larger than the minimum size.
Here are some example before/after CGU sizes for opt builds.
- html5ever
- CGUs: 16, mean size: 1196.1, sizes: [3908, 2992, 1706, 1652, 1572,
1136, 1045, 948, 946, 938, 579, 471, 443, 327, 286, 189]
- CGUs: 4, mean size: 4396.0, sizes: [6706, 3908, 3490, 3480]
- libc
- CGUs: 12, mean size: 35.3, sizes: [163, 93, 58, 53, 37, 8, 2 (x6)]
- CGUs: 1, mean size: 424.0, sizes: [424]
- tt-muncher
- CGUs: 5, mean size: 1819.4, sizes: [8508, 350, 198, 34, 7]
- CGUs: 1, mean size: 9075.0, sizes: [9075]
Note that CGUs of size 100,000+ aren't unusual in larger programs.
Removed use of iteration through a HashMap/HashSet in rustc_incremental and replaced with IndexMap/IndexSet
This allows for the `#[allow(rustc::potential_query_instability)]` in rustc_incremental to be removed, moving towards fixing #84447 (although a LOT more modules have to be changed to fully resolve it). Only HashMaps/HashSets that are being iterated through have been modified (although many structs and traits outside of rustc_incremental had to be modified as well, as they had fields/methods that involved a HashMap/HashSet that would be iterated through)
I'm making a PR for just 1 module changed to test for performance regressions and such, for future changes I'll either edit this PR to reflect additional modules being converted, or batch multiple modules of changes together and make a PR for each group of modules.
use c literals in compiler and library
Use c literals #108801 in compiler and library
currently blocked on:
* <strike>rustfmt: don't know how to format c literals</strike> nope, nightly one works.
* <strike>bootstrap</strike>
r? `@ghost`
`@rustbot` blocked
These tend to have special handling in a bunch of places anyway, so the variant helps remember that. And I think it's easier to grok than non-Scalar Aggregates sometimes being `Immediates` (like I got wrong and caused 109992). As a minor bonus, it means we don't need to generate poison LLVM values for them to pass around in `OperandValue::Immediate`s.
Optimize scalar and scalar pair representations loaded from ByRef in llvm
in https://github.com/rust-lang/rust/pull/105653 I noticed that we were generating suboptimal LLVM IR if we had a `ConstValue::ByRef` that could be represented by a `ScalarPair`. Before https://github.com/rust-lang/rust/pull/105653 this is probably rare, but after it, every slice will go down this suboptimal code path that requires LLVM to untangle a bunch of indirections and translate static allocations that are only used once to read a scalar pair from.
Adds support for LLVM [SafeStack] which provides backward edge control
flow protection by separating the stack into two parts: data which is
only accessed in provable safe ways is allocated on the normal stack
(the "safe stack") and all other data is placed in a separate allocation
(the "unsafe stack").
SafeStack support is enabled by passing `-Zsanitizer=safestack`.
[SafeStack]: https://clang.llvm.org/docs/SafeStack.html
Support #[global_allocator] without the allocator shim
This makes it possible to use liballoc/libstd in combination with `--emit obj` if you use `#[global_allocator]`. This is what rust-for-linux uses right now and systemd may use in the future. Currently they have to depend on the exact implementation of the allocator shim to create one themself as `--emit obj` doesn't create an allocator shim.
Note that currently the allocator shim also defines the oom error handler, which is normally required too. Once `#![feature(default_alloc_error_handler)]` becomes the only option, this can be avoided. In addition when using only fallible allocator methods and either `--cfg no_global_oom_handling` for liballoc (like rust-for-linux) or `--gc-sections` no references to the oom error handler will exist.
To avoid this feature being insta-stable, you will have to define `__rust_no_alloc_shim_is_unstable` to avoid linker errors.
(Labeling this with both T-compiler and T-lang as it originally involved both an implementation detail and had an insta-stable user facing change. As noted above, the `__rust_no_alloc_shim_is_unstable` symbol requirement should prevent unintended dependence on this unstable feature.)
Rather than returning an array of features from to_llvm_features, return a structure that contains
the dependencies. This also contains metadata on how the features depend on each other to allow for
the correct enabling and disabling.
Some features that are tied together only make sense to be folded
together when enabling the feature. For example on AArch64 sve and
neon are tied together, however it doesn't make sense to disable neon
when disabling sve.
In #91608 the fp-armv8 feature was removed as it's tied to the neon
feature. However disabling neon didn't actually disable the use of
floating point registers and instructions, for this `-fp-armv8` is
required.
Fix dependency tracking for debugger visualizers
This PR fixes dependency tracking for debugger visualizer files by changing the `debugger_visualizers` query to an `eval_always` query that scans the AST while it is still available. This way the set of visualizer files is already available when dep-info is emitted. Since the query is turned into an `eval_always` query, dependency tracking will now reliably detect changes to the visualizer script files themselves.
TODO:
- [x] perf.rlo
- [x] Needs a bit more documentation in some places
- [x] Needs regression test for the incr. comp. case
Fixes https://github.com/rust-lang/rust/issues/111226
Fixes https://github.com/rust-lang/rust/issues/111227
Fixes https://github.com/rust-lang/rust/issues/111295
r? `@wesleywiser`
cc `@gibbyfree`
Only depend on CFG_VERSION in rustc_interface
This avoids having to rebuild the whole compiler on each commit when `omit-git-hash = false`.
cc https://github.com/rust-lang/rust/issues/76720 - this won't fix it, and I'm not suggesting we turn this on by default, but it will make it less painful for people who do have `omit-git-hash` on as a workaround.
Remove the ThinLTO CU hack
This reverts #46722, commit e0ab5d5feb.
Since #111167, commit 10b69dde3f, we are
generating DWARF subprograms in a way that is meant to be more compatible
with LLVM's expectations, so hopefully we don't need this workaround
rewriting CUs anymore.
Remove misleading target feature aliases
Fixes#100752. This is a follow up to #103750. These aliases could not be completely removed until rust-lang/stdarch#1355 landed.
cc `@Amanieu`