Add `never_patterns` feature gate
This PR adds the feature gate and most basic parsing for the experimental `never_patterns` feature. See the tracking issue (https://github.com/rust-lang/rust/issues/118155) for details on the experiment.
`@scottmcm` has agreed to be my lang-team liaison for this experiment.
Rewrite exhaustiveness in one pass
This is at least my 4th attempt at this in as many years x) Previous attempts were all too complicated or too slow. But we're finally here!
The previous version of the exhaustiveness algorithm computed reachability for each arm then exhaustiveness of the whole match. Since each of these steps does roughly the same things, this rewrites the algorithm to do them all in one go. I also think this makes things much simpler.
I also rewrote the documentation of the algorithm in depth. Hopefully it's up-to-date and easier to follow now. Plz comment if anything's unclear.
r? `@oli-obk` I think you're one of the rare other people to understand the exhaustiveness algorithm?
cc `@varkor` I know you're not active anymore, but if you feel like having a look you might enjoy this :D
Fixes https://github.com/rust-lang/rust/issues/79307
When writing a pattern to collect multiple entries of a slice in a
single binding, it is easy to misremember or typo the appropriate syntax
to do so, instead writing the experimental `X..` pattern syntax. When we
encounter a resolve error because `X` isn't available, we suggest
`X @ ..` as an alternative.
```
error[E0425]: cannot find value `rest` in this scope
--> $DIR/range-pattern-meant-to-be-slice-rest-pattern.rs:3:13
|
LL | [1, rest..] => println!("{rest:?}"),
| ^^^^ not found in this scope
|
help: if you meant to collect the rest of the slice in `rest`, use the at operator
|
LL | [1, rest @ ..] => println!("{rest:?}"),
| +
```
Fix#88404.
patterns: reject raw pointers that are not just integers
Matching against `0 as *const i32` is fine, matching against `&42 as *const i32` is not.
This extends the existing check against function pointers and wide pointers: we now uniformly reject all these pointer types during valtree construction, and then later lint because of that. See [here](https://github.com/rust-lang/rust/pull/116930#issuecomment-1784654073) for some more explanation and context.
Also fixes https://github.com/rust-lang/rust/issues/116929.
Cc `@oli-obk` `@lcnr`
Account for `ref` and `mut` in the wrong place for pattern ident renaming
If the user writes `S { ref field: name }` instead of `S { field: ref name }`, we suggest the correct code.
Fix#72298.
THIR unsafety checking was getting a cycle of
function unsafety checking
-> building THIR for the function
-> evaluating pattern inline constants in the function
-> building MIR for the inline constant
-> checking unsafety of functions (so that THIR can be stolen)
This is fixed by not stealing THIR when generating MIR but instead when
unsafety checking.
This leaves an issue with pattern inline constants not being unsafety
checked because they are evaluated away when generating THIR.
To fix that we now represent inline constants in THIR patterns and
visit them in THIR unsafety checking.
exhaustiveness: Rework constructor splitting
`SplitWildcard` was pretty opaque. I replaced it with a more legible abstraction: `ConstructorSet` represents the set of constructors for patterns of a given type. This clarifies responsibilities: `ConstructorSet` handles one clear task, and diagnostic-related shenanigans can be done separately.
I'm quite excited, I had has this in mind for years but could never quite introduce it. This opens up possibilities, including type-specific optimisations (like using a `FxHashSet` to collect enum variants, which had been [hackily attempted some years ago](https://github.com/rust-lang/rust/pull/76918)), my one-pass rewrite (https://github.com/rust-lang/rust/pull/116042), and future librarification.
Show more information when multiple `impl`s apply
- When there are `impl`s without type params, show only those (to avoid showing overly generic `impl`s).
```
error[E0283]: type annotations needed
--> $DIR/multiple-impl-apply.rs:34:9
|
LL | let y = x.into();
| ^ ---- type must be known at this point
|
note: multiple `impl`s satisfying `_: From<Baz>` found
--> $DIR/multiple-impl-apply.rs:14:1
|
LL | impl From<Baz> for Bar {
| ^^^^^^^^^^^^^^^^^^^^^^
...
LL | impl From<Baz> for Foo {
| ^^^^^^^^^^^^^^^^^^^^^^
= note: required for `Baz` to implement `Into<_>`
help: consider giving `y` an explicit type
|
LL | let y: /* Type */ = x.into();
| ++++++++++++
```
- Lower the importance of `T: Sized`, `T: WellFormed` and coercion errors, to prioritize more relevant errors. The pre-existing deduplication logic deals with hiding redundant errors better that way, and we show errors with more metadata that is useful to the user.
- Show `<SelfTy as Trait>::assoc_fn` suggestion in more cases.
```
error[E0790]: cannot call associated function on trait without specifying the corresponding `impl` type
--> $DIR/cross-return-site-inference.rs:38:16
|
LL | return Err(From::from("foo"));
| ^^^^^^^^^^ cannot call associated function of trait
|
help: use a fully-qualified path to a specific available implementation
|
LL | return Err(</* self type */ as From>::from("foo"));
| +++++++++++++++++++ +
```
Fix#88284.
In `report_fullfillment_errors` push back `T: Sized`, `T: WellFormed`
and coercion errors to the end of the list. The pre-existing
deduplication logic eliminates redundant errors better that way, keeping
the resulting output with fewer errors than before, while also having
more detail.