Retroactively feature gate `ConstArgKind::Path`
This puts the lowering introduced by #125915 under a feature gate until we fix the regressions introduced by it. Alternative to whole sale reverting the PR since it didn't seem like a very clean revert and I think this is generally a step in the right direction and don't want to get stuck landing and reverting the PR over and over :)
cc #129137 ``@camelid,`` tests taken from there. beta is branching soon so I think it makes sense to not try and rush that fix through since it wont have much time to bake and if it has issues we can't simply revert it on beta.
Fixes#128016
Use shorthand field initialization syntax more aggressively in the compiler
Caught these when cleaning up #129344 and decided to run clippy to find the rest
Use `bool` in favor of `Option<()>` for diagnostics
We originally only supported `Option<()>` for optional notes/labels, but we now support `bool`. Let's use that, since it usually leads to more readable code.
I'm not removing the support from the derive macro, though I guess we could error on it... 🤔
Don't consider locals to shadow inner items' generics
We don't want to consider the bindings from a `RibKind::Module` itself, because for an inner item that module will contain the local bindings from the function body or wherever else the inner item is being defined.
Fixes#129265
r? petrochenkov
rm `import.used`
By the way, `import_used_map` will only be used during `build_reduced_graph` and `finalize`, so it can be split from `Resolver` in the future.
r? ``@petrochenkov``
Use more slice patterns inside the compiler
Nothing super noteworthy. Just replacing the common 'fragile' pattern of "length check followed by indexing or unwrap" with slice patterns for legibility and 'robustness'.
r? ghost
Only walk ribs to collect possibly shadowed params if we are adding params in our new rib
No need to collect params from parent ribs if we literally have no params to declare in this new rib.
Attempt to win back some of the perf in https://github.com/rust-lang/rust/pull/128357#issuecomment-2262677031.
Please review with whitespace *off*, the diff should be like 2 lines.
r? petrochenkov
Add `REDUNDANT_IMPORTS` lint for new redundant import detection
Defaults to Allow for now. Stacked on #123744 to avoid merge conflict, but much easier to review all as one.
r? petrochenkov
Structured suggestion for `extern crate foo` when `foo` isn't resolved in import
When encountering a name in an import that could have come from a crate that wasn't imported, use a structured suggestion to suggest `extern crate foo;` pointing at the right place in the crate.
When encountering `_` in an import, do not suggest `extern crate _;`.
```
error[E0432]: unresolved import `spam`
--> $DIR/import-from-missing-star-3.rs:2:9
|
LL | use spam::*;
| ^^^^ maybe a missing crate `spam`?
|
help: consider importing the `spam` crate
|
LL + extern crate spam;
|
```
When encountering a name in an import that could have come from a crate that wasn't imported, use a structured suggestion to suggest `extern crate foo;` pointing at the right place in the crate.
When encountering `_` in an import, do not suggest `extern crate _;`.
```
error[E0432]: unresolved import `spam`
--> $DIR/import-from-missing-star-3.rs:2:9
|
LL | use spam::*;
| ^^^^ maybe a missing crate `spam`?
|
help: consider importing the `spam` crate
|
LL + extern crate spam;
|
```
We don't want to have questions in the diagnostic output. Instead, we use wording that communicates uncertainty, like "might":
```
error[E0432]: unresolved import `spam`
--> $DIR/import-from-missing-star-3.rs:2:9
|
LL | use spam::*;
| ^^^^ you might be missing crate `spam`
|
= help: consider adding `extern crate spam` to use the `spam` crate
```
Clean up a few minor refs in `format!` macro, as it has a performance cost. Apparently the compiler is unable to inline `format!("{}", &variable)`, and does a run-time double-reference instead (format macro already does one level referencing). Inlining format args prevents accidental `&` misuse.
When finding item gated behind a `cfg` flag, point at it
Previously we would only mention that the item was gated out, and opportunisitically mention the feature flag name when possible. We now point to the place where the item was gated, which can be behind layers of macro indirection, or in different modules.
```
error[E0433]: failed to resolve: could not find `doesnt_exist` in `inner`
--> $DIR/diagnostics-cross-crate.rs:18:23
|
LL | cfged_out::inner::doesnt_exist::hello();
| ^^^^^^^^^^^^ could not find `doesnt_exist` in `inner`
|
note: found an item that was configured out
--> $DIR/auxiliary/cfged_out.rs:6:13
|
LL | pub mod doesnt_exist {
| ^^^^^^^^^^^^
note: the item is gated here
--> $DIR/auxiliary/cfged_out.rs:5:5
|
LL | #[cfg(FALSE)]
| ^^^^^^^^^^^^^
```
Represent type-level consts with new-and-improved `hir::ConstArg`
### Summary
This is a step toward `min_generic_const_exprs`. We now represent all const
generic arguments using an enum that differentiates between const *paths*
(temporarily just bare const params) and arbitrary anon consts that may perform
computations. This will enable us to cleanly implement the `min_generic_const_args`
plan of allowing the use of generics in paths used as const args, while
disallowing their use in arbitrary anon consts. Here is a summary of the salient
aspects of this change:
- Add `current_def_id_parent` to `LoweringContext`
This is needed to track anon const parents properly once we implement
`ConstArgKind::Path` (which requires moving anon const def-creation
outside of `DefCollector`).
- Create `hir::ConstArgKind` enum with `Path` and `Anon` variants. Use it in the
existing `hir::ConstArg` struct, replacing the previous `hir::AnonConst` field.
- Use `ConstArg` for all instances of const args. Specifically, use it instead
of `AnonConst` for assoc item constraints, array lengths, and const param
defaults.
- Some `ast::AnonConst`s now have their `DefId`s created in
rustc_ast_lowering rather than `DefCollector`. This is because in some
cases they will end up becoming a `ConstArgKind::Path` instead, which
has no `DefId`. We have to solve this in a hacky way where we guess
whether the `AnonConst` could end up as a path const since we can't
know for sure until after name resolution (`N` could refer to a free
const or a nullary struct). If it has no chance as being a const
param, then we create a `DefId` in `DefCollector` -- otherwise we
decide during ast_lowering. This will have to be updated once all path
consts use `ConstArgKind::Path`.
- We explicitly use `ConstArgHasType` for array lengths, rather than
implicitly relying on anon const type feeding -- this is due to the
addition of `ConstArgKind::Path`.
- Some tests have their outputs changed, but the changes are for the
most part minor (including removing duplicate or almost-duplicate
errors). One test now ICEs, but it is for an incomplete, unstable
feature and is now tracked at https://github.com/rust-lang/rust/issues/127009.
### Followup items post-merge
- Use `ConstArgKind::Path` for all const paths, not just const params.
- Fix (no github dont close this issue) #127009
- If a path in generic args doesn't resolve as a type, try to resolve as a const
instead (do this in rustc_resolve). Then remove the special-casing from
`rustc_ast_lowering`, so that all params will automatically be lowered as
`ConstArgKind::Path`.
- (?) Consider making `const_evaluatable_unchecked` a hard error, or at least
trying it in crater
r? `@BoxyUwU`
Fix ambiguous cases of multiple & in elided self lifetimes
This change proposes simpler rules to identify the lifetime on `self` parameters which may be used to elide a return type lifetime.
## The old rules
(copied from [this comment](https://github.com/rust-lang/rust/pull/117967#discussion_r1420554242))
Most of the code can be found in [late.rs](https://doc.rust-lang.org/stable/nightly-rustc/src/rustc_resolve/late.rs.html) and acts on AST types. The function [resolve_fn_params](https://doc.rust-lang.org/stable/nightly-rustc/src/rustc_resolve/late.rs.html#2006), in the success case, returns a single lifetime which can be used to elide the lifetime of return types.
Here's how:
* If the first parameter is called self then we search that parameter using "`self` search rules", below
* If no unique applicable lifetime was found, search all other parameters using "regular parameter search rules", below
(In practice the code does extra work to assemble good diagnostic information, so it's not quite laid out like the above.)
### `self` search rules
This is primarily handled in [find_lifetime_for_self](https://doc.rust-lang.org/stable/nightly-rustc/src/rustc_resolve/late.rs.html#2118) , and is described slightly [here](https://github.com/rust-lang/rust/issues/117715#issuecomment-1813115477) already. The code:
1. Recursively walks the type of the `self` parameter (there's some complexity about resolving various special cases, but it's essentially just walking the type as far as I can see)
2. Each time we find a reference anywhere in the type, if the **direct** referent is `Self` (either spelled `Self` or by some alias resolution which I don't fully understand), then we'll add that to a set of candidate lifetimes
3. If there's exactly one such unique lifetime candidate found, we return this lifetime.
### Regular parameter search rules
1. Find all the lifetimes in each parameter, including implicit, explicit etc.
2. If there's exactly one parameter containing lifetimes, and if that parameter contains exactly one (unique) lifetime, *and if we didn't find a `self` lifetime parameter already*, we'll return this lifetime.
## The new rules
There are no changes to the "regular parameter search rules" or to the overall flow, only to the `self` search rules which are now:
1. Recursively walks the type of the `self` parameter, searching for lifetimes of reference types whose referent **contains** `Self`.[^1]
2. Keep a record of:
* Whether 0, 1 or n unique lifetimes are found on references encountered during the walk
4. If no lifetime was found, we don't return a lifetime. (This means other parameters' lifetimes may be used for return type lifetime elision).
5. If there's one lifetime found, we return the lifetime.
6. If multiple lifetimes were found, we abort elision entirely (other parameters' lifetimes won't be used).
[^1]: this prevents us from considering lifetimes from inside of the self-type
## Examples that were accepted before and will now be rejected
```rust
fn a(self: &Box<&Self>) -> &u32
fn b(self: &Pin<&mut Self>) -> &String
fn c(self: &mut &Self) -> Option<&Self>
fn d(self: &mut &Box<Self>, arg: &usize) -> &usize // previously used the lt from arg
```
### Examples that change the elided lifetime
```rust
fn e(self: &mut Box<Self>, arg: &usize) -> &usize
// ^ new ^ previous
```
## Examples that were rejected before and will now be accepted
```rust
fn f(self: &Box<Self>) -> &u32
```
---
*edit: old PR description:*
```rust
struct Concrete(u32);
impl Concrete {
fn m(self: &Box<Self>) -> &u32 {
&self.0
}
}
```
resulted in a confusing error.
```rust
impl Concrete {
fn n(self: &Box<&Self>) -> &u32 {
&self.0
}
}
```
resulted in no error or warning, despite apparent ambiguity over the elided lifetime.
Fixes https://github.com/rust-lang/rust/issues/117715
Accurate `use` rename suggestion span
When suggesting to rename an import with `as`, use a smaller span to render the suggestion with a better format:
```
error[E0252]: the name `baz` is defined multiple times
--> $DIR/issue-25396.rs:4:5
|
LL | use foo::baz;
| -------- previous import of the module `baz` here
LL | use bar::baz;
| ^^^^^^^^ `baz` reimported here
|
= note: `baz` must be defined only once in the type namespace of this module
help: you can use `as` to change the binding name of the import
|
LL | use bar::baz as other_baz;
| ++++++++++++
```
When suggesting to rename an import with `as`, use a smaller span to
render the suggestion with a better format:
```
error[E0252]: the name `baz` is defined multiple times
--> $DIR/issue-25396.rs:4:5
|
LL | use foo::baz;
| -------- previous import of the module `baz` here
LL | use bar::baz;
| ^^^^^^^^ `baz` reimported here
|
= note: `baz` must be defined only once in the type namespace of this module
help: you can use `as` to change the binding name of the import
|
LL | use bar::baz as other_baz;
| ++++++++++++
```
This is a very large commit since a lot needs to be changed in order to
make the tests pass. The salient changes are:
- `ConstArgKind` gets a new `Path` variant, and all const params are now
represented using it. Non-param paths still use `ConstArgKind::Anon`
to prevent this change from getting too large, but they will soon use
the `Path` variant too.
- `ConstArg` gets a distinct `hir_id` field and its own variant in
`hir::Node`. This affected many parts of the compiler that expected
the parent of an `AnonConst` to be the containing context (e.g., an
array repeat expression). They have been changed to check the
"grandparent" where necessary.
- Some `ast::AnonConst`s now have their `DefId`s created in
rustc_ast_lowering rather than `DefCollector`. This is because in some
cases they will end up becoming a `ConstArgKind::Path` instead, which
has no `DefId`. We have to solve this in a hacky way where we guess
whether the `AnonConst` could end up as a path const since we can't
know for sure until after name resolution (`N` could refer to a free
const or a nullary struct). If it has no chance as being a const
param, then we create a `DefId` in `DefCollector` -- otherwise we
decide during ast_lowering. This will have to be updated once all path
consts use `ConstArgKind::Path`.
- We explicitly use `ConstArgHasType` for array lengths, rather than
implicitly relying on anon const type feeding -- this is due to the
addition of `ConstArgKind::Path`.
- Some tests have their outputs changed, but the changes are for the
most part minor (including removing duplicate or almost-duplicate
errors). One test now ICEs, but it is for an incomplete, unstable
feature and is now tracked at #127009.
Fix import suggestion ice
Fixes#127302#127302 only crash in edition 2015
#120074 can only reproduced in edition 2021
so I added revisions in test file.