Reintroduce `into_future` in `.await` desugaring
This is a reintroduction of the remaining parts from https://github.com/rust-lang/rust/pull/65244 that have not been relanded yet.
This isn't quite ready to merge yet. The last attempt was reverting due to performance regressions, so we need to make sure this does not introduce those issues again.
Issues #67644, #67982
/cc `@yoshuawuyts`
Make `array::{try_from_fn, try_map}` and `Iterator::try_find` generic over `Try`
Fixes#85115
This only updates unstable functions.
`array::try_map` didn't actually exist before; this adds it under the still-open tracking issue #79711 from the old PR #79713.
Tracking issue for the new trait: #91285
This would also solve the return type question in for the proposed `Iterator::try_reduce` in #87054
disable tests in Miri that take too long
Comparing slices of length `usize::MAX` diverges in Miri. In fact these tests even diverge in rustc unless `-O` is passed. I tried this code to check that:
```rust
#![feature(slice_take)]
const EMPTY_MAX: &'static [()] = &[(); usize::MAX];
fn main() {
let mut slice: &[_] = &[(); usize::MAX];
println!("1");
assert_eq!(Some(&[] as _), slice.take(usize::MAX..));
println!("2");
let remaining: &[_] = EMPTY_MAX;
println!("3");
assert_eq!(remaining, slice);
println!("4");
}
```
So, disable these tests in Miri for now.
Fixes 85115
This only updates unstable functions.
`array::try_map` didn't actually exist before, despite the tracking issue 79711 still being open from the old PR 79713.
CTFE: support assert_zero_valid and assert_uninit_valid
This ensures the implementation of all three type-based assert_ intrinsics remains consistent in Miri.
`assert_inhabited` recently got stabilized in https://github.com/rust-lang/rust/pull/90896 (meaning stable `const fn` can call it), so do the same with these other intrinsics.
Cc ```@rust-lang/wg-const-eval```
Eliminate bunch of copies of error codepath from Utf8LossyChunksIter
Using a macro to stamp out 7 identical copies of the nontrivial slicing logic to exit this loop didn't seem like a necessary use of a macro. The early return case can be handled by `break` without practically any changes to the logic inside the loop.
All this code is from early 2014 (#12062—nearly 8 years ago; pre-1.0) so it's possible there were compiler limitations that forced the macro way at the time.
Confirmed that `x.py bench library/alloc --stage 0 --test-args from_utf8_lossy` is unaffected on my machine.
Stabilize some `MaybeUninit` behavior as const
This stabilizes the `MaybeUninit::as_ptr`, `MaybeUninit::assume_init`, and `MaybeUninit::assume_init_ref` as `const fn`. `MaybeUninit::as_mut_ptr` has been moved to a new flag: `const_maybe_uninit_as_mut_ptr`, which is blocked on #57349. `MaybeUninit::slice_assume_init_ref` can be `const fn` when the method is stabilized in general.
The relevant intrinsic has been stabilized as `const` as well, though this isn't user-visible. Due to the seemingly unrelated feature name I performed `rg const_assert_type` and found no other instances of it being used.
r? `@oli-obk`
`@rustbot` label: +A-const-fn +S-waiting-on-review +T-libs-api
Fix Iterator::advance_by contract inconsistency
The `advance_by(n)` docs state that in the error case `Err(k)` that k is always less than n.
It also states that `advance_by(0)` may return `Err(0)` to indicate an exhausted iterator.
These statements are inconsistent.
Since only one implementation (Skip) actually made use of that I changed it to return Ok(()) in that case too.
While adding some tests I also found a bug in `Take::advance_back_by`.
Document non-guarantees for Hash
Dependence on endianness and type sizes was reported for enum discriminants in #74215 but it is a more general
issue since for example the default implementation of `Hasher::write_usize` uses native endianness.
Additionally the implementations of library types are occasionally changed as their internal fields
change or hashing gets optimized.
## Question
Should this go on the module level documentation instead since it also concerns `Hasher` to some extent and not just `Hash`?
resolves#74215
Weaken guarantee around advancing underlying iterators in zip
The current guarantee (introduced in #52279) is too strong as it prevents adapters from exploiting knowledge about the iterator length and using counted loops for example because they would stop calling `next()` before it ever returned `None`. Additionally several nested zip iterators already fail to uphold this.
This does not yet remove any of the specialization code that tries (and sometimes fails) to uphold the guarantee for `next()`
because removing it would also affect `next_back()` in more surprising ways.
The intent is to be able to remove for example this branch
36bcf40697/library/core/src/iter/adapters/zip.rs (L234-L243)
or this test
36bcf40697/library/core/tests/iter/adapters/zip.rs (L177-L188)
Solves #82303 by declaring it a non-issue.
Faster `Layout::array`
`Layout::array` is called (indirectly) by `Vec::push()`, which is typically instantiated many times, and so making it smaller can help with compile times because less LLVM IR is generated.
r? `@ghost`
The current implementation is much more conservative than it needs to
be, because it's dealing with the size and alignment of a given `T`,
which are more restricted than an arbitrary `Layout`.
For example, imagine a struct with a `u32` and a `u4`. You can safely
create a `Layout { size_: 5, align_: 4 }` by hand, but
`Layout:🆕:<T>` will give `Layout { size_: 8, align_: 4}`, where the
size already has padding that accounts for the alignment. (And the
existing `debug_assert_eq!` in `Layout::array` already demonstrates that
no additional padding is required.)
Using a macro to stamp out 7 identical copies of the nontrivial slicing
logic to exit this loop didn't seem like a necessary use of a macro. The
early return case can be handled by `break` without practically any
changes to the logic inside the loop.
All this code is from early 2014 (7.5 years old, pre-1.0) so it's
possible there were compiler limitations that forced the macro way at
the time.
Confirmed that `x.py bench library/alloc --stage 0 --test-args from_utf8_lossy`
is unaffected on my machine.
Print associated types on opaque `impl Trait` types
This PR generalizes #91021, printing associated types for all opaque `impl Trait` types instead of just special-casing for future.
before:
```
error[E0271]: type mismatch resolving `<impl Iterator as Iterator>::Item == u32`
```
after:
```
error[E0271]: type mismatch resolving `<impl Iterator<Item = usize> as Iterator>::Item == u32`
```
---
Questions:
1. I'm kinda lost in binders hell with this one. Is all of the `rebind`ing necessary?
2. Is there a map collection type that will give me a stable iteration order? Doesn't seem like TraitRef is Ord, so I can't just sort later..
3. I removed the logic that suppresses printing generator projection types. It creates outputs like this [gist](https://gist.github.com/compiler-errors/d6f12fb30079feb1ad1d5f1ab39a3a8d). Should I put that back?
4. I also added spaces between traits, `impl A+B` -> `impl A + B`. I quite like this change, but is there a good reason to keep it like that?
r? ````@estebank````
Partially stabilize `duration_consts_2`
Methods that were only blocked on `const_panic` have been stabilized.
The remaining methods of `duration_consts_2` are all related to floats,
and as such have been placed behind the `duration_consts_float` feature
gate.
Methods that were only blocked on `const_panic` have been stabilized.
The remaining methods of `duration_consts_2` are all related to floats,
and as such have been placed behind the `duration_consts_float` feature
gate.
The functions are now `unsafe` and they use `Option::unwrap_unchecked` instead of `unwrap_or_0`
`unwrap_or_0` was added in 42357d772b. I guess `unwrap_unchecked` was not available back then.
Given this example:
```rust
pub fn first_char(s: &str) -> Option<char> {
s.chars().next()
}
```
Previously, the following assembly was produced:
```asm
_ZN7example10first_char17ha056ddea6bafad1cE:
.cfi_startproc
test rsi, rsi
je .LBB0_1
movzx edx, byte ptr [rdi]
test dl, dl
js .LBB0_3
mov eax, edx
ret
.LBB0_1:
mov eax, 1114112
ret
.LBB0_3:
lea r8, [rdi + rsi]
xor eax, eax
mov r9, r8
cmp rsi, 1
je .LBB0_5
movzx eax, byte ptr [rdi + 1]
add rdi, 2
and eax, 63
mov r9, rdi
.LBB0_5:
mov ecx, edx
and ecx, 31
cmp dl, -33
jbe .LBB0_6
cmp r9, r8
je .LBB0_9
movzx esi, byte ptr [r9]
add r9, 1
and esi, 63
shl eax, 6
or eax, esi
cmp dl, -16
jb .LBB0_12
.LBB0_13:
cmp r9, r8
je .LBB0_14
movzx edx, byte ptr [r9]
and edx, 63
jmp .LBB0_16
.LBB0_6:
shl ecx, 6
or eax, ecx
ret
.LBB0_9:
xor esi, esi
mov r9, r8
shl eax, 6
or eax, esi
cmp dl, -16
jae .LBB0_13
.LBB0_12:
shl ecx, 12
or eax, ecx
ret
.LBB0_14:
xor edx, edx
.LBB0_16:
and ecx, 7
shl ecx, 18
shl eax, 6
or eax, ecx
or eax, edx
ret
```
After this change, the assembly is reduced to:
```asm
_ZN7example10first_char17h4318683472f884ccE:
.cfi_startproc
test rsi, rsi
je .LBB0_1
movzx ecx, byte ptr [rdi]
test cl, cl
js .LBB0_3
mov eax, ecx
ret
.LBB0_1:
mov eax, 1114112
ret
.LBB0_3:
mov eax, ecx
and eax, 31
movzx esi, byte ptr [rdi + 1]
and esi, 63
cmp cl, -33
jbe .LBB0_4
movzx edx, byte ptr [rdi + 2]
shl esi, 6
and edx, 63
or edx, esi
cmp cl, -16
jb .LBB0_7
movzx ecx, byte ptr [rdi + 3]
and eax, 7
shl eax, 18
shl edx, 6
and ecx, 63
or ecx, edx
or eax, ecx
ret
.LBB0_4:
shl eax, 6
or eax, esi
ret
.LBB0_7:
shl eax, 12
or eax, edx
ret
```
Adds IEEE 754-2019 minimun and maximum functions for f32/f64
IEEE 754-2019 removed the `minNum` (`min` in Rust) and `maxNum` (`max` in Rust) operations in favor of the newly created `minimum` and `maximum` operations due to their [non-associativity](https://grouper.ieee.org/groups/msc/ANSI_IEEE-Std-754-2019/background/minNum_maxNum_Removal_Demotion_v3.pdf) that cannot be fix in a backwards compatible manner. This PR adds `fN::{minimun,maximum}` functions following the new rules.
### IEEE 754-2019 Rules
> **minimum(x, y)** is x if x < y, y if y < x, and a quiet NaN if either operand is a NaN, according to 6.2.
For this operation, −0 compares less than +0. Otherwise (i.e., when x = y and signs are the same)
it is either x or y.
> **maximum(x, y)** is x if x > y, y if y > x, and a quiet NaN if either operand is a NaN, according to 6.2.
For this operation, +0 compares greater than −0. Otherwise (i.e., when x = y and signs are the
same) it is either x or y.
"IEEE Standard for Floating-Point Arithmetic," in IEEE Std 754-2019 (Revision of IEEE 754-2008) , vol., no., pp.1-84, 22 July 2019, doi: 10.1109/IEEESTD.2019.8766229.
### Implementation
This implementation is inspired by the one in [`glibc` ](90f0ac10a7/math/s_fminimum_template.c) (it self derived from the C2X draft) expect that:
- it doesn't use `copysign` because it's not available in `core` and also because `copysign` is unnecessary (we only want to check the sign, no need to create a new float)
- it also prefer `other > self` instead of `self < other` like IEEE 754-2019 does
I originally tried to implement them [using intrinsics](1d8aa13bc3) but LLVM [error out](https://godbolt.org/z/7sMrxW49a) when trying to lower them to machine intructions, GCC doesn't yet have built-ins for them, only cranelift support them nativelly (as it doesn't support the nativelly the old sementics).
Helps with https://github.com/rust-lang/rust/issues/83984