Split an item bounds and an item's super predicates
This is the moral equivalent of #107614, but instead for predicates this applies to **item bounds**. This PR splits out the item bounds (i.e. *all* predicates that are assumed to hold for the alias) from the item *super predicates*, which are the subset of item bounds which share the same self type as the alias.
## Why?
Much like #107614, there are places in the compiler where we *only* care about super-predicates, and considering predicates that possibly don't have anything to do with the alias is problematic. This includes things like closure signature inference (which is at its core searching for `Self: Fn(..)` style bounds), but also lints like `#[must_use]`, error reporting for aliases, computing type outlives predicates.
Even in cases where considering all of the `item_bounds` doesn't lead to bugs, unnecessarily considering irrelevant bounds does lead to a regression (#121121) due to doing extra work in the solver.
## Example 1 - Trait Aliases
This is best explored via an example:
```
type TAIT<T> = impl TraitAlias<T>;
trait TraitAlias<T> = A + B where T: C;
```
The item bounds list for `Tait<T>` will include:
* `Tait<T>: A`
* `Tait<T>: B`
* `T: C`
While `item_super_predicates` query will include just the first two predicates.
Side-note: You may wonder why `T: C` is included in the item bounds for `TAIT`? This is because when we elaborate `TraitAlias<T>`, we will also elaborate all the predicates on the trait.
## Example 2 - Associated Type Bounds
```
type TAIT<T> = impl Iterator<Item: A>;
```
The `item_bounds` list for `TAIT<T>` will include:
* `Tait<T>: Iterator`
* `<Tait<T> as Iterator>::Item: A`
But the `item_super_predicates` will just include the first bound, since that's the only bound that is relevant to the *alias* itself.
## So what
This leads to some diagnostics duplication just like #107614, but none of it will be user-facing. We only see it in the UI test suite because we explicitly disable diagnostic deduplication.
Regarding naming, I went with `super_predicates` kind of arbitrarily; this can easily be changed, but I'd consider better names as long as we don't block this PR in perpetuity.
clean up `Sized` checking
This PR cleans up `sized_constraint` and related functions to make them simpler and faster. This should not make more or less code compile, but it can change error output in some rare cases.
## enums and unions are `Sized`, even if they are not WF
The previous code has some special handling for enums, which made them sized if and only if the last field of each variant is sized. For example given this definition (which is not WF)
```rust
enum E<T1: ?Sized, T2: ?Sized, U1: ?Sized, U2: ?Sized> {
A(T1, T2),
B(U1, U2),
}
```
the enum was sized if and only if `T2` and `U2` are sized, while `T1` and `T2` were ignored for `Sized` checking. After this PR this enum will always be sized.
Unsized enums are not a thing in Rust and removing this special case allows us to return an `Option<Ty>` from `sized_constraint`, rather than a `List<Ty>`.
Similarly, the old code made an union defined like this
```rust
union Union<T: ?Sized, U: ?Sized> {
head: T,
tail: U,
}
```
sized if and only if `U` is sized, completely ignoring `T`. This just makes no sense at all and now this union is always sized.
## apply the "perf hack" to all (non-error) types, instead of just type parameters
This "perf hack" skips evaluating `sized_constraint(adt): Sized` if `sized_constraint(adt): Sized` exactly matches a predicate defined on `adt`, for example:
```rust
// `Foo<T>: Sized` iff `T: Sized`, but we know `T: Sized` from a predicate of `Foo`
struct Foo<T /*: Sized */>(T);
```
Previously this was only applied to type parameters and now it is applied to every type. This means that for example this type is now always sized:
```rust
// Note that this definition is WF, but the type `S<T>` not WF in the global/empty ParamEnv
struct S<T>([T]) where [T]: Sized;
```
I don't anticipate this to affect compile time of any real-world program, but it makes the code a bit nicer and it also makes error messages a bit more consistent if someone does write such a cursed type.
## tuples are sized if the last type is sized
The old solver already has this behavior and this PR also implements it for the new solver and `is_trivially_sized`. This makes it so that tuples work more like a struct defined like this:
```rust
struct TupleN<T1, T2, /* ... */ Tn: ?Sized>(T1, T2, /* ... */ Tn);
```
This might improve the compile time of programs with large tuples a little, but is mostly also a consistency fix.
## `is_trivially_sized` for more types
This function is used post-typeck code (borrowck, const eval, codegen) to skip evaluating `T: Sized` in some cases. It will now return `true` in more cases, most notably `UnsafeCell<T>` and `ManuallyDrop<T>` where `T.is_trivially_sized`.
I'm anticipating that this change will improve compile time for some real world programs.
Make `DefiningAnchor::Bind` only store the opaque types that may be constrained, instead of the current infcx root item.
This makes `Bind` almost always be empty, so we can start forwarding it to queries, allowing us to remove `Bubble` entirely (not done in this PR)
The only behaviour change is in diagnostics.
r? `@lcnr` `@compiler-errors`
Rollup of 15 pull requests
Successful merges:
- #116791 (Allow codegen backends to opt-out of parallel codegen)
- #116793 (Allow targets to override default codegen backend)
- #117458 (LLVM Bitcode Linker: A self contained linker for nvptx and other targets)
- #119385 (Fix type resolution of associated const equality bounds (take 2))
- #121438 (std support for wasm32 panic=unwind)
- #121893 (Add tests (and a bit of cleanup) for interior mut handling in promotion and const-checking)
- #122080 (Clarity improvements to `DropTree`)
- #122152 (Improve diagnostics for parenthesized type arguments)
- #122166 (Remove the unused `field_remapping` field from `TypeLowering`)
- #122249 (interpret: do not call machine read hooks during validation)
- #122299 (Store backtrace for `must_produce_diag`)
- #122318 (Revision-related tweaks for next-solver tests)
- #122320 (Use ptradd for vtable indexing)
- #122328 (unix_sigpipe: Replace `inherit` with `sig_dfl` in syntax tests)
- #122330 (bootstrap readme: fix, improve, update)
r? `@ghost`
`@rustbot` modify labels: rollup
This improves parallel rustc parallelism by avoiding the bottleneck after each individual `par_body_owners` (because it needs to wait for queries to finish, so if there is one long running one, a lot of cores will be idle while waiting for the single query).
Provide more suggestions on invalid equality where bounds
```
error: equality constraints are not yet supported in `where` clauses
--> $DIR/equality-bound.rs:50:9
|
LL | IntoIterator::Item = A
| ^^^^^^^^^^^^^^^^^^^^^^ not supported
|
= note: see issue #20041 <https://github.com/rust-lang/rust/issues/20041> for more information
help: if `IntoIterator::Item` is an associated type you're trying to set, use the associated type binding syntax
|
LL ~ fn from_iter<T: IntoIterator<Item = A>>(_: T) -> Self
LL ~
|
error: equality constraints are not yet supported in `where` clauses
--> $DIR/equality-bound.rs:63:9
|
LL | T::Item = A
| ^^^^^^^^^^^ not supported
|
= note: see issue #20041 <https://github.com/rust-lang/rust/issues/20041> for more information
help: if `IntoIterator::Item` is an associated type you're trying to set, use the associated type binding syntax
|
LL ~ fn from_iter<T: IntoIterator<Item = A>>(_: T) -> Self
LL ~
|
```
Fix#68982.
Harmonize `AsyncFn` implementations, make async closures conditionally impl `Fn*` traits
This PR implements several changes to the built-in and libcore-provided implementations of `Fn*` and `AsyncFn*` to address two problems:
1. async closures do not implement the `Fn*` family traits, leading to breakage: https://crater-reports.s3.amazonaws.com/pr-120361/index.html
2. *references* to async closures do not implement `AsyncFn*`, as a consequence of the existing blanket impls of the shape `AsyncFn for F where F: Fn, F::Output: Future`.
In order to fix (1.), we implement `Fn` traits appropriately for async closures. It turns out that async closures can:
* always implement `FnOnce`, meaning that they're drop-in compatible with `FnOnce`-bound combinators like `Option::map`.
* conditionally implement `Fn`/`FnMut` if they have no captures, which means that existing usages of async closures should *probably* work without breakage (crater checking this: https://github.com/rust-lang/rust/pull/120712#issuecomment-1930587805).
In order to fix (2.), we make all of the built-in callables implement `AsyncFn*` via built-in impls, and instead adjust the blanket impls for `AsyncFn*` provided by libcore to match the blanket impls for `Fn*`.
```
error: equality constraints are not yet supported in `where` clauses
--> $DIR/equality-bound.rs:50:9
|
LL | IntoIterator::Item = A,
| ^^^^^^^^^^^^^^^^^^^^^^ not supported
|
= note: see issue #20041 <https://github.com/rust-lang/rust/issues/20041> for more information
help: if `IntoIterator::Item` is an associated type you're trying to set, use the associated type binding syntax
|
LL ~ fn from_iter<T: IntoIterator<Item = A>>(_: T) -> Self
LL | where
LL ~
|
error: equality constraints are not yet supported in `where` clauses
--> $DIR/equality-bound.rs:63:9
|
LL | T::Item = A,
| ^^^^^^^^^^^ not supported
|
= note: see issue #20041 <https://github.com/rust-lang/rust/issues/20041> for more information
help: if `IntoIterator::Item` is an associated type you're trying to set, use the associated type binding syntax
|
LL ~ fn from_iter<T: IntoIterator<Item = A>>(_: T) -> Self
LL | where
LL ~
|
```
Fix#68982.
Account for non-overlapping unmet trait bounds in suggestion
When a method not found on a type parameter could have been provided by any
of multiple traits, suggest each trait individually, instead of a single
suggestion to restrict the type parameter with *all* of them.
Before:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
help: consider restricting the type parameters to satisfy the trait bounds
|
LL | fn g<T>(a: T, b: T) -> std::cmp::Ordering where T: Iterator, T: Ord {
| +++++++++++++++++++++++++
```
After:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
= help: items from traits can only be used if the type parameter is bounded by the trait
help: the following traits define an item `cmp`, perhaps you need to restrict type parameter `T` with one of them:
|
LL | fn g<T: Ord>(a: T, b: T) -> std::cmp::Ordering {
| +++++
LL | fn g<T: Iterator>(a: T, b: T) -> std::cmp::Ordering {
| ++++++++++
```
Fix#108428.
Follow up to #120396, only last commit is relevant.
```
error[E0277]: the size for values of type `[i32]` cannot be known at compilation time
--> f100.rs:2:33
|
2 | let _ = std::mem::size_of::<[i32]>();
| ^^^^^ doesn't have a size known at compile-time
|
= help: the trait `Sized` is not implemented for `[i32]`
note: required by an implicit `Sized` bound in `std::mem::size_of`
--> /home/gh-estebank/rust/library/core/src/mem/mod.rs:312:22
|
312 | pub const fn size_of<T>() -> usize {
| ^ required by the implicit `Sized` requirement on this bound in `size_of`
```
Fix#120178.
Expand the primary span of E0277 when the immediate unmet bound is not what the user wrote:
```
error[E0277]: the trait bound `i32: Bar` is not satisfied
--> f100.rs:6:6
|
6 | <i32 as Foo>::foo();
| ^^^ the trait `Bar` is not implemented for `i32`, which is required by `i32: Foo`
|
help: this trait has no implementations, consider adding one
--> f100.rs:2:1
|
2 | trait Bar {}
| ^^^^^^^^^
note: required for `i32` to implement `Foo`
--> f100.rs:3:14
|
3 | impl<T: Bar> Foo for T {}
| --- ^^^ ^
| |
| unsatisfied trait bound introduced here
```
Fix#40120.
When a method not found on a type parameter could have been provided by any
of multiple traits, suggest each trait individually, instead of a single
suggestion to restrict the type parameter with *all* of them.
Before:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
help: consider restricting the type parameters to satisfy the trait bounds
|
LL | fn g<T>(a: T, b: T) -> std::cmp::Ordering where T: Iterator, T: Ord {
| +++++++++++++++++++++++++
```
After:
```
error[E0599]: the method `cmp` exists for reference `&T`, but its trait bounds were not satisfied
--> $DIR/method-on-unbounded-type-param.rs:5:10
|
LL | (&a).cmp(&b)
| ^^^ method cannot be called on `&T` due to unsatisfied trait bounds
|
= note: the following trait bounds were not satisfied:
`T: Ord`
which is required by `&T: Ord`
`&T: Iterator`
which is required by `&mut &T: Iterator`
`T: Iterator`
which is required by `&mut T: Iterator`
= help: items from traits can only be used if the type parameter is bounded by the trait
help: the following traits define an item `cmp`, perhaps you need to restrict type parameter `T` with one of them:
|
LL | fn g<T: Ord>(a: T, b: T) -> std::cmp::Ordering {
| +++++
LL | fn g<T: Iterator>(a: T, b: T) -> std::cmp::Ordering {
| ++++++++++
```
Fix#108428.
When encountering a type mismatch error involving `dyn Trait`, mention
the existence of boxed trait objects if the other type involved
implements `Trait`.
Partially addresses #102629.
Register even erroneous impls
Otherwise the specialization graph fails to pick it up, even though other code assumes that all impl blocks have an entry in the specialization graph.
also includes an unrelated cleanup of the specialization graph query
fixes #119827
On borrow return type, suggest borrowing from arg or owned return type
When we encounter a function with a return type that has an anonymous lifetime with no argument to borrow from, besides suggesting the `'static` lifetime we now also suggest changing the arguments to be borrows or changing the return type to be an owned type.
```
error[E0106]: missing lifetime specifier
--> $DIR/variadic-ffi-6.rs:7:6
|
LL | ) -> &usize {
| ^ expected named lifetime parameter
|
= help: this function's return type contains a borrowed value, but there is no value for it to be borrowed from
help: consider using the `'static` lifetime, but this is uncommon unless you're returning a borrowed value from a `const` or a `static`
|
LL | ) -> &'static usize {
| +++++++
help: instead, you are more likely to want to change one of the arguments to be borrowed...
|
LL | x: &usize,
| +
help: ...or alternatively, to want to return an owned value
|
LL - ) -> &usize {
LL + ) -> usize {
|
```
Fix#85843.