Replace usage of `ResumeTy` in async lowering with `Context`
Replaces using `ResumeTy` / `get_context` in favor of using `&'static mut Context<'_>`.
Usage of the `'static` lifetime here is technically "cheating", and replaces the raw pointer in `ResumeTy` and the `get_context` fn that pulls the correct lifetimes out of thin air.
fixes https://github.com/rust-lang/rust/issues/104828 and https://github.com/rust-lang/rust/pull/104321#issuecomment-1336363077
r? `@oli-obk`
Add StableOrd trait as proposed in MCP 533.
The `StableOrd` trait can be used to mark types as having a stable sort order across compilation sessions. Collections that sort their items in a stable way can safely implement HashStable by hashing items in sort order.
See https://github.com/rust-lang/compiler-team/issues/533 for more information.
Replaces using `ResumeTy` / `get_context` in favor of using `&'static mut Context<'_>`.
Usage of the `'static` lifetime here is technically "cheating", and replaces
the raw pointer in `ResumeTy` and the `get_context` fn that pulls the
correct lifetimes out of thin air.
Remove useless borrows and derefs
They are nothing more than noise.
<sub>These are not all of them, but my clippy started crashing (stack overflow), so rip :(</sub>
The StableOrd trait can be used to mark types as having a stable
sort order across compilation sessions. Collections that sort their
items in a stable way can safely implement HashStable by
hashing items in sort order.
Prefer doc comments over `//`-comments in compiler
Doc comments are generally nicer: they show up in the documentation, they are shown in IDEs when you hover other mentions of items, etc. Thus it makes sense to use them instead of `//`-comments.
Rollup of 8 pull requests
Successful merges:
- #95836 (Use `rust_out{exe_suffix}` for doctests)
- #104882 (notify lcnr on changes to `ObligationCtxt`)
- #104892 (Explain how to get the discriminant out of a `#[repr(T)] enum` with payload)
- #104917 (Allow non-org members to label `requires-debug-assertions`)
- #104931 (Pretty-print generators with their `generator_kind`)
- #104934 (Remove redundant `all` in cfg)
- #104944 (Support unit tests for jsondoclint)
- #104946 (rustdoc: improve popover focus handling JS)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Pretty-print generators with their `generator_kind`
After removing `GenFuture`, I special-cased async generators to pretty-print as `impl Future<Output = X>` mainly to avoid too much diagnostics changes originally.
This now reverses that change so that async fn/blocks are pretty-printed as `[$async-type@$source-position]` in various diagnostics, and updates the tests that this touches.
Separate lifetime ident from lifetime resolution in HIR
Drive-by: change how suggested generic args are computed.
Fixes https://github.com/rust-lang/rust/issues/103815
I recommend reviewing commit-by-commit.
After removing `GenFuture`, I special-cased async generators to pretty-print as `impl Future<Output = X>` mainly to avoid too much diagnostics changes originally.
This now reverses that change so that async fn/blocks are pretty-printed as `[$movability `async` $something@$source-position]` in various diagnostics, and updates the tests that this touches.
Avoid `GenFuture` shim when compiling async constructs
Previously, async constructs would be lowered to "normal" generators, with an additional `from_generator` / `GenFuture` shim in between to convert from `Generator` to `Future`.
The compiler will now special-case these generators internally so that async constructs will *directly* implement `Future` without the need to go through the `from_generator` / `GenFuture` shim.
The primary motivation for this change was hiding this implementation detail in stack traces and debuginfo, but it can in theory also help the optimizer as there is less abstractions to see through.
---
Given this demo code:
```rust
pub async fn a(arg: u32) -> Backtrace {
let bt = b().await;
let _arg = arg;
bt
}
pub async fn b() -> Backtrace {
Backtrace::force_capture()
}
```
I would get the following with the latest stable compiler (on Windows):
```
4: async_codegen:🅱️:async_fn$0
at .\src\lib.rs:10
5: core::future::from_generator::impl$1::poll<enum2$<async_codegen:🅱️:async_fn_env$0> >
at /rustc/897e37553bba8b42751c67658967889d11ecd120\library\core\src\future\mod.rs:91
6: async_codegen:🅰️:async_fn$0
at .\src\lib.rs:4
7: core::future::from_generator::impl$1::poll<enum2$<async_codegen:🅰️:async_fn_env$0> >
at /rustc/897e37553bba8b42751c67658967889d11ecd120\library\core\src\future\mod.rs:91
```
whereas now I get a much cleaner stack trace:
```
3: async_codegen:🅱️:async_fn$0
at .\src\lib.rs:10
4: async_codegen:🅰️:async_fn$0
at .\src\lib.rs:4
```
Previously, async constructs would be lowered to "normal" generators,
with an additional `from_generator` / `GenFuture` shim in between to
convert from `Generator` to `Future`.
The compiler will now special-case these generators internally so that
async constructs will *directly* implement `Future` without the need
to go through the `from_generator` / `GenFuture` shim.
The primary motivation for this change was hiding this implementation
detail in stack traces and debuginfo, but it can in theory also help
the optimizer as there is less abstractions to see through.
Improve spans for RPITIT object-safety errors
No reason why we can't point at the `impl Trait` that causes the object-safety violation.
Also [drive-by: Add is_async fn to hir::IsAsync](c4165f3a96), which touches clippy too.
Rollup of 8 pull requests
Successful merges:
- #102977 (remove HRTB from `[T]::is_sorted_by{,_key}`)
- #103378 (Fix mod_inv termination for the last iteration)
- #103456 (`unchecked_{shl|shr}` should use `u32` as the RHS)
- #103701 (Simplify some pointer method implementations)
- #104047 (Diagnostics `icu4x` based list formatting.)
- #104338 (Enforce that `dyn*` coercions are actually pointer-sized)
- #104498 (Edit docs for `rustc_errors::Handler::stash_diagnostic`)
- #104556 (rustdoc: use `code-header` class to format enum variants)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Clippy has an internal lint that checks for the usage of hardcoded def
paths and suggests to replace them with a lang or diagnostic item, if
possible. This was implemented with a hack, by getting all the variants
of the `LangItem` enum and then index into it with the position of the
`LangItem` in the `items` list. This is no longer possible, because the
`items` list can't be accessed anymore.
Rewrite implementation of `#[alloc_error_handler]`
The new implementation doesn't use weak lang items and instead changes `#[alloc_error_handler]` to an attribute macro just like `#[global_allocator]`.
The attribute will generate the `__rg_oom` function which is called by the compiler-generated `__rust_alloc_error_handler`. If no `__rg_oom` function is defined in any crate then the compiler shim will call `__rdl_oom` in the alloc crate which will simply panic.
This also fixes link errors with `-C link-dead-code` with `default_alloc_error_handler`: `__rg_oom` was previously defined in the alloc crate and would attempt to reference the `oom` lang item, even if it didn't exist. This worked as long as `__rg_oom` was excluded from linking since it was not called.
This is a prerequisite for the stabilization of `default_alloc_error_handler` (#102318).
The new implementation doesn't use weak lang items and instead changes
`#[alloc_error_handler]` to an attribute macro just like
`#[global_allocator]`.
The attribute will generate the `__rg_oom` function which is called by
the compiler-generated `__rust_alloc_error_handler`. If no `__rg_oom`
function is defined in any crate then the compiler shim will call
`__rdl_oom` in the alloc crate which will simply panic.
This also fixes link errors with `-C link-dead-code` with
`default_alloc_error_handler`: `__rg_oom` was previously defined in the
alloc crate and would attempt to reference the `oom` lang item, even if
it didn't exist. This worked as long as `__rg_oom` was excluded from
linking since it was not called.
This is a prerequisite for the stabilization of
`default_alloc_error_handler` (#102318).