Add examples to document the return type of quickselect functions
Currently, `select_nth_unstable`, `select_nth_unstable_by`, and `select_nth_unstable_by_key`'s examples do not show how to use the return values of the functions in an example, so this PR adds that in.
Note: I didn't know what to call the parameters, so I settled on lesser, median, greater because the example is used for median finding so I retained that naming for the pivot, but lesser and greater are poor names for the example that sorts in descending order, because lesser and greater are then flipped.
I think it's common to say "lo" and "hi" for low and high respectively, but that's also not great when the comparator flips the elements. Otherwise, "left" and "right" are also commonly used but I think that's poor naming because some languages read right to left so those names are also unintuitive.
Lesser and greater are also not that great but I found a test that used `less`, `equal`, `greater` so I took that: dfa88b328f/library/core/tests/slice.rs (L1962)
Use a hardcoded constant instead of calling OpenProcessToken.
Now that Win 7 support is dropped, we can resurrect #90144.
GetCurrentProcessToken is defined in processthreadsapi.h as:
FORCEINLINE
HANDLE
GetCurrentProcessToken (
VOID
)
{
return (HANDLE)(LONG_PTR) -4;
}
Since it's very unlikely that this constant will ever change, let's just use it instead of making calls to get the same information.
Make `io::BorrowedCursor::advance` safe
This also keeps the old `advance` method under `advance_unchecked` name.
This makes pattern like `std::io::default_read_buf` safe to write.
Now that Win 7 support is dropped, we can resurrect #90144.
GetCurrentProcessToken is defined in processthreadsapi.h as:
FORCEINLINE
HANDLE
GetCurrentProcessToken (
VOID
)
{
return (HANDLE)(LONG_PTR) -4;
}
Since it's very unlikely that this constant will ever change, let's just use it instead of making calls to get the same information.
Rename MaybeUninit::write_slice
A step to push #79995 forward.
https://github.com/rust-lang/libs-team/issues/122 also suggested to make them inherent methods, but they can't be — they'd conflict with slice's regular methods.
Implement intrinsics with fallback bodies
fixes#93145 (though we can port many more intrinsics)
cc #63585
The way this works is that the backend logic for generating custom code for intrinsics has been made fallible. The only failure path is "this intrinsic is unknown". The `Instance` (that was `InstanceDef::Intrinsic`) then gets converted to `InstanceDef::Item`, which represents the fallback body. A regular function call to that body is then codegenned. This is currently implemented for
* codegen_ssa (so llvm and gcc)
* codegen_cranelift
other backends will need to adjust, but they can just keep doing what they were doing if they prefer (though adding new intrinsics to the compiler will then require them to implement them, instead of getting the fallback body).
cc `@scottmcm` `@WaffleLapkin`
### todo
* [ ] miri support
* [x] default intrinsic name to name of function instead of requiring it to be specified in attribute
* [x] make sure that the bodies are always available (must be collected for metadata)
doc: add note about panicking examples for strict_overflow_ops
The first commit adds a note before the panicking examples for strict_overflow_ops to make it clearer that the following examples should panic and why, without needing the reader to hover the mouse over the information icon.
The second commit adds panicking examples for division by zero operations for strict division operations on unsigned numbers. The signed numbers already have two panicking examples each: one for division by zero and one for overflowing division (`MIN/-1`); this commit includes the division by zero examples for the unsigned numbers.
Waker::will_wake: Compare vtable address instead of its content
Optimize will_wake implementation by comparing vtable address instead of its content.
The existing best practice to avoid false negatives from will_wake is to define a waker vtable as a static item. That approach continues to works with the new implementation.
While this potentially changes the observable behaviour, the function is documented to work on a best-effort basis. The PartialEq impl for RawWaker remains as it was.
Add `ErrorGuaranteed` to `ast::LitKind::Err`, `token::LitKind::Err`.
Similar to recent work doing the same for `ExprKind::Err` (#120586) and `TyKind::Err` (#121109).
r? `@oli-obk`
std::thread update freebsd stack guard handling.
up to now, it had been assumed the stack guard setting default is not touched in the field but some user might just want to disable it or increase it. checking it once at runtime should be enough.
Fix BTreeMap's Cursor::remove_{next,prev}
These would incorrectly leave `current` as `None` after a failed attempt to remove an element (due to the cursor already being at the start/end).
Clarified docs on non-atomic oprations on owned/mut refs to atomics
I originally misinterpreted the documentation to mean that the compiler can/will automatically optimise away atomic operations whenever the data is owned or mutably referenced.
On re-reading I think it is not technically incorrect, but specifically mentioning _how_ the atomic operations can be avoided also prevents this misunderstanding.
Make contributing to windows bindings easier
This PR does three things:
- Automatically sorts bindings so contributors don't have to. I should have done this to begin with but was lazy.
- Renames `windows_sys.lst` to `bindings.txt`. This [matches the windows-rs repository](8e71051ea8/crates/tools/sys/bindings.txt) (and repos that copy it). I believe consistency with other projects helps get people orientated.
- Adds a `README.md` file explaining what this is about and how to add bindings. This has the benefit of being directly editable and it's rendered when viewed online. Also people are understandably jumping right into the `windows_sys.rs` file via ripgrep or github search and so missing that it's generated. A `README.md` alongside it is at least slightly more obvious in that case. There is still a small note at the top of `windows_sys` in case people do read from the beginning.
None of this has any impact on the actual code generated. It's purely to make the new contributors workflow a bit nicer.
This mostly works well, and eliminates a couple of delayed bugs.
One annoying thing is that we should really also add an
`ErrorGuaranteed` to `proc_macro::bridge::LitKind::Err`. But that's
difficult because `proc_macro` doesn't have access to `ErrorGuaranteed`,
so we have to fake it.
Rollup of 13 pull requests
Successful merges:
- #116387 (Additional doc links and explanation of `Wake`.)
- #118738 (Netbsd10 update)
- #118890 (Clarify the lifetimes of allocations returned by the `Allocator` trait)
- #120498 (Uplift `TypeVisitableExt` into `rustc_type_ir`)
- #120530 (Be less confident when `dyn` suggestion is not checked for object safety)
- #120915 (Fix suggestion span for `?Sized` when param type has default)
- #121015 (Optimize `delayed_bug` handling.)
- #121024 (implement `Default` for `AsciiChar`)
- #121039 (Correctly compute adjustment casts in GVN)
- #121045 (Fix two UI tests with incorrect directive / invalid revision)
- #121049 (Do not point at `#[allow(_)]` as the reason for compat lint triggering)
- #121071 (Use fewer delayed bugs.)
- #121073 (Fix typos in `OneLock` doc)
r? `@ghost`
`@rustbot` modify labels: rollup
implement `Default` for `AsciiChar`
This implements `Default` for `AsciiChar` in order to match `char`'s implementation.
From all the different possible ways to do this I think the clearest one is to have both `char` and `AsciiChar` impls together.
I've also updated the doc-comment of the default variant since rustdoc doesn't seem to indicate it otherwise. Probably the text could be improved, though. I couldn't find any similar examples in the codebase and suggestions are welcomed.
r? `@scottmcm`
Clarify the lifetimes of allocations returned by the `Allocator` trait
The previous definition (accidentally) disallowed the implementation of stack-based allocators whose memory would become invalid once the lifetime of the allocator type ended.
This also ensures the validity of the following blanket implementation:
```rust
impl<A: Allocator> Allocator for &'_ A {}
```
Additional doc links and explanation of `Wake`.
This is intended to clarify:
* That `Wake` exists and can be used instead of `RawWaker`.
* How to construct a `Waker` when you are looking at `Wake` (which was previously only documented in the example).
Optimize away poison guards when std is built with panic=abort
> **Note**: To take advantage of this PR, you will have to use `-Zbuild-std` or build your own toolchain. rustup toolchains always link to a libstd that was compiled with `panic=unwind`, since it's compatible with `panic=abort` code.
When std is compiled with `panic=abort` we can remove a lot of the poison machinery from the locks. This changes the `Flag` and `Guard` types to be ZSTs. It also adds an uninhabited member to `PoisonError` so the compiler knows it can optimize away the `Result::Err` paths, and make `LockResult<T>` layout-equivalent to `T`.
### Is this a breaking change?
`PoisonError::new` now panics if invoked from a libstd built with `panic="abort"` (or any non-`unwind` strategy). It is unclear to me whether to consider this a breaking change.
In order to encounter this behavior, **both of the following must be true**:
#### Using a libstd with `panic="abort"`
This is pretty uncommon. We don't build libstd with that in rustup, except in (Tier 2-3) platforms that do not support unwinding, **most notably wasm**.
Most people who do this are using cargo's `-Z build-std` feature, which is unstable.
`panic="abort"` is not a supported option in Rust's build system. It is possible to configure it using `CARGO_TARGET_xxx_RUSTFLAGS`, but I believe this only works on **non-host** platforms.
#### Creating `PoisonError` manually
This is also unlikely. The only common use case I can think of is in tests, and you can't run tests with `panic="abort"` without the unstable `-Z panic_abort_tests` flag.
It's possible that someone is implementing their own locks using std's `PoisonError` **and** defining "thread failure" to mean something other than "panic". If this is the case then we would break their code if it was used with a `panic="abort"` libstd. The locking crates I know of don't replicate std's poison API, but I haven't done much research into this yet.
I've touched on a fair number of considerations here. Which ones do people consider relevant?
`compile_fail` should only be used when the code is meant to show
what *not* to do. In other words, there should be a fundamental flaw
in the code. However, in this case, the example is just incomplete,
so we should use `ignore` to avoid confusing readers.