Rollup of 9 pull requests
Successful merges:
- #121958 (Fix redundant import errors for preload extern crate)
- #121976 (Add an option to have an external download/bootstrap cache)
- #122022 (loongarch: add frecipe and relax target feature)
- #122026 (Do not try to format removed files)
- #122027 (Uplift some feeding out of `associated_type_for_impl_trait_in_impl` and into queries)
- #122063 (Make the lowering of `thir::ExprKind::If` easier to follow)
- #122074 (Add missing PartialOrd trait implementation doc for array)
- #122082 (remove outdated fixme comment)
- #122091 (Note why we're using a new thread in `test_get_os_named_thread`)
r? `@ghost`
`@rustbot` modify labels: rollup
compiletest: Add a `//@ needs-threads` directive
This commit is extracted from #122036 and adds a new directive to the `compiletest` test runner, `//@ needs-threads`. This is intended to capture the need that a target must implement threading to execute a specific test, typically one that uses `std::thread`. This is primarily done for WebAssembly targets which currently do not have threads by default. This enables transitioning a lot of `//@ ignore-wasm*`-style ignores into a more self-documenting `//@ needs-threads` directive. Additionally the `wasm32-wasi-preview1-threads` target, for example, does actually have threads, but isn't tested in CI at this time. This change enables running these tests for that target, but not other wasm targets.
Uplift some feeding out of `associated_type_for_impl_trait_in_impl` and into queries
This PR moves the `type_of` and `generics_of` query feeding out of `associated_type_for_impl_trait_in_impl`, since eagerly feeding results in query cycles due to a subtle interaction with `resolve_bound_vars`.
Fixes#122019
r? spastorino
loongarch: add frecipe and relax target feature
This PR adds `frecipe` and `relax` target features to LoongArch:
* frecipe - Support frecipe.{s/d} and frsqrte.{s/d} instructions..
* relax - Enable Linker relaxation.
Fix linting paths with qself in `unused_qualifications`
Fixes#121999
`resolve_qpath` ends up being called again with `qself` set to `None` to check trait items from fully qualified paths. To avoid this the lint is moved to a place that accounts for this already
96561a8fd1/compiler/rustc_resolve/src/late.rs (L4074-L4088)
r? `````@petrochenkov`````
Rework `untranslatable_diagnostic` lint
Currently it only checks calls to functions marked with `#[rustc_lint_diagnostics]`. This PR changes it to check calls to any function with an `impl Into<{D,Subd}iagnosticMessage>` parameter. This greatly improves its coverage and doesn't rely on people remembering to add `#[rustc_lint_diagnostics]`. It also lets us add `#[rustc_lint_diagnostics]` to a number of functions that don't have an `impl Into<{D,Subd}iagnosticMessage>`, such as `Diag::span`.
r? ``@davidtwco``
avoid overlapping privacy suggestion for single nested imports
Fixes#114884
This PR aims to avoid confusion inside braces for import suggestions.
r? ``@petrochenkov``
Change the documented implicit value of `-C instrument-coverage` to `=yes`
The option-value parser for `-Cinstrument-coverage=` currently accepts the following stable values:
- `all` (implicit value of plain `-Cinstrument-coverage`)
- `yes`, `y`, `on`, `true` (undocumented aliases for `all`)
- `off` (default; same as not specifying `-Cinstrument-coverage`)
- `no`, `n`, `false`, `0` (undocumented aliases for `off`)
I'd like to rearrange and re-document the stable values as follows:
- `no` (default; same as not specifying `-Cinstrument-coverage`)
- `n`, `off`, `false` (documented aliases for `no`)
- `0` (undocumented alias for `no`)
- `yes` (implicit value of plain `-Cinstrument-coverage`)
- `y`, `on`, `true` (documented aliases for `yes`)
- `all` (documented as *currently* an alias for `yes` that may change; discouraged but not deprecated)
The main changes being:
- Documented default value changes from `off` to `no`
- Documented implicit value changes from `all` to `yes`
- Other boolean aliases (`n`, `off`, `false`, `y`, `on`, `true`) are explicitly documented
- `all` remains currently an alias for `yes`, but is explicitly documented as being able to change in the future
- `0` remains an undocumented but stable alias for `no`
- The actual behaviour of coverage instrumentation does not change
# Why?
The choice of `all` as the implicit value only really makes sense in the context of the unstable `except-unused-functions` and `except-unused-generics` values. That arrangement was fine for an unstable flag, but it's confusing for a stable flag whose only other stable value is `off`, and will only become more confusing if we eventually want to stabilize other fine-grained coverage option values.
(Currently I'm not aware of any plans to stabilize other coverage option values, but that's why I think now is a fine time to make this change, well before anyone actually has to care about it.)
For example, if we ever add support for opt-in instrumentation of things that are *not* instrumented by `-Cinstrument-coverage` by default, it will be very strange for the `all` value to not actually instrument all things that we know how to instrument.
# Compatibility impact
Because this is not a functional change, there is no immediate compatibility impact. However, changing the documented semantics of `all` opens up the possibility of future changes that could be considered retroactively breaking.
I don't think this is going to be a big deal in practice, for a few reasons:
- The exact behaviour of coverage instrumentation is allowed to change, so changing the behaviour of `all` is not a *stability-breaking* change, as long as it still exists and does something reasonable.
- `-Cinstrument-coverage` is mainly used by tools or scripts that can be easily updated if necessary. It's unusual for users to pass the flag directly, because processing the profiler output is complicated enough that tools/scripts tend to be necessary anyway.
- Most people who are using coverage are probably relying on `-Cinstrument-coverage` rather than explicitly passing `-Cinstrument-coverage=all`, so the number of users actually affected by this change is likely to be low, and plausibly zero.
bootstrap/libtest: print test name eagerly on failure even with `verbose-tests=false` / `--quiet`
Previously, libtest would wait until all tests finished running to print the progress, which made it
annoying to run many tests at once (since you don't know which have failed). Change it to print the
names as soon as they fail.
This makes it much easier to know which test failed without having to wait for compiletest to completely finish running. Before:
```
Testing stage0 compiletest suite=ui mode=ui (x86_64-unknown-linux-gnu)
running 15274 tests
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 88/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 176/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 264/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 352/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 440/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 528/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiFFiiiiiii
...
```
After:
```
Testing stage0 compiletest suite=ui mode=ui (x86_64-unknown-linux-gnu)
running 15274 tests
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 88/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 176/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 264/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 352/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 440/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 528/15274
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
[ui] tests/ui/associated-type-bounds/implied-in-supertrait.rs ... F
[ui] tests/ui/associated-type-bounds/return-type-notation/basic.rs#next_with ... F
iiiiiiiiiiiii
...
```
This serves a similar use case to the existing RUSTC_TEST_FAIL_FAST, but is on by default and as a result much more discoverable. We should consider unifying RUSTC_TEST_FAIL_FAST with the `--no-fail-fast` flag in the future for consistency and discoverability.
This commit is extracted from #122036 and adds a new directive to the
`compiletest` test runner, `//@ needs-threads`. This is intended to
capture the need that a target must implement threading to execute a
specific test, typically one that uses `std::thread`. This is primarily
done for WebAssembly targets which currently do not have threads by
default. This enables transitioning a lot of `//@ ignore-wasm*`-style
ignores into a more self-documenting `//@ needs-threads` directive.
Additionally the `wasm32-wasi-preview1-threads` target, for example,
does actually have threads, but isn't tested in CI at this time. This
change enables running these tests for that target, but not other wasm
targets.
stricter hidden type wf-check [based on #115008]
Original work by `@aliemjay` in #115008. A huge thanks to them for originally figuring out this approach ❤️
Fixes https://github.com/rust-lang/rust/issues/114728
Fixes https://github.com/rust-lang/rust/issues/114572
Instead of adding the `WellFormed` obligations when relating opaque types, we now always emit such an obligation when defining the hidden type.
This causes nested opaque types which aren't wf to error, see the comment below for the described impact. I believe this change to be desirable as it significantly reduces complexity by removing special-cases.
It also caused an issue with RPITIT: in defaulted trait methods, we add a `Projection(synthetic_assoc, rpit_of_trait_method)` clause to the `param_env`. This clause is not added to the `ParamEnv` of the nested coroutines. This caused a normalization failure in `fn check_coroutine_obligations` with the new solver. I fixed that by using the env of the typeck root instead.
r? `@oli-obk`
Currently it only checks calls to functions marked with
`#[rustc_lint_diagnostics]`. This commit changes it to check calls to
any function with an `impl Into<{D,Subd}iagMessage>` parameter. This
greatly improves its coverage and doesn't rely on people remembering to
add `#[rustc_lint_diagnostics]`.
The commit also adds `#[allow(rustc::untranslatable_diagnostic)`]
attributes to places that need it that are caught by the improved lint.
These places that might be easy to convert to translatable diagnostics.
Finally, it also:
- Expands and corrects some comments.
- Does some minor formatting improvements.
- Adds missing `DecorateLint` cases to
`tests/ui-fulldeps/internal-lints/diagnostics.rs`.
Rollup of 9 pull requests
Successful merges:
- #121065 (Add basic i18n guidance for `Display`)
- #121744 (Stop using Bubble in coherence and instead emulate it with an intercrate check)
- #121829 (Dummy tweaks (attempt 2))
- #121857 (Implement async closure signature deduction)
- #121894 (const_eval_select: make it safe but be careful with what we expose on stable for now)
- #122014 (Change some attributes to only_local.)
- #122016 (will_wake tests fail on Miri and that is expected)
- #122018 (only set noalias on Box with the global allocator)
- #122028 (Remove some dead code)
r? `@ghost`
`@rustbot` modify labels: rollup
only set noalias on Box with the global allocator
As discovered in https://github.com/rust-lang/miri/issues/3341, `noalias` and custom allocators don't go well together.
rustc can now check whether a Box uses the global allocator. This replaces the previous ad-hoc and rather unprincipled check for a zero-sized allocator.
This is the rustc part of fixing that; Miri will also need a patch.
const_eval_select: make it safe but be careful with what we expose on stable for now
As this is all still nightly-only I think `````@rust-lang/wg-const-eval````` can do that without involving t-lang.
r? `````@oli-obk`````
Cc `````@Nilstrieb````` -- the updated version of your RFC would basically say that we can remove these comments about not making behavior differences visible in stable `const fn`
Implement async closure signature deduction
Self-explanatory from title.
Regarding the interaction between signature deduction, fulfillment, and the new trait solver: I'm not worried about implementing closure signature deduction here because:
1. async closures are unstable, and
2. I'm reasonably confident we'll need to support signature deduction in the new solver somehow (i.e. via proof trees, which seem very promising).
This is in contrast to #109338, which was closed because it generalizes signature deduction for a *stable* kind of expression (`async {}` blocks and `Future` traits), and which proliferated usage may pose a stabilization hazard for the new solver.
I'll be certain to make sure sure we revisit the closure signature deduction problem by the time that async closures are being stabilized (which isn't particularly soon) (edit: Put it into the async closure tracking issue). cc `````@lcnr`````
r? `````@oli-obk`````
Merge impl_trait_in_assoc_types_defined_by query back into `opaque_types_defined_by`
Instead, when we're collecting opaques for associated items, we choose the right collection mode depending on whether we're collecting for an associated item of a trait impl or not.
r? ```@compiler-errors```
follow up to https://github.com/rust-lang/rust/pull/121838
Fix duplicated path in the "not found dylib" error
While working on the gcc backend, I couldn't figure out why I had this error:
```
error: couldn't load codegen backend /checkout/compiler/rustc_codegen_gcc/target/release/librustc_codegen_gcc.so/checkout/compiler/rustc_codegen_gcc/target/release/librustc_codegen_gcc.so: cannot open shared object file: No such file or directory
```
As you can see, the path is duplicated for some reason. After investigating a bit more, I realized that `libloading::Error::LoadLibraryExW` starts with the path of the not found dylib, making it appear twice in our error afterward (because we do render it like this: `{path}{err}`, and since the `err` starts with the path...).
Thanks to `````@bjorn3````` for linking me to https://github.com/rust-lang/rust/pull/121392. :)
hir_analysis: enums return `None` in `find_field`
Fixes#121757.
Unnamed union fields with enums are checked for, but if `find_field` causes an ICE then the compiler won't get to that point.
Limit the number of names and values in check-cfg diagnostics
The Rust for Linux [feedback](https://github.com/rust-lang/rust/issues/82450#issuecomment-1947462977) to the check-cfg Call for Testing, revealed a weakness in the check-cfg. They are unbounded and in the case RfL they have ~20k cfgs and having them printed (even once) is unbearable.
This PR limits it to 35 (28 rustc well known + `feature` + `docsrs` + 5 custom) which feels like a good middle ground for regular users (i.e. Cargo users).
When it goes over that limit print the N first with " and X more".
``@rustbot`` label +F-check-cfg
Instead, when we're collecting opaques for associated items, we choose the right collection mode depending on whether we're collecting for an associated item of a trait impl or not.
tidy: split dots in filename not the entire path when checking for stray stdout/stderr files
I committed a path crime by splitting the entire path on `.`, when I meant to split on the filename. This means that any parent folders which contain `.` will cause tidy failure. Added a regression test so that doesn't happen again.
### Follow-up
- [ ] Adjust rustc-dev-guide to document assert on test name not containing dots. https://github.com/rust-lang/rustc-dev-guide/pull/1927Fixes#121986.
Use the correct logic for nested impl trait in assoc types
Previously we accidentally continued with the TAIT visitor, which allowed more than we wanted to.
r? ```@compiler-errors```
Use root obligation on E0277 for some cases
When encountering trait bound errors that satisfy some heuristics that tell us that the relevant trait for the user comes from the root obligation and not the current obligation, we use the root predicate for the main message.
This allows to talk about "X doesn't implement Pattern<'_>" over the most specific case that just happened to fail, like "char doesn't implement Fn(&mut char)" in
`tests/ui/traits/suggest-dereferences/root-obligation.rs`
The heuristics are:
- the type of the leaf predicate is (roughly) the same as the type from the root predicate, as a proxy for "we care about the root"
- the leaf trait and the root trait are different, so as to avoid talking about `&mut T: Trait` and instead remain talking about `T: Trait` instead
- the root trait is not `Unsize`, as to avoid talking about it in `tests/ui/coercion/coerce-issue-49593-box-never.rs`.
```
error[E0277]: the trait bound `&char: Pattern<'_>` is not satisfied
--> $DIR/root-obligation.rs:6:38
|
LL | .filter(|c| "aeiou".contains(c))
| -------- ^ the trait `Fn<(char,)>` is not implemented for `&char`, which is required by `&char: Pattern<'_>`
| |
| required by a bound introduced by this call
|
= note: required for `&char` to implement `FnOnce<(char,)>`
= note: required for `&char` to implement `Pattern<'_>`
note: required by a bound in `core::str::<impl str>::contains`
--> $SRC_DIR/core/src/str/mod.rs:LL:COL
help: consider dereferencing here
|
LL | .filter(|c| "aeiou".contains(*c))
| +
```
Fix#79359, fix#119983, fix#118779, cc #118415 (the suggestion needs to change), cc #121398 (doesn't fix the underlying issue).
Adjust error `yield`/`await` lowering
Adjust the lowering of `yield`/`await` outside of their correct scopes so that we no longer make orpan HIR exprs.
Previously, `yield EXPR` would be lowered directly to `hir::TyKind::Error` (which I'll call `<error>`) which means that `EXPR` was not present in the HIR, but now we lower it to `{ EXPR; <error> }` so that `EXPR` is not orphaned.
Fixes#121096
Previously, libtest would wait until all tests finished running to print the progress, which made it
annoying to run many tests at once (since you don't know which have failed). Change it to print the
names as soon as they fail.
This also adds a test for the terse output; previously it was untested.
When you make a change to the diagnostic lints, it uses the old version
of the lints with stage 1 and the new version with stage 2, which often
leads to failures in stage 1. Let's just stick to stage 2.