Ensure that tail expr receive lifetime extension
cc `@jieyouxu` `@traviscross`
It just came to me that we should add a test to make sure that we honor the contract from the temporary lifetime rule #121346. We should continue to implement this rule in Edition 2021 onward and shorter tail expression lifetime should not override it.
This is a small PR to improve our assurance and establish a stronger contract.
Tracked by rust-lang/rust#123739
Stabilize WebAssembly `multivalue`, `reference-types`, and `tail-call` target features
For the `multivalue` and `reference-types` features this commit is
similar to https://github.com/rust-lang/rust/pull/117457 in that it's stabilizing target features specific to
WebAssembly targets. The previous PR left out these two features because
they weren't expected to change much about compiled code so it was
unclear what the rationale was. It has [since been discovered][blog]
that `reference-types` can be useful as it changes the binary format of
the `call_indirect` instruction. Additionally [on Zulip][zulip] there's
a use case of detecting these features at compile time and generating a
compile error to better warn users about features not supported on
engines.
This PR then additionally adds the `tail-call` feature which corresponds
to the [tail-call] proposal to WebAssembly. This feature advanced to
"phase 4" in the WebAssembly CG awhile back and has been supported in
LLVM for quite some time now. Engines are finishing up implementations
or have already shipped implementations, so while this is a bit of a
late addition to Rust itself it reflects the current status of
WebAssembly's state of the feature.
A test has been added here not only for these features but other
WebAssembly features as well to showcase that they're usable without
feature gates in stable Rust.
[blog]: https://blog.rust-lang.org/2024/09/24/webassembly-targets-change-in-default-target-features.html
[zulip]: https://rust-lang.zulipchat.com/#narrow/stream/122651-general/topic/wasm32.20reference-types.20.2F.20multivalue.20in.201.2E82-beta.20not.20enabled/near/473893987
[tail-call]: https://github.com/webassembly/tail-call
Prefer `pub(super)` in `unreachable_pub` lint suggestion
This PR updates the `unreachable_pub` lint suggestion to prefer `pub(super)` instead of `pub(crate)` when possible.
cc `@petrochenkov`
r? `@nnethercote`
Stabilize Arm64EC inline assembly
This stabilizes inline assembly for Arm64EC ("Emulation Compatible").
Corresponding reference PR: https://github.com/rust-lang/reference/pull/1653
---
From the requirements of stabilization mentioned in https://github.com/rust-lang/rust/issues/93335
> Each architecture needs to be reviewed before stabilization:
> - It must have clobber_abi.
Done in https://github.com/rust-lang/rust/pull/131332.
> - It must be possible to clobber every register that is normally clobbered by a function call.
This is possible from the time of the initial implementation.
> - Generally review that the exposed register classes make sense.
The registers available in this target are a subset of those available in the AArch64 inline assembly which is already stable.
The following registers cannot be used in Arm64EC compared to AArch64:
- `x13`, `x14`, `x23`, `x24`, `x28` (register class: `reg`)
- `v[16-31]` (register class: `vreg`)
- `p[0-15]`, `ffr` (clobber-only register class `preg`)
These are disallowed by the ABI (see also [abi docs](https://learn.microsoft.com/en-us/cpp/build/arm64ec-windows-abi-conventions?view=msvc-170#register-mapping) for `reg`/`vreg` and https://github.com/rust-lang/rust/pull/131332#issuecomment-2401189142 for `preg`).
Although not listed in the above requirements, preserves_flags is also implemented and the same as AArch64.
---
cc `@dpaoliello`
r? `@Amanieu`
`@rustbot` label O-windows O-AArch64 +A-inline-assembly +T-lang -T-compiler +needs-fcp
For the `multivalue` and `reference-types` features this commit is
similar to #117457 in that it's stabilizing target features specific to
WebAssembly targets. The previous PR left out these two features because
they weren't expected to change much about compiled code so it was
unclear what the rationale was. It has [since been discovered][blog]
that `reference-types` can be useful as it changes the binary format of
the `call_indirect` instruction. Additionally [on Zulip][zulip] there's
a use case of detecting these features at compile time and generating a
compile error to better warn users about features not supported on
engines.
This PR then additionally adds the `tail-call` feature which corresponds
to the [tail-call] proposal to WebAssembly. This feature advanced to
"phase 4" in the WebAssembly CG awhile back and has been supported in
LLVM for quite some time now. Engines are finishing up implementations
or have already shipped implementations, so while this is a bit of a
late addition to Rust itself it reflects the current status of
WebAssembly's state of the feature.
A test has been added here not only for these features but other
WebAssembly features as well to showcase that they're usable without
feature gates in stable Rust.
[blog]: https://blog.rust-lang.org/2024/09/24/webassembly-targets-change-in-default-target-features.html
[zulip]: https://rust-lang.zulipchat.com/#narrow/stream/122651-general/topic/wasm32.20reference-types.20.2F.20multivalue.20in.201.2E82-beta.20not.20enabled/near/473893987
[tail-call]: https://github.com/webassembly/tail-call
Dont suggest `use<impl Trait>` when we have an edition-2024-related borrowck issue
#131186 implements some machinery to detect in borrowck when we may have RPIT overcaptures due to edition 2024, and suggests adding `+ use<'a, T>` to go back to the edition 2021 capture rules. However, we weren't filtering out cases when there are APITs in scope.
This PR implements a more sophisticated diagnostic where we will suggest turning any APITs in scope into type parameters, and applies this to both the borrowck error note, and to the `impl_trait_overcaptures` migration lint.
cc #132809
Additional tests to ensure let is rejected during parsing
In the original stabilization PR, @ `compiler-errors` has [pointed out](https://github.com/rust-lang/rust/pull/94927#issuecomment-1165156328) that #97295 wasn't enough to address the concerns about having `let` in expressions being rejected at parsing time, instead of later.
Thankfully, since then the situation has been greatly improved by #115677. This PR adds some additional tests to `disallowed-positions.rs`, and adds two additional revisions to the "normal" case which is now given the `feature` name:
* `no_feature`: Added to incorporate `disallowed-positions-without-feature-gate.rs` into the file, reducing duplication.
* `nothing`: like feature, but all functions are cfg'd out. Ensures that the errors are really emitted during parsing.
cc tracking issue #53667
require const_impl_trait gate for all conditional and trait const calls
Alternative to https://github.com/rust-lang/rust/pull/132786.
`@compiler-errors` this is basically what I meant with my proposals. I found it's easier to express this in code than English. ;)
r? `@compiler-errors`
Emit warning when calling/declaring functions with unavailable vectors.
On some architectures, vector types may have a different ABI depending on whether the relevant target features are enabled. (The ABI when the feature is disabled is often not specified, but LLVM implements some de-facto ABI.)
As discussed in rust-lang/lang-team#235, this turns out to very easily lead to unsound code.
This commit makes it a post-monomorphization future-incompat warning to declare or call functions using those vector types in a context in which the corresponding target features are disabled, if using an ABI for which the difference is relevant. This ensures that these functions are always called with a consistent ABI.
See the [nomination comment](https://github.com/rust-lang/rust/pull/127731#issuecomment-2288558187) for more discussion.
Part of #116558
r? RalfJung
Make `Ty::primitive_symbol` recognize `str`
Make `Ty::primitive_symbol` recognize `str`, which makes `str` eligible for the "expected primitive, found local type" (and vice versa) [diagnostic](https://github.com/rust-lang/rust/blob/master/compiler/rustc_trait_selection/src/error_reporting/infer/mod.rs#L1430-L1437) that already exists for other primitives.
<details><summary> diagnostic difference</summary>
```rs
#[allow(non_camel_case_types)]
struct str;
fn foo() {
let _: &str = "hello";
let _: &core::primitive::str = &str;
}
```
`rustc --crate-type lib --edition 2021 a.rs`
Current nightly:
```rs
error[E0308]: mismatched types
--> a.rs:5:19
|
5 | let _: &str = "hello";
| ---- ^^^^^^^ expected `str`, found a different `str`
| |
| expected due to this
|
= note: expected reference `&str`
found reference `&'static str`
error[E0308]: mismatched types
--> a.rs:6:36
|
6 | let _: &core::primitive::str = &str;
| --------------------- ^^^^ expected `str`, found a different `str`
| |
| expected due to this
|
= note: expected reference `&str` (`str`)
found reference `&str` (`str`)
error: aborting due to 2 previous errors
For more information about this error, try `rustc --explain E0308`.
```
With this patch:
```rs
error[E0308]: mismatched types
--> a.rs:5:19
|
5 | let _: &str = "hello";
| ---- ^^^^^^^ expected `str`, found a different `str`
| |
| expected due to this
|
= note: str and `str` have similar names, but are actually distinct types
= note: str is a primitive defined by the language
note: `str` is defined in the current crate
--> a.rs:2:1
|
2 | struct str;
| ^^^^^^^^^^
error[E0308]: mismatched types
--> a.rs:6:36
|
6 | let _: &core::primitive::str = &str;
| --------------------- ^^^^ expected `str`, found a different `str`
| |
| expected due to this
|
= note: str and `str` have similar names, but are actually distinct types
= note: str is a primitive defined by the language
note: `str` is defined in the current crate
--> a.rs:2:1
|
2 | struct str;
| ^^^^^^^^^^
error: aborting due to 2 previous errors
For more information about this error, try `rustc --explain E0308`.
```
</details>
Enforce that raw lifetimes must be valid raw identifiers
Make sure that the identifier part of a raw lifetime is a valid raw identifier. This precludes `'r#_` and all module segment paths for now.
I don't believe this is compelling to support. This was raised by `@ehuss` in https://github.com/rust-lang/reference/pull/1603#discussion_r1822726753 (well, specifically the `'r#_` case), but I don't see why we shouldn't just make it consistent with raw identifiers.
Reject raw lifetime followed by `'`, like regular lifetimes do
See comment. We want to reject cases like `'r#long'id`, which currently gets interpreted as a raw lifetime (`'r#long`) followed by a lifetime (`'id`). This could have alternative lexes, such as an overlong char literal (`'r#long'`) followed by an identifier (`id`). To avoid committing to this in any case, let's reject the whole thing.
`@mattheww,` is this what you were looking for in https://github.com/rust-lang/reference/pull/1603#issuecomment-2339237325? I'd say ignore the details about the specific error message (the fact that this gets reinterpreted as a char literal is 🤷), just that because this causes a lexer error we're effectively saving syntactical space like you wanted.
use verbose for path separator suggestion
A single `-` of suggestion underlining that is adjacent to a much more significant `^^^` underlying of the LHS path component is hard to distinguish. IMO this presents much more cleanly when it's verbose, especially because it's a *replacment* suggestion.
r? estebank
Don't suggest `.into_iter()` on iterators
This makes the the suggestion to call `.into_iter()` only consider unsatisfied `Iterator` bounds for the receiver type itself. That way, it ignores predicates generated by trying to auto-ref the receiver (the result of which usually won't implement `Iterator`).
Fixes#127511
Unfortunately, the error in that case is still confusing: it labels `Iterator` as an unsatisfied bound because `&impl Iterator: Iterator` can't be satisfied, despite that not being required or helpful. I'd like to handle that in a separate PR. ~~I'm hoping fixing #124802 will fix it too.~~ It doesn't look connected to that issue. Still, I think it'd be clearest to visually distinguish unsatisfied predicates from different attempts at `pick_method`; I'll make a PR for that soon.
Get rid of `check_opaque_type_well_formed`
Instead, replicate it by improving the span of the opaque in `check_opaque_meets_bounds`.
This has two consequences:
1. We now prefer "concrete type differs" errors, since we'll hit those first before we check the opaque is WF.
2. Spans have gotten slightly worse.
Specifically, (2.) could be improved by adding a new obligation cause that explains that the definition's environment has stronger assumptions than the declaration.
r? lcnr
remove support for rustc_safe_intrinsic attribute; use rustc_intrinsic functions instead
This brings us one step closer towards removing support for `extern "rust-intrinsic"` blocks, in favor of `#[rustc_intrinsic]` functions.
Also move `#[rustc_intrinsic]` under the `intrinsics` feature gate, to match the `extern "rust-intrinsic"` style.
Initialize channel `Block`s directly on the heap
The channel's `Block::new` was causing a stack overflow because it held
32 item slots, instantiated on the stack before moving to `Box::new`.
The 32x multiplier made modestly-large item sizes untenable.
That block is now initialized directly on the heap.
Fixes#102246
try-job: test-various
core: move intrinsics.rs into intrinsics folder
This makes the rustbot notification we have set up for this folder in `triagebot.toml` actually work. Also IMO it makes more sense to have it all in one folder.
Add `{ignore,needs}-{rustc,std}-debug-assertions` directive support
Add `{ignore,needs}-{rustc,std}-debug-assertions` compiletest directives and retire the old `{ignore,only}-debug` directives. The old `{ignore,only}-debug` directives were ambiguous because you could have std built with debug assertions but rustc not built with debug assertions or vice versa. If we want to support the use case of controlling test run based on if rustc was built with debug assertions, then having `{ignore,only}-debug` will be very confusing.
cc ````@matthiaskrgr````
Closes#123987.
r? bootstrap (or compiler tbh)
Tweak detection of multiple crate versions to be more encompassing
Previously, we only emitted the additional context if the type was in the same crate as the trait that appeared multiple times in the dependency tree. Now, we look at all traits looking for two with the same name in different crates with the same crate number, and we are more flexible looking for the types involved. This will work even if the type that implements the wrong trait version is from a different crate entirely.
```
error[E0277]: the trait bound `CustomErrorHandler: ErrorHandler` is not satisfied because the trait comes from a different crate version
--> src/main.rs:5:17
|
5 | cnb_runtime(CustomErrorHandler {});
| ^^^^^^^^^^^^^^^^^^^^^ the trait `ErrorHandler` is not implemented for `CustomErrorHandler`
|
note: there are multiple different versions of crate `c` in the dependency graph
--> /home/gh-estebank/testcase-rustc-crate-version-mismatch/c-v0.2/src/lib.rs:1:1
|
1 | pub trait ErrorHandler {}
| ^^^^^^^^^^^^^^^^^^^^^^ this is the required trait
|
::: src/main.rs:1:5
|
1 | use b::CustomErrorHandler;
| - one version of crate `c` is used here, as a dependency of crate `b`
2 | use c::cnb_runtime;
| - one version of crate `c` is used here, as a direct dependency of the current crate
|
::: /home/gh-estebank/testcase-rustc-crate-version-mismatch/b/src/lib.rs:1:1
|
1 | pub struct CustomErrorHandler {}
| ----------------------------- this type doesn't implement the required trait
|
::: /home/gh-estebank/testcase-rustc-crate-version-mismatch/c-v0.1/src/lib.rs:1:1
|
1 | pub trait ErrorHandler {}
| ---------------------- this is the found trait
= note: two types coming from two different versions of the same crate are different types even if they look the same
= help: you can use `cargo tree` to explore your dependency tree
```
Fix#89143.
Basic inline assembly support for SPARC and SPARC64
This implements asm_experimental_arch (tracking issue https://github.com/rust-lang/rust/issues/93335) for SPARC and SPARC64.
This PR includes:
- General-purpose registers `r[0-31]` (`reg` register class, LLVM/GCC constraint `r`)
Supported types: i8, i16, i32, i64 (SPARC64-only)
Aliases: `g[0-7]` (`r[0-7]`), `o[0-7]` (`r[8-15]`), `l[0-7]` (`r[16-23]`), `i[0-7]` (`r[24-31]`)
- `y` register (clobber-only, needed for clobber_abi)
- preserves_flags: Integer condition codes (`icc`, `xcc`) and floating-point condition codes (`fcc*`)
The following are *not* included:
- 64-bit integer support on SPARC-V8+'s global or out registers (`g[0-7]`, `o[0-7]`): GCC's `h` constraint (it seems that there is no corresponding constraint in LLVM?)
- Floating-point registers (LLVM/GCC constraint `e`/`f`):
I initially tried to implement this, but postponed it for now because there seemed to be several parts in LLVM that behaved differently than in the LangRef's description.
- clobber_abi: Support for floating-point registers is needed.
Refs:
- LLVM
- Reserved registers https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/Sparc/SparcRegisterInfo.cpp#L52
- Register definitions https://github.com/llvm/llvm-project/blob/llvmorg-19.1.0/llvm/lib/Target/Sparc/SparcRegisterInfo.td
- Supported constraints https://llvm.org/docs/LangRef.html#supported-constraint-code-list
- GCC
- Reserved registers 63b6967b06/gcc/config/sparc/sparc.h (L633-L658)
- Supported constraints https://gcc.gnu.org/onlinedocs/gcc/Machine-Constraints.html
- SPARC ISA/ABI
- (64-bit ISA) The SPARC Architecture Manual, Version 9
(32-bit ISA) The SPARC Architecture Manual, Version 8
(64-bit ABI) System V Application Binary Interface SPARC Version 9 Processor Supplement, Rev 1.35
(32-bit ABI) System V Application Binary Interface SPARC Processor Supplement, Third Edition
The above docs can be downloaded from https://sparc.org/technical-documents
- (32-bit V8+ ABI) The V8+ Technical Specification
https://temlib.org/pub/SparcStation/Standards/V8plus.pdf
cc `@thejpster` (sparc-unknown-none-elf target maintainer)
(AFAIK, other sparc/sprac64 targets don't have target maintainers)
r? `@Amanieu`
`@rustbot` label +O-SPARC +A-inline-assembly