Update chalk to 0.75.0
- Compute flags in `intern_ty`
- Remove `tracing-serde` from `PERMITTED_DEPENDENCIES`
- Bump `tracing-tree` to 0.2.0
- Bump `tracing-subscriber` to 0.3.3
Stabilize asm! and global_asm!
Tracking issue: #72016
It's been almost 2 years since the original [RFC](https://github.com/rust-lang/rfcs/pull/2850) was posted and we're finally ready to stabilize this feature!
The main changes in this PR are:
- Removing `asm!` and `global_asm!` from the prelude as per the decision in #87228.
- Stabilizing the `asm` and `global_asm` features.
- Removing the unstable book pages for `asm` and `global_asm`. The contents are moved to the [reference](https://github.com/rust-lang/reference/pull/1105) and [rust by example](https://github.com/rust-lang/rust-by-example/pull/1483).
- All links to these pages have been removed to satisfy the link checker. In a later PR these will be replaced with links to the reference or rust by example.
- Removing the automatic suggestion for using `llvm_asm!` instead of `asm!` if you're still using the old syntax, since it doesn't work anymore with `asm!` no longer being in the prelude. This only affects code that predates the old LLVM-style `asm!` being renamed to `llvm_asm!`.
- Updating `stdarch` and `compiler-builtins`.
- Updating all the tests.
r? `@joshtriplett`
replace dynamic library module with libloading
This PR deletes the `rustc_metadata::dynamic_lib` module in favor of the popular and better tested [`libloading` crate](https://github.com/nagisa/rust_libloading/).
We don't benefit from `libloading`'s symbol lifetimes since we end up leaking the loaded library in all cases, but the call-sites look much nicer by improving error handling and abstracting away some transmutes. We also can remove `rustc_metadata`'s direct dependencies on `libc` and `winapi`.
This PR also adds an exception for `libloading` (and its license) to tidy, so this will need sign-off from the compiler team.
They are also removed from the prelude as per the decision in
https://github.com/rust-lang/rust/issues/87228.
stdarch and compiler-builtins are updated to work with the new, stable
asm! and global_asm! macros.
Rollup of 7 pull requests
Successful merges:
- #90709 (Only shown relevant type params in E0283 label)
- #91551 (Allow for failure of subst_normalize_erasing_regions in const_eval)
- #91570 (Evaluate inline const pat early and report error if too generic)
- #91571 (Remove unneeded access to pretty printer's `s` field in favor of deref)
- #91610 (Link to rustdoc_json_types docs instead of rustdoc-json RFC)
- #91619 (Update cargo)
- #91630 (Add missing whitespace before disabled HTML attribute)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Update cargo
8 commits in 294967c53f0c70d598fc54ca189313c86c576ea7..40dc281755137ee804bc9b3b08e782773b726e44
2021-11-29 19:04:22 +0000 to 2021-12-06 21:54:44 +0000
- Unify the description of quiet flag (rust-lang/cargo#10168)
- Stabilize future-incompat-report (rust-lang/cargo#10165)
- Support abbreviating `--release` as `-r` (rust-lang/cargo#10133)
- doc: nudge towards simple version requirements (rust-lang/cargo#10158)
- Upgrade clap to 2.34.0 (rust-lang/cargo#10164)
- Treat EOPNOTSUPP the same as ENOTSUP when ignoring failed flock calls. (rust-lang/cargo#10157)
- Add note about RUSTFLAGS removal from build scripts. (rust-lang/cargo#10141)
- Make clippy happy (rust-lang/cargo#10139)
Use object crate for .rustc metadata generation
We already use the object crate for generating uncompressed .rmeta
metadata object files. This switches the generation of compressed
.rustc object files to use the object crate as well. These have
slightly different requirements in that .rmeta should be completely
excluded from any final compilation artifacts, while .rustc should
be part of shared objects, but not loaded into memory.
The primary motivation for this change is #90326: In LLVM 14, the
current way of setting section flags (and in particular, preventing
the setting of SHF_ALLOC) will no longer work. There are other ways
we could work around this, but switching to the object crate seems
like the most elegant, as we already use it for .rmeta, and as it
makes this independent of the codegen backend. In particular, we
don't need separate handling in codegen_llvm and codegen_gcc.
codegen_cranelift should be able to reuse the implementation as
well, though I have omitted that here, as it is not based on
codegen_ssa.
This change mostly extracts the existing code for .rmeta handling
to allow using it for .rustc as well, and adjusts the codegen
infrastructure to handle the metadata object file separately: We
no longer create a backend-specific module for it, and directly
produce the compiled module instead.
This does not `fix` #90326 by itself yet, as .llvmbc will need to be
handled separately.
r? `@nagisa`
We already use the object crate for generating uncompressed .rmeta
metadata object files. This switches the generation of compressed
.rustc object files to use the object crate as well. These have
slightly different requirements in that .rmeta should be completely
excluded from any final compilation artifacts, while .rustc should
be part of shared objects, but not loaded into memory.
The primary motivation for this change is #90326: In LLVM 14, the
current way of setting section flags (and in particular, preventing
the setting of SHF_ALLOC) will no longer work. There are other ways
we could work around this, but switching to the object crate seems
like the most elegant, as we already use it for .rmeta, and as it
makes this independent of the codegen backend. In particular, we
don't need separate handling in codegen_llvm and codegen_gcc.
codegen_cranelift should be able to reuse the implementation as
well, though I have omitted that here, as it is not based on
codegen_ssa.
This change mostly extracts the existing code for .rmeta handling
to allow using it for .rustc as well, and adjust the codegen
infrastructure to handle the metadata object file separately: We
no longer create a backend-specific module for it, and directly
produce the compiled module instead.
This does not fix#90326 by itself yet, as .llvmbc will need to be
handled separately.
Update Clippy dependencies
Clippy has two outdated dependencies, where one indirect dependency has been flagged by rustsec for dropping a lifetime. See [RUSTSEC-2020-0146](https://rustsec.org/advisories/RUSTSEC-2020-0146). This PR updates these dependencies.
With previous dependency updates, it was tried to prevent duplicates in the `Cargo.lock` file of rust-lang/rust. I've tried to keep this in mind with this update.
* Dependency `semver`
* Used in `src/tools/cargo/Cargo.toml` as version `1.0.3`
* Used in `src/tools/rust-analyzer/crates/project_model/Cargo.toml` as version `1`
* Updated in Clippy from `0.11` to `1.0` (Clippy usually defines the major and minor patch version). The `Cargo.lock` file lists `1.0.3` which is one patch version behind the most recent one but prevents a duplicate with cargo's pinned version.
* Dependency `cargo_metadata`
* Used in several tools as `0.14`
* Used in `src/tools/tidy` and `src/tools/rls` as `0.12`
* Updated in Clippy from `0.12` to `0.14`
All updates to the `Cargo.lock` have been done automatically by `x.py`.
There are still some tools with these outdated dependencies. Clippy didn't require any changes, and it would be likely that the others could also be updated without any problem. Let me know if I should try to update them as well 🙃.
Keep up the good work, whoever is reading this 🦀
---
For Clippy:
changelog: none
The rustc fork of rayon integrates with Cargo's jobserver to limit the
amount of parallelism. However, rustdoc's use case is concurrent I/O,
which is not CPU-heavy, so it should be able to use mainline rayon.
See this discussion [1] for more details.
[1]: https://github.com/rust-lang/rust/issues/90227#issuecomment-952468618
Note: I chose rayon 1.3.1 so that the rayon version used elsewhere in
the workspace does not change.
Add support for artifact size profiling
This adds support for profiling artifact file sizes (incremental compilation artifacts and query cache to begin with).
Eventually we want to track this in perf.rlo so we can ensure that file sizes do not change dramatically on each pull request.
This relies on support in measureme: https://github.com/rust-lang/measureme/pull/169. Once that lands we can update this PR to not point to a git dependency.
This was worked on together with `@michaelwoerister.`
r? `@wesleywiser`
Adopt let_else across the compiler
This performs a substitution of code following the pattern:
```
let <id> = if let <pat> = ... { identity } else { ... : ! };
```
To simplify it to:
```
let <pat> = ... { identity } else { ... : ! };
```
By adopting the `let_else` feature (cc #87335).
The PR also updates the syn crate because the currently used version of the crate doesn't support `let_else` syntax yet.
Note: Generally I'm the person who *removes* usages of unstable features from the compiler, not adds more usages of them, but in this instance I think it hopefully helps the feature get stabilized sooner and in a better state. I have written a [comment](https://github.com/rust-lang/rust/issues/87335#issuecomment-944846205) on the tracking issue about my experience and what I feel could be improved before stabilization of `let_else`.
Index and hash HIR as part of lowering
Part of https://github.com/rust-lang/rust/pull/88186
~Based on https://github.com/rust-lang/rust/pull/88880 (see merge commit).~
Once HIR is lowered, it is later indexed by the `index_hir` query and hashed for `crate_hash`. This PR moves those post-processing steps to lowering itself. As a side objective, the HIR crate data structure is refactored as an `IndexVec<LocalDefId, Option<OwnerInfo<'hir>>>` where `OwnerInfo` stores all the relevant information for an HIR owner.
r? `@michaelwoerister`
cc `@petrochenkov`